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ABSTRACT

BASE-PROMOTED SYNTHESIS OF NEW DIAZEPINE DERIVATIVES VIA
ALKYNE CYCLIZATION

Baskin, Dilges
M.Sc., Department of Chemistry

Supervisor: Prof. Dr. Metin Balc1

June 2016, 102 pages

A new methodology was developed for the synthesis of dipyrromethane and diazepine
derivatives. In the first section of this thesis, synthesis of various dipyrromethanes
from aromatic aldehydes was carried out. Dipyrromethanes were used as starting
materials for the next step. In the second part of the study, introduction of a propargyl
group to nitrogen atom to one of pyrrole units of dipyrromethane gave the expected
mono-propargylated compounds which were the key compounds for further
cyclization reactions. Base-supported cyclization resulted in the formation of the target

compounds, new diazepine derivatives, via metal-free 7-exo-dig cyclization.

Keywords: Pyrrole, dipyrromethane, diazepine, alkyne cyclization



0z

DIAZEPIN TUREVLERININ BAZ DESTEKLI ALKIN SiKLiZASYONU iLE
SENTEZi

Baskin, Dilges
Yiiksek Lisans, Kimya Bolimii

Tez YoOneticisi: Prof. Dr. Metin Balci

Eylil 2015, 102 sayfa

Diazepin ve dipirrometan tiirevlerinin sentezi i¢in yeni bir sentetik metot gelistirildi.
Tezin ilk kisminda, ¢esitli dipirrometanlarin sentezi bazi aromatik aldehitlerden
cikarak gerceklestirildi. Dipirrometanlar bundan sonraki basamak igin baslangi¢
molekiilleri olarak kullanildi. Tezin ikinci kisminda, dipirrometan molekiiliinde
bulunan pirol halkalarina ait olan iki azot atomundan birine propargil grubu kontrollii
bir sekilde baglandi. Tek bir propargil grubu iceren bu bilesikler bazik ortamda
siklizasyona tabi tutuldu ve arzu edilen hedef bilesikler, diazepin tiirevleri, metal

katalizor kullanmadan 7-exo-dig halkalasma reaksiyonu ile sentezlendi.

Anahtar Kelimeler: Pirol, dipirrometan, diazepin, alkin siklizasyonu
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CHAPTER 1

INTRODUCTION

1.1 Pyrrole

Pyrrole (1) is a five-membered heterocyclic compound having four sp? hybridized
carbon atoms and also one sp? hybridized nitrogen atom. The lone pair electrons of

nitrogen are delocalized over the ring and contribute to the aromaticity.*

3,

N
H1

Pyrrole

Resonance structures of pyrrole are shown below (Scheme 1).}

© __ h__ S
éﬂ.% - yCLS - Ol - AC)XD - QD\
N N N N N
H H H H H

1 1a 1b 1c 1d

Scheme 1. Resonance structure of pyrrole

Pyrroles are the one of the most significant molecule among heterocyclic compounds
due to their current biological and pharmacological properties.? Many pyrrole
derivatives show attracted biological properties for instance antibacterial,
antiinflammatory,* antioxidant,® antifungal,® and immune suppressant activities.’
Pyrrole is quitely functionalized subunit of chlorophyll a (2), heme (3), ningalin A

(4) and pyrrole alkaloids isolated from marine resource.®



Chloropyll a
2

OH o~ OH
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4

Heme

Atorvastatin

5

Atrovastatin (Lipitor) (5) is one of the example of pyrrole derived drugs and used to

decrease cholesterol.®



1.2 Dipyrromethanes

Dipyrromethane is a heterocyclic compound in which two pyrroles are connected from
the a-positions to a single sp* hybridized carbon atom. Dipyrromethane is called as B-
substituted dipyrromethane if the beta position(s) of pyrroles are substituted. Whereas,
when the beta position(s) of pyrrole is lack of any substituent, dipyrromethane is called

as meso-substituted dipyrromethane (Scheme 2).%°

H R5 R4 RS
~ = R3 ~ = R7
\_NH HN—7/ \_NH HN—7
meso-substituted dipyrromethane B-substituted dipyrromethane

Scheme 2. Naming of dipyrromethanes

1.2.1. Importance of meso-substituted dipyrromethane derivatives

Dipyrromethanes substituted at C-5 position are significant initiator for the synthesis
of meso-substituted porphyrins,'! corroles and porphyrins.*?

Meso-porphyrin derivatives have implementation in phototherapeutics,®® biological
processes,'* optoelectronics,® catalysis,'® and material chemistry.'’

Two compounds have been approved for PDT (photo dynamic therapy) cancer
treatment: porfimer (photofrin) (6) and foscan (7).2® Iron(lll) complex of an
amphipolar corrole (8) has been revealed to be a very potent catalytic antioxidant
(Scheme 3).19
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Scheme 3. Some dipyrromethane derivatives

1.2.2 Synthesis of dipyrromethanes

Lately, many procedure have been reported for the synthesis of dipyrromethanes.?
Most of the procedure include the condensation of an aldehyde and pyrrole in the
presence of several acids like BFzeetherate, trifluoroacetic acid (TFA), propionic acid
and p-toluenesulfonic acid. The purification of the dipyrromethanes is complicated
because of oligomeric compounds which forms in the reaction media.?

Singh and co-workers reported solvent-free condensation of electron rich heterocycles
with a variety of aldehydes using Amberlyst 15 catalyst. The condensations of pyrrole
(1) with aldehydes (9) are catalyzed with Amberlyst 15 to afford corresponding
dipyrromethane derivatives (10) (Scheme 4). %2



R

z 5 + RCHO Amberlyst 15 S =
N 25-80°C \_NH HN—7/
1 9 2-180 min 10

R =Ph, 4-MeO-CgHj, 4-Cl-CgH,, 3-OH-CgHa,
4-N02-CGH4, 3,4,5-(MeO)3-C6H2

Scheme 4. Synthesis of dipyrromethanes starting from pyrrole and aldehydes

Temelli and Unaleroglu developed a new synthetic method for the synthesis of
dipyrromethanes substituted at C-5 position from the reaction of pyrrole and N-tosyl

imine 11 in the presence of metal triflates (Scheme 5).%

R
N/Ts / \
7\ ' 10% M(OT), J\ -
\ _—
R/ 7 HN~ 14
M = Cu, Gd R= H, 4-CH30, 2-CH30, 4-CHj3, 2-OH,

4-NO,, 4-CF5, 4-F, 4-Cl, 4-Br

Scheme 5. Synthesis of dipyrromethane by using metal triflate

Littler and co-workers developed a condensation reaction of an aldehyde with neat
excess pyrrole catalyzed by TFA, followed by bulb-to-bulb distillation to remove
oligomeric material and recrystallization to remove the N-confused dipyrromethane
(Scheme 6).23

(/’\l\§Jr phcho T TFA(0-Teq) O)\O m
H 2.column \_NH HN—7/

40:1 chromatography

1 14 15 16 17

Scheme 6. Synthesis of dipyrromethane by using TFA



1.3. 1,4-Diazepines

Diazepine is a nitrogen containing, seven-membered heterocyclic structure. The ring

numbering and nomenclature for some 1,4-diazepines are given below.

N N \ N N
() ) ( ) ()
N N N N
H H
1H-1,4-Diazepine 2H-1,4-Diazepine  6H-1,4-Diazepine 1H-2,3-Dihydro-1,4-Diazepine
18 19 20 21

1.3.1 Importance of 1,4-diazepines derivatives

Diazepine derivatives demonstrate a range of clinically important properties.
Especially, benzodiazepines are used to treat anxiety disorders. They act on the central
nervous system to produce a calming effect.

Clozapine (22) is an effective drug in decreasing psychopathology, improving some
aspects of cognition, improving quality of life, decreasing hospitalisation, and
decreasing suicide attempts and completions.?® Lorazepam (23) is used to treat irritable
bowel syndrome, epilepsy, insomnia and to control tention caused by alcohol
withdrawal. The compund causes slowing activity in the brain and allow for
relaxation.?® Diazepam (24) is used to treat anxiety, acute alcohol withdrawal and

seizures. It also used to relieve muscle spasm (Scheme 7).2’

/
" »
L/
N— Cl Cl =N
m@\ O
N N
H Me O
Clozapine Lorazepam Diazepam
22 23 24

Scheme 7. Some diazepine drugs



1.4. Base supported alkyne cylization reactions

The ability to perform the key carbon-heteroatom bond formation step which
transforms an acyclic precursor into the desired cyclic is a critical process to construct
heterocycles.

Particularly,  forming a nitrogen functionality-alkyne bond via metal-free
intramolecular cyclization is a precious synthetic strategy.

It should be mentioned that a compact set of standarts, known as ‘the Baldwin rules’,
has been proven to be a useful tool for assessment the feasibility of ring closure
reactions.?® Baldwin identified the cyclization processes in terms of three factors:

(1) the ring size being formed (a numerical prefix);

(2) the geometry of carbon atom undergoing the ring-forming reaction (sp = diagonal,
sp? = trigonal, and sp® = tetrahedral);

(3) the pattern of the breaking bond (exo, the breaking bond is outside of the formed

ring, and endo, the breaking bond is inside of the new ring).2° (Scheme 8)

5

4 5 4 4 4
GRS N O
6 6
2N 2>y 2 2
1X//? 1 \VH7

/6 X H 6
4 X // 7 10
7-exo-dig 7-endo-dig 7-exo-trig 7-endo-trig
4 4 4 4
3. Cn oy Ox
A 6 A 6 ’
2 Ny H 2Ny 46 2 Ny “ 2Ny 46
1 1 1 1
6-exo-dig 6-endo-dig 6-exo-trig 6-endo-trig

Scheme 8. Patterns of ring closure for 6- and 7-membered rings

There are too many examples of metal-free alkyne cyclization reactions in literature.
Balci and coworkers® reported the formation of trizapine skeletons 27 via 7-exo-dig

cyclization (Scheme 9).



i i Ph
[\ /\ Ph =N
N H,N-NH,* H,0 N7 Y NaH/DMF \\ N
S CH3OH, reflux S 2 \/<
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- 26 - 27

Scheme 9. Metal-free 7-exo-dig cyclization reaction of product 25

Basceken and Balci® reported the formation of 6-exo-dig cyclization product 29

starting from compound 28 by using NaH in DMF (Scheme 10).

LY A
N N’N NaH/DMF N N-N
H rt, 15 min =
\% \—=(
29

Scheme 10. 6-exo-dig cyclization reaction of compound 29

Nagao et al. showed KOH-mediated cycloisomerization of propargylamides 30 into 4-

carboxylated oxazoles 31.%? (Scheme 11).

fl
0
Ph o)
EtO,C N)LMe KOH, EtOH /IN/>—Me

EtOZC H 0°C EtOZC
30 31

Scheme 11. Cycloisomerization of propargylamides 30

1.5. Aim of the study

This study focused on the synthesis of pyrrole-fused 1,4-diazepine derivatives 36
starting from dipyrromethane derivatives 34 by using base-supported reaction.

Our aim was first to improve the methodology for the synthesis of dipyrromethane
derivatives (34) and then control the propargylation step to get mono-propargylated
products 35. Finally, we target to obtain 1,4 diazepine derivatives from mono-

propargylated products via NaH as a base (Scheme 12).
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Scheme 12. Synthesis of diazepines 36






CHAPTER 2

RESULTS AND DISCUSSION

2.1. Synthesis of compounds 38 and 40

Firstly, Vilsmeier Haack reaction®® was used to get pyrrole carbaldehyde 37. Pyrrole
(1) was reacted with POCls and DMF in dry ether at 0 °C. In order to get basic medium,
the solution of NaHCO3 was used and compound 37 was gained. Afterwards, pyrrole-
2-carbaldehyde (37) in dry DMF was firstly reacted with NaH at 0 °C and then,
solution of propargyl bromide in dry DMF was added to the reaction media to obtain
compound 38 (Scheme 13). 343

POCI/DMF

A\ NaHCO / N
Q + RCHO ° Q—/( O—/(
N
H Ether, 0 °C H “NaH, DMF
73% 75% =
1 9 37 38

Scheme 13. Synthesis of compound 38

Structure 40 was synthesized in 97% vyield from the reaction of indolecarbaldehyde
39, propargyl bromide and NaH at room temperature. After deprotonation of NH-
proton with base, anionic nitrogen is formed. Then, anionic nitrogen attack propargyl

bromide to generate structure 40 (Scheme 14).%¢

39 40

Scheme 14. Synthesis of structure 40
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2.2. Synthesis of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a) and other
starting compounds (41b-i)

For the synthesis of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a), several
methods were applied and the most appropriate one was modified and used for the
synthesis of other derivatives 41b-i.

According to the first procedure?*, excess pyrrole (1) and benzaldehyde (14) (40:1)
were reacted at room temperature in the presence of TFA (0.1 equiv) as a catalyst for
15 minutes to obtain 2-[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a). Because of
the fact that excess pyrrole usage was waste of resources and led to the formation of

oligomers, the method was not preferred (Scheme 15).

0] Ph
G Oy e e
H chromatography NN
45%
1 14 41a

40:1

Scheme 15. Synthesis of 5-phenyldipyrromethane 41a by using THF

As reported by second procedure, mixing Amberlyst 15 ion exchange resin with
pyrrole and benzaldehyde resulted in the formation of 2-[phenyl(1H-pyrrol-2-
yl)methyl]-1H-pyrrole (41a) in the absence of solvent in 30% yield after 1 hour and in
35% vyield after 4 hours (Scheme 14).2? Due to low efficiency, this method was also

not preferred (Scheme 16).

Z 5 ©)J\ Amberlyst15
~ =
50 °C,1-4h
\ NH HN /

41a

Scheme 16. Synthesis of 41a by using Amberlyst 15

The most appropriate procedure?’ was applied for the synthesis of all starting
compounds (4la-i) in high vyields. The procedure published by Temelli and

Unaleroglu?! where metal triflates were replaced by 0.18 M HCI, was used as an acid
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to catalyzed reaction of pyrrole and benzaldehyde at the room temperature to get 2-
[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a). Then, for testing scope of further

reactions, additional derivatives 41b-i were synthesized (Scheme 17).

R
I\ Q
+  J 018MHOI A _
N RTH  oprt \_NH HN_7/
1 33 4ai

aR =-Ph, 74%

b R = -1-(prop-2-yn-1-yl)-1H-indole, 59%
¢ R = -1-(prop-2-yn-1-yl)-1H-pyrrole, 72%
d R = -p-MeOPh, 70%

e R =-0-CIPh, 89%

fR =-CHj3, 62%

gR=-H, 69%

h R =-0-NO, 79%

i R=-p-NO, 81%

Scheme 17. Synthesis of dipyrromethanes by using HCI

The characterization of compounds 41a-i was done by using *H-NMR and *C-NMR
spectra. The NH protons of structure 41a resonate at 7.88 ppm as broad singlet and the
multiplet signals of protons belong phenyl group appear between 7.22-7.35 ppm as
multiplet. In addition, the protons attached to C-4 position of pyrroles resonate at 6.14
ppm and the signal was split into doublet of doublets with coupling constants of J =
5.9 Hz and J = 2.8 Hz arising from the coupling with protons attached to the C-3 and

C-5 carbon atoms of pyrrole (Figure 1).
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Figure 1: *H-NMR Spectrum of compound 41a in CDCls

2.3. Proposed mechanism for the formation of starting materials (41a-i)

Formation of the products 41a-i can be visualized through the mechanism proposed in

Scheme 18. Thus, initial reaction of pyrrole with carbonyl substrate, activated through

protonation by HCI, leads to the adduct 44a-i obtained from initially formed 43a-i.

Similar nucleophilic attack of the C-2 position of pyrrole to the intermediate 45a-i

results in the formation of adduct 46a-i which furnish products 4la-i after

deprotonation.

R\J‘r/OH
_ > Z’\ > — » — > °N
H  ©18MHc)) N N N
H H H H
14 42a-i 43a-i 44a-i

+H*

H
DL o ey ome gy
- -2
LU HM @uw
H + y HH H H,0%R
41a-i 46a-i 45a-i

Scheme 18. Proposed mechanism for the formation of dipyrromethanes
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2.4. Propargylation reaction of starting materials 41a, d-h

Propargylation reaction of starting materials was required for the synthesis of 47a and
47d-h which are key compounds for the final cyclization reactions (Scheme 19).
According to the literature procedure,® in the first try, 41a was reacted first with NaH
in the presence of DMF and then a solution of propargyl bromide in dry DMF was
added dropwise to the reaction media at 0 °C to obtain 47a and 48a. Because of the
fact that, the yield of 47a (16%) was very low compared to the yield of 48a (45%), an
alternative procedure was applied to increase the yields of desired mono-propargylated
compounds 47a, d-h. According to the new procedure, after addition of propargyl
bromide in dry DMF to the reaction mixture, NaH was added piecewise to the reaction
media. As a result, yields of 47a was increased enormously.

R R

R
\NH HN~Z o oo L NH N \N_ N

NaH, 0 °C
o K\ /Z \K\
41a, d-h 47a, d-h 48a, d-h
aR =-Ph
d R = -p-MeOPh
e R = -0-CIPh
f R=-CHj;
gR=-H
hR= -O—N02

Scheme 19. Propargylation reaction of dipyrromethane derivatives
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Table 1 Yields of mono- and di-propargylated products 47a, d-h and 48a, d-h

Starting Compounds

Mono- Propargylated Products

Di- Propargylated Products

/7 /\
N N
NH \ ~ N—\\\\
41a 47a 55% N 48a 22% \\
MeQ,
MeQ
T /\
N N
=
~NH \\ < \\
47d 48% = N | 48d 24% \\

41e

41h

\\ = \\ =
= = NH N/ N N/
\_NH HN—/ K 7{

41f 47F 45% W 48f 33% A
X = ~ =
\\NH HN// \_NH N/ \_N_ N/
\i\ i
41g 479 51% 489 24%
4
O,N |
OZN—; /N | 2 /_N N
NH X
» 48h 25% \\\\\




Characterization of compound 47a and 48a was achieved by using *H-NMR and 3C-
NMR spectra. In the *H-NMR spectrum of compound 47a the NH proton of pyrrole
unit resonates at 7.91 ppm as a broad singlet and the terminal alkyne proton resonates
at 2.36 ppm as triplet. This terminal alkyne proton can couple with CH2 proton with a
coupling constant of J = 2.5 Hz. Also, CH> protons appear as a doublet of doublets (J
=1.6Hzand J = 2.5 Hz) at 4.39 ppm as shown in (Figure 2).
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/948.5216
"\ 943.4420
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Figure 2: *H-NMR Spectrum of compound 47a in CDCls
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As one can see from the Figure 3, in the NMR spectrum of 48a there are no proton
resonance arising from the NH-protons clearly indicating the attachment of two
propargyl groups to the nitrogen atoms. Furthermore, the observed symmetry in the
'H- as well as in the *C-NMR spectra also supports the symmetrical structure. The
methylene protons are diastereotopic and they give rise to an AB-system with further
splitting with the alkyne proton (*J = 2.5 Hz). A-part of AB-system resonates at 4.36
— 4.35 ppm, whereas the B-part of AB-system appear at 4.32 — 4.27 ppm. The main
coupling of the AB-system arising from the coupling of diastereotopic protons was
measured as J = 14.0 Hz which is in the expected range. The high field signal at 2.33

17



ppm belongs to terminal alkyne protons and split into triplet with a coupling constants
of J=2.5 Hz.
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Figure 3: 'H-NMR Spectrum of compound 48a in CDCls3

2.5. Cyclization reaction of mono-propargylated compound 47a

Reaction of mono-propargylated compounds 47a with AuClsz in the presence of
acetonitrile was the first attempt to obtain diazepine derivative 49a. This reaction was
carried out at room temperature as well as at reflux temperature. Unfortunately, the
desired diazepine derivative 49a could not be obtained under these conditions. The

starting material 47a was recovered, (Scheme 20).

AUC|3 A 7
) —— /)
acetonitrile N _ N
K r.t.— 80 °C
47a 49a

Scheme 20. Reaction between compound 47a with AuCls
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On the other hand, the intramolecular cyclization reactions of compounds 47a, d-g and
41b-c with NaH in DMF at room temperature afforded diazepine derivatives 49a-g in
high yields (Scheme 21).

R Yields
R R
a -Ph 76%
\\ ~ ) —Nad \ = ~ y/ c -pyrrole 61%
NH N DMF N N
r.t. >__/ d -p-MeOPh 87%
\\ e -0-CIPh 61%
41a or 47c-g 49a, c-g f -CHs 85%
d -H 81%

\\

41b 49b

Scheme 21. Cyclization reaction by using NaH

The structures of newly synthesized diazepine derivatives 49a-g are shown in the

Scheme 22.
OMe

49e 49f 49¢g

Scheme 22. Diazepine derivatives synthesized from mono-propargylated compounds
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2.6. Proposed mechanism for the cyclization reaction

The mechanism of the alkyne cyclization reaction is mentioned in Scheme 21. In the
first step, because of the basic reaction, 41a, c-g can easily give allene formation 50
which have an electropositive carbon center. Thus, the nitrogen atom of pyrrole with
increased electron density on its, attacks the central carbon atom of allene unit to give
52 through the intermediate 51, which can form directly 49a, c-g or 52. The exo-cyclic
products 52 can easily rearrange to 49a, c-g under the basic conditions by 1,3-H
shifting.(Scheme 23).
R R R R
S = S = X ~ A AN =

@):NOM’\N@N/—»\N N/Lm

DMF (}/ j §_<CH2 \_§

/ / 41a, c-g H.C 59 51 52
I H-shift
aR=-Ph
¢ R = -pyrrole
d R = -p-MeOPh r R
e R=-0-CIPh X Z H* A =
fR =-CHj, \ / — \ //
- N N N N
gR=-H N __< N _<
CH,
583 © 49a, c-g

Scheme 23. Proposed mechanism for the formation of diazepine derivatives 49a-g

The structure of 41c and 49c were proven by NMR studies as shown below (Figure 4).
In the *H-NMR spectrum of compound 41c, CH. protons resonate at 4.44 ppm as a
doublet with a coupling constant of J = 2.5 Hz and alkyne proton resonate at 2.36 ppm
as triplet with a coupling constant of J = 2.5 Hz because of long range coupling with
CH: protons. In addition, two protons attached to the nitrogen atoms resonate at 7.93
ppm as a broad singlet (Figure 4). On the other hand, structure 41c is in agreement
with 12 distinct signals in the *C-NMR spectrum. (Figure 5).
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Figure 4: 'H-NMR Spectrum of compound 41c in CDCls
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Figure 5: *C-NMR Spectrum of compound 41c in CDCl3

The 1D and 2D NMR (HSQC, COSY, HMBC) spectra were used for characterization
of cyclization product 49¢. When the *H-NMR spectra of 49¢ and 41c were compared,
disappearance of alkyne protons and one of the nitrogen protons was very informative

in view of the proposed structure. Furthermore, appearance of a singlet at 2.15 ppm
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arising from the CHs protons in the *H-NMR spectrum of 49c clearly indicated the
cyclization reaction (Figure 6). Moreover, the 3C-NMR spectrum with 16 distinct
carbon resonance signals also supports the formation of product 49c (Figure 7).

In the HSQC spectrum of compound 49c, there are some significant heteronuclear
correlations supporting the cyclic structure (Figure 8).

In COSY spectrum, we observe a correlation between the methyl protons and the
newly formed double bond proton (Figure 9). The location of C-4 carbon atom was
determined by the correlations between the C-4 carbon atom and H-8 olefinic proton
and CHa protons observed in the HMBC spectrum.

The other correlations were in complete agreement with the proposed structure too.
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Figure 6: 'TH-NMR Spectrum of compound 49c in CDCls
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2.7. An attempt for the cyclization reaction of 2-[(2-nitrophenyl)(1H-pyrrol-2-
yl)methyl]-1-prop-2-ynyl-1H-pyrrole (47h)

2-[(2-Nitrophenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole ~ (47h)  was
another mono-propargylated derivative having a benzene group bearing a nitro-
functionality at the ortho-position, which was synthesized in order to control the scope
of the cyclization reaction. Unfortunately, expected cyclization product 54 was not
obtained from the reaction of 47h with NaH in DMF even at high temperatures
(Scheme 24).

54

Scheme 24. Reaction of structure 47h with NaH

Intramolecular hydrogen-bonding can be attribute to this unexpected situation.
Hydrogen-bonding is accepted as “strong, mostly covalent” with donor-acceptor
distances of 2.2-2.5 A; as “moderate, mostly electrostatic” if distance is between 2.5-
3.2 A and as “weak, electrostatic” with distance of 3.2 - 4.0 A.*° The geometry of 50a
was optimized by using B3LYP with 6-31+G(d,p) basis set in the gas phase to prove
the formation of intramolecular hydrogen-bonding. As one can see from Figure 11, the
distance between one of the oxygen atom of nitro group and hydrogen attached to the
nitrogen atom of pyrrole is 2.40 A. Thus, the intramolecular hydrogen-bonding of

compound 50a is mostly covalent and this fact blocks the cyclization reaction.
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Figure 11. H bonding of compound 50a

2.8. An attempt for the propargylation reaction of 2-[(4-nitrophenyl)(1H-pyrrol-
2-yl)methyl]-1H-pyrrole (41i)

After failure of the cyclization reaction of 47h we decided to change to position of
nitro group from the ortho-position to the para-position as in 55 to prove the
intramolecular hydrogen-bonding in compound 47h which prevented the cyclization
reaction. In designed structure 56, a similar hydrogen bonding will not be possible due
to the distance between oxygen atom and NH hydrogen of pyrrole. For the synthesis
of 55, dipyrromethane derivative 41i was submitted to propargylation reaction under
the same reaction conditions. For that reason, compound 2-[(4- nitrophenyl)(1H-
pyrrol- 2-yl)methyl]- 1H-pyrrole (41i) was reacted with NaH and propargyl bromide
in the presence of DMF. Unlikely, instead of expected mono-propargylated product 55
or di- propargylated product 56, compound 57°° was produced under these reaction
conditions (Scheme 25) and (Scheme 26).
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Scheme 25. Attempt to synthesize compound 55

N02 NOZ

/\Br
_ =
X = / = =
NaH, r.t.
\_NH HN_Z/ DMF =N  HN—/
Mi 57

Scheme 26. Synthesis of compound 57 in the presence of propargyl bromide and NaH

When compound 41i was reacted only with NaH in DMF, in the absence of propargyl
bromide, 57 was again formed even in 1-2 minutes (Scheme 27). Thus, propargyl
bromide does not effect the reaction. The spectral data (*H-NMR, **C-NMR, HRMS)
of compound 57 is full-compatible with the literature data®.

NO, NO,

NaH
—_—
\\ = DMF J Y N
NH HN_Z rt, 1 min —N /
64 % HN
41i 57

Scheme 27. Synthesis of compound 57 with NaH

Due to the presence of a strong electron-withdrawing group such as nitro group, the
acidity of methine proton is enhanced. Therefore, the base can easily abstract this

proton forming an anion which can be stabilized due to the delocalization over the
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benzene and pyrrole rings. This anion can undergo an oxidation reaction in the
presence of air to form the oxidation product 57. Probably, a similar oxidation in the
case of 41h due to the formation of strong hydrogen bonding is hindered (Figure 11).
Because of the very fast tautomery in 57, two pyrrole rings are equal. This can be

nicely seen in the symmetrical NMR spectra (Scheme 28).

NO,
7 = N
—=N HN /

Scheme 28. Resonance structures of compound 57

2.9. Synthesis of 2-(phenyl(1H-pyrrol-2-yl)methyl)-1-(3-phenylprop-2-yn-1-yl)-

1H-pyrrole (58) with Sonagashira coupling reaction

Sonogashira cross-coupling reaction is used to form a new C-C bond between aryl or
vinyl halide and a terminal alkyne by using cupper catalyst, palladium catalyst, bulky
ligand and base (Scheme 29).%’

Pd(0)/Ligand
X + =—R? » Rl-—R2
R=X Cu(l), base
organohalide terminal coupled product
alkyne

Scheme 29. Sonogashira coupling reaction

In order to test the scope of the cyclization reaction, additional derivative 2-
(phenyl(1H-pyrrol-2-yl)methyl)-1-(3-phenylprop-2-yn-1-yl)-1H-pyrrole  (58) was
synthesized by using Sonagashira coupling reaction procedure®. desired coupling
product 58 was obtain from the reaction of compound 41c with phenyl acetylene,
Pd(OAC)2, Cul and PPhz in dry DIPA and dry THF (Scheme 30).
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Pd(OAc),, Cul
PPh,
THF, DIPA

reflux, 24 h
60%

41a \\ 58 \\

Scheme 30. Synthesis of 57 by using Sonogashira coupling reaction

2.10. An attempt for the cyclization reaction of 2-(phenyl(1H-pyrrol-2-yl)methyl)-
1-(3-phenylprop-2-yn-1-yl)-1H-pyrrole (58)

Coupling product 58 was reacted with NaH or AuCls in the presence of DMF or THF
at room temperature as well as at reflux temperature. However, desired cyclization

product 59 did not form under these reaction conditions (Scheme 31).

NaH or AuCl,
— =

DMF or THF
r.t. = reflux —

58 \\ 59

Scheme 31. Reaction of compound 58 with NaH

2.11. Further propargylation of 5-methyl-11-(1H-pyrrol-2-yl)-11H-dipyrrolo[1,2-
d:2',1'-g][1,4]diazepine (49c)

The product 49c was reacted with of NaH in the presence of propargyl bromide in
DMF. An Sn2 reaction occur to give propargylated product 60 in 61% yield (Scheme
32). The compound 60 was suitable for further cyclization reactions. Therefore, the

further cyclization reaction could be tried for compound 60.
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Scheme 32. Propargylation of 49a

2.12. An attempt for further cyclization reaction of 5-methyl-11-(1-(prop-2-yn-1-
yl)-1H-pyrrol-2-yl)-11H-dipyrrolo[1,2-d:2",1'-g][1,4]diazepine (60)

The key compound 60 was reacted with NaH with the expectation of the formation of
derivative 61. Unfortunately, no trace of a cyclization product could be observed even

at reflux temperature (Scheme 33).

NaH
—H—
):/ DMF >_:/
r.t. > reflux
60 61

Scheme 33. Reaction of 60 with NaH
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CHAPTER 3

CONCLUSION

A novel synthetic methodology was improved for the synthesis of new diazepine
derivatives which may show potential activities especially for psychological disorders.
The method which is described startes with the synthesis of dipyrromethanes. In this
step, some procedure were tried and the most favorable one was modified to obtain the
starting dipyrromethane derivatives 41a-i (Scheme 34).

R
I\ Q
+ | 0M8MHOI_ A _
N Ny i \_NH HN—/
1 33 41a-i

a R =-Ph, 74%

b R = -1-(prop-2-yn-1-yl)-1H-indole, 59%
¢ R = -1-(prop-2-yn-1-yl)-1H-pyrrole, 72%
d R = -p-MeOPh, 70%

e R =-0-CIPh, 89%

fR =-CHs3, 62%

gR=-H,69%

h R =-0-NO, 79%

i R=-p-NO, 81%

Scheme 34. Synthesis of starting compound 41a, d-h

Introducing propargyl group to nitrogen atom of pyrrole(s) gave the expected mono-
and di-propargylated compounds 47a, d-h and 48a, d-h. The trouble for this step was
that the yields of mono-propargylated compounds, which were much less than the
yields of the di-propargylated compounds. So, this problem was solved by

modification of the procedure?! (Scheme 35).
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R R R

N\NH HN—7 o 0o L NH N-Y/ \N_ N

NaH, 0 °C
DMF
#1a, d-h 47a,d-h | a8a, o-h [ \|
aR=-Ph
d R = -p-MeOPh
e R =-0-CIPh
f R=-CH,
gR=-H
h R = -0-NO,

Scheme 35. Synthesis of propargylated compounds

Then, with the following simple cyclization reaction, desired diazepine derivatives

49a-g were obtained (Scheme 36).

R R

R Yields

X = NaH X 7 -Ph 76%

\ NH N DI\{IF \ N N / -pyrrole 61%
r.t.

-p-MeOPh 87%
\\

-0-CIPh 61%
41a, c-g 493, c-g

-CHs 85%
-H 81%

Q=™ ool 0|

49b

Scheme 36. Synthesis of cyclized derivatives.

Moreover, attempt for the cyclization reaction of derivative 47h was done. The failure
of cyclization reaction of 54 was attributed to the formation of intramolecular
hydrogen-bonding between oxygen atom nitro group and pyrrole NH-hydrogen atom
(Scheme 37). Surprisingly, the reaction of 41i with NaH gave an oxidation product 57
(Scheme 38).
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O,N

= = NaH O @
\_NH N —F = N N

DMF >_—J
rt. — 90 °C
\|
47h 54

Scheme 37. Reaction of 47h with NaH
NO, NO,

X = NaH / = =
\_NH HN_7/ DMF =N HN-—/
r.t, 1 min
64 %
41i 57

Scheme 38. Reaction of 41i with NaH in the presence of air oxygen

Further, attempts with compounds having a benzene ring attached to the terminal
carbon atom of alkyne functionality, was failed to give any cyclization product
(Scheme 39).

NaH

-

DMF or THF
r.t. = reflux —

58 \\ 59
Scheme 39. Synthesis of 59 by using Sonagahira reaction

Finally, we succeeded in the synthesis of 60, however, further cyclization to generate
a new skeleton such as 61 was failed (Scheme 40).

33



DMF

Scheme 40. Reactions to get target compound 61

The characterization of newly synthesized compounds were succeeded by using *H-
NMR, *C-NMR, IR and HRMS spectra.
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CHAPTER 4

EXPERIMENTAL SECTION

4.1 General Methods

All reagents were acquired from commercial provider and additional purification was
not done. *H NMR spectra were recorded on an instrument 400 MHz and chemical
shifts are shown in ppm. CDClz and CD3COCD3 were used as internal standarts. In
addition, **C-NMR spectra were recorded on an instrument 100 MHz and CDCls and
CD3COCD; were used as internal standarts. Also, **C-NMR spectra were reported in
ppm. IR were recorded in the range 4000-600 cm™ via ATR diamond. Melting point
instrument was used to measure melting points.ee

Rotary vacuum evaporator was used for vaporisation of solvents at reduced pressure.
Column chromatography was carried out on silica gel). TLC was performed on 0.2
mm silica gel aluminum plates. UV light (A = 254 nm) was used to visualize the spots
on TLC. LC-MS TOF electrospray ionization technique was used to record HRMS.

4.2. Synthesis of 1H-pyrrole 2-carbaldehyde(37)

To a stirred solution of POCI3 (1.4 g, 9.1 mmol) and DMF (0.73 g, 9.7 mmol) was
added pyrrole (0.6 g, 9.1 mmol) in dry ether (20 mL) dropwise at 0 °C. The
composition was mixed at room temperature for 14h. Afterwards, the satiated solution
of NaHCO3 was added to media until a basic medium was beholded. Then, the
composition was extracted with EtOAc (3 x 30 mL). DMF in extracts were removed
with brine (3 x 15 mL) and the mixture dried over MgSQOas, and the solvent was
vaporized. The crude composition was chromatographed eluting with hexane/EtOAc
(10:1) to give (37) as a needle crystals (0.63 g, 73%), m.p. 44-45 °C.
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1H-NMR (400 MHz, CDCl3) § 10.47 (br s, 1H, -NH), 9.51 (d, J = 1.0,
1H, -H-1'), 7.18 (br s, 1H, H-3), 7.01 (ddd, Ja3 = 3.8 Hz, Js.4 = 2.3 Hz,
1H, H-4), 6.35 (ddd, Ja3 = 3.8 Hz, Jus = 2.4 Hz, 1H, H-4)

13CNMR (100 MHz, CDCI3) ¢ 179.4, 132.8, 126.9, 121.8, 111.3.

4.3. Synthesis of 1-(Prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde (38)%°

To a solution of pyrrole-2-carbaldehyde (0.63 g, 6.7 mmol) (37) in DMF (10 mL) was
added NaH (0.2 g, 11 mmol) at 0 °C portionwise over 1 h. The composition was mixed
at 0 °C for 0.5 h, and to the reaction media was added propargyl bromide (0.11 mL,
8.5 mmol) in DMF (10 mL) dropwise over 0.5 h. The reaction mixture was mixed at
room temperature for 16 h, and water addition(50 mL), the mixture was extracted with
EtOAc (4 x 25 mL). DMF in media was removed with brine (6 x 15 mL), dried over
MgSQO4, and solvent in composition was evaporated. The crude product was
chromatographed eluting with hexane/EtOAc (7/1) to give (38) as a yellow liquid (0.66
g 75%).%

IH NMR (400 MHz, CDCl3) ¢ 9.49 (bd, J = 1.2 Hz, 1H, H-1),
7.20—-7.19 (m, 1H, H-5), 6.90 (dd, J34 = 4.0 and J35 = 1.6 Hz, 1H, H-
3), 6.22 (dd, Jas = 2.4, J43=4.0 Hz, 1H, H-4),5.14 (d, J = 2.6 Hz, 2H,
H-1"), 2.39 (t, J = 2.6 Hz, 1H, H-3").

13C NMR (100 MHz, CDCI3) 6 179.5, 131.1, 130.4, 124.9, 110.1, 77.8, 74.4, 38.1.

4.4. Synthesis of 1-prop-2-ynyl-1H-indole-2-carbaldehyde (40)%®
Solid NaH was added (0.17 g, 7.1 mmol) piecewise at 0 °C to a stirred solution of 1H-
indole-2-carbaldehyde (39) (0.94 g, 5.5 mmol) in dry DMF (10 mL). Then, propargyl
bromide (0.85 mL, 7.8 mmol) was added to the stirring solution. After 7 hours, brine
was added (50 mL) to remove DMF and ethyl acetate (3 x 50 mL) was used to extract
product. The final composition were dried over MgSOs and filtered. After
vaporisation, the product (40) was obtained. Brown solid (0.91 g, 82%) from CHCl,

m.p. 101-103 °C.

U IH NMR (400 MHz, CDCl3) & 9.81 (s, 1H, H-8), 7.68 (dt, Ja5=
@—/( 8.0, Jas = Jaz = 0.9 Hz, 1H, H-4), 7.47 (dd, Jre = 8.5, Jrs = 1.0
° 7 T\\\% Hz, 1H, H-7), 7.40 (ddd, Js7 = 8.5, Je;5= 7.0, Js.2= 0.9 Hz, 1H,
23] H-6),7.22 (d, Jau = 0.9 Hz, 1H, H-3), 7.15 (ddd, Js.4 = 8.0, Js6 =
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7.0, Js7= 1.0 Hz, 1H, H-5), 5.39 (d, Ju3 = 2.5 Hz, 2H, H-1'), 2.20 (t, Ja1 = 2.5 Hz,
1H, H-3).

13C NMR (100 MHz, CDCls) 5 182.6, 140.1, 134.5, 127.4, 126.6, 123.5, 121.5, 118.7,
110.8, 78.2, 72.5, 33.9.

4.5. General procedure for synthesis of 5-substituted dipyrromethanes (41a-i)

Corresponding aldehydes (33a and 33d-i) and N-propargyl substituted aldehydes (38,
40) (5 mmol) were dissolved in pyrrole (15 mmol) and then HCI (0.18 M, 0.045 mmol,
250 mL) was added to media and the composition was mixed at room temperature for
3 hours. The reaction was followed with TLC and after completion of the reaction. The
composition was extracted with EtOAc (3 x 50 mL) and dried over MgSO4 and after
evaporation, the residue was purified with gradient column chromatography eluting
with hexane:ethyl acetate (10:1 to 5:1) and the product were crystallized from

appropriate solvents.

4.6. Synthesis of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a)%
Benzaldehyde (0.5 g, 5 mmol) and pyrrole (1.005 g, 15 mmol) was reacted in HCI
(0.18 M, 0.045 mmol, 250 mL) as described above. (41a) was receipt as a pale yellow
crystals (0.82 g, 74%), m.p. 105-106 °C from EtOAc/hexane.

LH-NMR (400 MHz, CDCls) & 7.88 (bs, 2H, H-1), 7.22-7.35
(m, 5H, arom), 6.63-6.59 (M, 2H, H-5), 6.15 — 6.13 (m,2H,
H-4), 5.92 (bs, 2H, H-3), 5.49 (s, 1H, H-1).

13C NMR (100 MHz, CDCls) § 44.1, 107.5, 108.8, 117.1,
127.0, 128.5, 128.7, 132.4, 142.2.

4.7. Synthesis of 2-[(4-methoxyphenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole
(41d)*

HClI (0.18 M, 0.045 mmol, 250 mL) was added to a mixture of 4-
methoxybenzaldehyde (0.75 g, 5 mmol) and pyrrole (1.005 g, 15 mmol). Then,
procedure was continued as described above. 41d was obtain as pale yellow powder
(0.88 g, 70%), m.p. 102-103 °C.
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IH-NMR (400 MHz, CDCl3) 6 7.82 (bs, 2H, H-1), 7.14 (d,
Jpz = 8.6, 2H, H-2"), 6.85 (d, J23 = 8.6, 2H, H-3"), 6.65-
6.67 (M, 2H, H-5), 6.15 — 6.13 (m, 2H, H-4), 5.90-5.92 (m,
2H, H-3), 5.42 (s, 1H, H-1), 3.82 (s, 3H, H-1").

13C NMR (100 MHz CDCls): § 43.2, 55.2, 107.3, 108.7,
114.0, 117.0, 129.4, 132.8, 134.3, 158.6.

4.8. Synthesis of 2-[(2-chlorophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41e)
4-chlorobenzaldehyde ( 0.70 g, 5 mmol) ) and pyrrole (1.005 g, 15 mmol) was reacted
in HCI (0.18 M, 0.045 mmol, 250 mL) as described above (41e) was receipt as pale
yellow powder (1.14 g, 89%), m.p. 108-109 °C.

e 'H NMR (400 MHz, CDCls) 6 7.96 (bs, 2H, H-1), 7.41 - 7.31
(m, 1H, H-3"), 7.22 — 7.16 (m, 2H, H-4", H-5"), 7.12 — 7.07 (m,
1H, H-6"), 6.70 — 6.68 (m, 2H, H-3), 6.16 (m, 2H, H-4), 5.91
(s, 1H, H-1"), 5.88 — 5.85 (m, 2H, H-5),

13C NMR (100 MHz, CDClz) § 140.0, 133.7, 131.2, 129.7,
129.6, 128.2, 127.1, 117.3, 108.5, 107.4, 40.6.

IR (ATR, cm™) 3674, 2986, 2901, 1507, 1456, 1394, 1228, 1066, 1055, 892, 823,
725.

HRMS calcd for C15H13CIN2 [M+H]*: 257.0840, found: 257.0842

4.9. Synthesis of 2-[di(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole (41c)
1-(Prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde (38) (0.665 g, 5 mmol) and pyrrole
(1.005 g, 15 mmol) was reacted in HCI (0.18 M, 0.045 mmol, 250 mL) as described
above to give compound (41c). Yellow solid (0.89 g, 72%), m.p. 92-93 °C.

IH NMR (400 MHz, CDCls) ¢ 7.93 (bs, 2H, H-1"), 6.77 (dd, J
= 2.6, 2.0 Hz, 1H, H-5), 6.69 — 6.66 (M, 2H, H-5"), 6.16 — 6.14
(m, 2H, H-4"), 6.12 — 6.09 (m, 1H, H-4), 6.00 — 5.97 (M, 2H, H-
3"), 5.91 — 5.88 (m, 1H, H-3), 5.64 (s, 1H, H-1), 4.44 (d, Ja=1

13C NMR (100 MHz, CDCls) ¢ 132.1, 130.5, 121.5, 117.2,
108.7, 108.4, 107.4, 106.9, 78.3, 73.4, 36.2, 36.0.

38



IR (ATR, cm™) 3285, 1651, 1528, 1475, 1402, 1368, 1337, 1314, 1282, 1246, 1218,
1075, 1030, 953, 939, 890, 785, 741, 641, 605.
HRMS calcd for C16H1sN3s [M+H]": 249,1024, found: 249.1043

4.10. Synthesis of 2-[di(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-indole (41b)
1-(Prop-2-yn-1-yl)-1H-indole-2-carbaldehyde (40) (0.916 g, 5 mmol) and pyrrole
(1.005 g, 15 mmol) ) were reacted in HCI (0.18 M, 0.045 mmol, 250 mL) as described
above to give compound (41b). Yellow oil (0.88 g, 59%).

IH NMR (400 MHz, CDCls) ¢ 7.90 (bs, 2H, H-1), 7.45 (d, J
= 7.8 Hz, 1H, H-7"), 7.29 (d, J = 8.2 Hz, 1H, H-6"), 7.20 —
7.12 (m, 1H, H-5"), 7.08 — 7.01 (m, 1H, H-4"), 6.62 — 6.60
(m, 2H, H-5), 6.17 (s, 1H, H-3"), 6.11 — 6.09 (m, 2H, H-4),
6.01 - 5.95 (M, 2H, H-3), 5.74 (s, 1H, H-1'), 4.63 (d, Jy» 3~ =
2.5 Hz, 2H, H-1"), 2.16 (t, J1~a~ = 2.5 Hz, 1H, H-3").

13C NMR (100 MHz, CDCls) 6 139.7, 137.1, 129.7, 127.6, 122.0, 120.6, 120.2, 117.6,
109.2, 108.6, 107.3, 102.5, 78.3, 72.4, 36.5, 32.5.

IR (ATR, cm-t) 3403, 2987, 1715, 1507, 1459, 1402, 1339, 1311, 1249, 1182, 1162,
1106, 1085, 1027, 907, 884, 770, 726, 646, 603.

HRMS calcd for C2oH17N3 [M+H]"™: 299.1542 found: 299.1553

4.11. Synthesis of 2-(1H-pyrrol-2-ylmethyl)-1H-pyrrole (41g)*

Formaldehyde (0.15 g, 5 mmol) and pyrrole (1.005 g, 15 mmol) was reacted in HCI
(0.18 M, 0.045 mmol, 250 mL) as described above to give compound (41g). Colorless
needles from EtOAc/ hexane, m.p. 75 °C. (0.50 g, 69 %).

IH NMR (400 MHz, CDCls) ¢ 7.63 (bs, 2H, H-1), 6.56 —
6.54 (m, 2H, H-5), 6.14 — 6.12 (m, 2H, H-4), 6.08 — 5.95

3 1 H
. W) (m, 2H, H-3), 3.89 (s, 2H, H-1Y).
s NH / 13C NMR (100 MHz, CDCl3) § 129.2, 117.5, 108.3, 106.6,
26.3.
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4.12. Synthesis of 2-[1-(1H-pyrrol-2-yl)ethyl]-1H-pyrrole (41f)%*

Acetaldehyde (0.22 g, 5 mmol) and pyrrole (1.005 g, 15 mmol) were reacted in HCI
(0.18 M, 0.045 mmol, 250 mL) as described above to give compound (41f). Colorless
sticky solid (0.49 g, 62%).

, IH NMR (400 MHz, CDCls) & 7.60 (bs, 2H, H-1), 6.67 —

e K 6.42 (M, 2H, H-5), 6.08 — 6.06 (M, 2H, H-4), 5.98 (bs, 2H, H-

R Y 3), 4.06 (q, Jz1 = 7.2 Hz, 1H, H-1), 1.50 (d, Jz1 = 7.2 Hz,
© 3H, H-2).

13C NMR (CDCla): 6 20.6, 31.7, 105.0, 108.0, 117.2, 134.8.

4.13. Synthesis of 2-[(2-nitrophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41h)?
2-Nitrobenzaldehyde (0.75 g, 5 mmol) and pyrrole (1.005 g, 15 mmol) were reacted
in HCI (0.18 M, 0.045 mmol, 250 mL) as described above to give compound (41h).
Yellow needle crystals from CH>Cl> (1.05 g, 79%), m.p. 145-147 °C.

IH NMR (400 MHz, CDCl3) § 8.16 (bs, 2H, H-1), 7.90 (dd, Ja-
3 =8.1and Jz 5 = 1.2 Hz, 1H, H-3"), 7.54 (td, Ja 35 = 7.7
and Ja e = 1.2 Hz, 1H, H-4") 7.46 — 7.35 (m, 1H-5"), 7.30 (dd,
Jo5»=8.1and Je 4 = 1.5 Hz, 1H, H-6"), 6.75— 6.71 (m, 1H,
H-5), 6.22 (s, 1H, H-1), 6.18 (m, 1H, H-4), 5.89 — 5.84 (m, 1H,

H-3).
13C NMR (100 MHz, CDCls) ¢ 148.8, 137.2, 133.0, 131.0, 130.7, 127.8, 124.5, 117.6,
108.6, 107.4, 38.9.

4.14. Synthesis of 2-[(4-nitrophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41i)?*
4-Nitrobenzaldehyde ( 0.75 g, 5 mmol) and pyrrole (1.005 g, 15 mmol) ) were reacted
in HCI (0.18 M, 0.045 mmol, 250 mL) as described above to give compound (41i) as
light yellow needles from hexane/ethyl acetate, m.p. 161 °C. (1.08 g, 81%)).
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v 'H NMR (400 MHz, Acetone-ds) ¢ 9.84 (bs, 1H, H-1), 8.28 —
8.08 (m, 2H, H-3"), 7.54 — 7.43 (m, 2H, H-2"), 6.77 — 6.74 (m,
. H-5), 6.04 (M, 2H, H-4), 5.82 —5.78 (M, 1H, H-3), 5.67 (s, 1H,
H-1).

13C NMR (100 MHz, Acetone-ds) 5 152.3, 147.5, 132.6, 130.3,
- 124.1,118.4,108.4, 107.9, 44.7.

4.15. Synthesis of 2-(phenyl(1H-pyrrol-2-yl)methyl)-1-(3-phenylprop-2-yn-1-yl)-
1H-pyrrole (58)

A mixture of Cul (20 mg, 0.10 mmol), PPh3 (40 mg, 0.15 mmol), and PdCI2 (20 mg
0.10 mmol) was mixed under the nitrogen atmosphere for 2 min. After that, 2-
[phenyl(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole (0.2 g, 1.42 mmol),
iodobenzene (0.34 g, 1.70 mmol) and DIPA (2 mL) in dry THF (20 mL) was added to
the reaction mixture. The reaction was monitored with thin-layer chromatography and
was completed after 1.5 h. After evaporation, the crude product was purified by
column chromatography (silica gel/hexane-EtOAc 10:1) to give 2-(phenyl(1H-pyrrol-
2-yl)methyl)-1-(3-phenylprop-2-yn-1-yl)-1H-pyrrole (58) as brown viscous oil (0.303
g, 60%).

IH NMR (400 MHz, CDCls) 6 7.86 (bs, 1H, H-1"), 7.39 — 7.06
(m, 12H, arom), 6.81 — 6.72 (m, 1H, H-5), 6.62 (dd, Ja3 = 4.1
and Jas = 2.5 Hz, 1H, H-4), 6.08 — 6.06 (m, 1H, H-4"), 6.04 —
6.02 (m, 1H, H-3"), 5.81 - 5.75 (m, 1H, H-3), 5.65 5.57 (s, 1H,
H-1, 4.54 (s, 2H, H-1"").

13C NMR (101 MHz, CDCls) ¢ 141.6, 133.5, 131.9, 131.7,
128.6, 128.5, 128.5, 128.3, 126.9, 122.3, 121.3, 117.14, 109.4,
108.3, 107.4, 107.1, 85.0, 83.6, 42.6, 37.2.

IR (ATR, cm™) 3375, 2919, 1682, 1597, 1489, 1442, 1386,
1342, 1284, 1233, 1115, 1071, 1027, 968, 915, 883, 845, 755, 689, 602.

HRMS calcd for C2sH20N2 [M+H]*: 337.1699 found: 337.1720
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4.16. General procedure for propargylation of dipyrromethanes substituted at C-
5 position

To a stirred solution of 5-substituted dipyrromethanes (40a and 40d-h) (3 mmol) in
DMF (30 mL) was added propargyl bromide (3.6 mmol) in DMF (5 mL) dropwise at
0 °C over a period of 30 min. The process was followed by portionwise addition of
NaH (3.6 mmol) at 0 °C over a period of 30 min. The reaction was monitored with
thin-layer chromatography and completed after 12-17 h. After completion of the
reaction, the composition was extracted with EtOAc (4 x 40 mL). Then, DMF in media
was removed with brine (8 x 50 mL) and mixture dried over MgSOas. The eluent was
removed under reduced pressure and the residue was purified with gradient column
chromatography on silica gel eluted with hexane:ethyl acetate (20:1 to 7:1) and

crystallized appropriate solvent.

4.17. Synthesis of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole
(47a) and 2-[phenyl(1-prop-2-ynyl-1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-
pyrrole (48a)

To a stirred solution of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41a) (0.82 g,
3.9 mmol) in DMF (30 mL) was added propargyl bromide (0.384 mL, 4.6 mmol) in
DMF at 0 °C over a period of 30 min and the reaction was followed by portionwise
addition of NaH (0.112 g, 4.6 mmol). The reaction was completed after 12 h. and the
further procedure was applied as described above. Mono-propargylated product (47a)
was isolated as light yellow oil (0.49 g, 55%) and di- propargylated product (48a) was
isolated as light yellow solid (0.20 g, 22%) m.p. 73-74 °C from EtOAc/ hexzane.

IH NMR (400 MHz, CDCl3) 6 7.91 (bs, 1H, H-1"), 7.39 — 7.10
(m, 5H-arom), 6.79 —6.72 (m, 1H, H-5), 6.68 (dd, J43 =4.1 and
Jas =25 Hz, 1H, H-4), 6.14 - 6.12 (m, 1H, H-4"), 6.10 — 6.06
(m, 1H, H-5"), 5.83 —5.82 (m, 1H, H-3), 5.70 — 5.68 (m, 1H, H-
3"), 5.56 (s, 1H, H-1'), 4.39 — 4.36 (m, 2H, H-1""), 2.35 (t, Jy» 3~
=2.5Hz, 1H, H-3").

13C NMR (101 MHz, CDCls) 6 141.5, 133.5, 131.8, 128.5,
128.4,126.9, 121.2, 117.1, 109.5, 108.3, 107.4, 107.3, 78.3, 73.4, 36.3, 29.6

IR (ATR, cm™) 1662, 1510, 1416, 1381, 1342, 1287, 1272, 1252, 1118, 1094, 1043,
1002, 935, 909, 845, 808, 773, 714, 638, 593, 575.
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HRMS calcd for C1sH1sN2 [M+H]": 259.1151 found: 259.1158

'H NMR (400 MHz, CDCl3) 6 7.28 — 7.06 (m, 5H-arom), 6.71
—6.66 (m, 2H, H-5), 6.03 - 5.94 (m, 2H, H-4), 5.54 (s, 1H, H-
1, 5.50 — 5.41 (m, 2H, H-3), 4.33 (dd, Jgeminai = 14.0 Hz and
Jimam = 2.5 Hz, 4H, H-1""), 2.33 (t, Ji~3~ = 2.5 Hz, 2H, H-
3").

13C NMR (101 MHz, CDCl3) & 140.6, 132.9, 128.7, 128.5,
126.9, 121.1, 109.9, 107.3, 78.7, 73.3, 41.2, 36.3.

IR (ATR, cm™) 3283, 3243, 3025, 2116, 1704, 1598, 1477, 1449, 1434, 1340, 1226,
1197, 1124, 1071, 1027, 1016, 962, 933, 896, 821, 789, 778, 751, 710, 697, 656, 609.
HRMS calcd for C21H1sN2 [M+H]*: 299.1542 found: 299.1553

4.18. Synthesis of 2-[(4-methoxyphenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-
1H-pyrrole (47d) and 2-[(4-methoxyphenyl)(1-prop-2-ynyl-1H-pyrrol-2-
yl)methyl]-1-prop-2-ynyl-1H-pyrrole (48d)

To a stirred solution of 2-[(4-methoxyphenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole
(41d) (0.88 g, 3.48 mmol) in DMF (30 mL) was added propargyl bromide (0,36 mL,
4.18 mmol) in DMF at 0 °C over a period of 30 min and the reaction was followed by
portionwise addition of NaH (0.10 g, 4.18 mmol). After 10 h. reaction was completed.
The further procedure was done as described above. Mono- propargylated product
(47d) was isolated as yellow oil (0.15 g, 48%) and di- propargylated product (48d)
was isolated as yellow needles (0.12 g, 24%) from EtOAc/ hexane, m.p. 72-73 °C.

IH NMR (400 MHz, CDCls) 6 7.90 (bs, 1H, H-1"), 7.13 — 6.81
(m, 4H-arom), 6.78 — 6.74 (m, 1H, H-5), 6.69 (dd, J43 = 4.1 and
Jas = 2.6 Hz, 1H, H-4), 6.14 — 6.12 (m, 1H, H-4"), 6.08 (t, J =
3.2 Hz, 1H, H-5"), 5.82 (m, 1H, H-3"), 5.71 — 5.69 (m, 1H, H-
3), 5.51 (s, 1H, H-1'), 4.38 (d, Ji~ 3~ = 2.5 Hz, 3H, H-1""), 3.79
(s, 3H-OMe), 2.36 (t, Ji~3~ = 2.5 Hz, 1H, H-3"").

13C NMR (101 MHz, CDCls) ¢ 158.5, 133.8, 133.6, 133.5,
132.2,129.4,121.1, 117.0, 113.9, 109.3, 108.3, 107.2, 78.4, 73.3, 55.2, 41.7, 36.2.
IR (ATR, cm™) 3372, 3289, 1681, 1607, 1583, 1508, 1479, 1463, 1439, 1342, 1300,
1284, 1243, 1173, 1108, 1090, 1072, 1028, 936, 884, 842, 790, 707, 667,645, 592.
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HRMS calcd for C1gH1sN20 [M+H]": 291.1491 found: 291.1507.

IH NMR (400 MHz, CDCl3) 6 7.09 — 7.04 (m, 2H, H-3"),
6.86 — 6.82 (m, 2H, H-2"), 6.76 — 6.74 (m, 2H, H-5), 6.06 —
6.04 (m, 2H, H-4), 5.55 (s, 1H, H-1'), 5.52 — 5.49 (m, 1H, H-
3), 4.40 (dd, , Jgemina = 11.1 Hz and Jy~ 3~ = 2.5 Hz, 4H, H-
1", 3.79 (s, 3H-OMe), 2.39 (t, Jim 3~ = 2.5 Hz, 2H, H-3").
13C NMR (101 MHz, CDCls) ¢ 158.5, 133.2, 132.6, 129.7,
121.0, 113.9, 109.7, 107.3, 78.7, 73.2, 55.2, 40.4, 36.3.

IR (ATR, cm™) 3289, 3256, 1680, 1603, 1577, 1507, 1478, 1454, 1420, 1390, 1341,
1319, 1299, 1281, 1256, 1242, 1196, 1172, 1159, 1127, 1104, 1072, 1028, 956, 936,
898, 856, 826, 732, 721, 707, 687, 668, 644, 610,571.

HRMS calcd for C22H20N20 [M+H]*: 329.1648 found: 329.1684.

4.19. Synthesis of 2-[(2-chlorophenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-
pyrrole (47e) and 2-[(2-chlorophenyl)(1-prop-2-ynyl-1H-pyrrol-2-yl)methyl]-1-
prop-2-ynyl-1H-pyrrole (48e)

To a stirred solution of 2-[(2-chlorophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41e)
(1.14 g, 4.44 mmol) in DMF (30 mL) was added propargyl bromide (0.46 mL 5.3
mmol) in DMF at 0 °C over a period of 30 min and the reaction was followed by
portionwise addition of NaH (0.10 g, 5.3 mmol). The reaction was completed after 16
h. and the further procedure was done as described above. Mono- propargylated (47¢)
product was isolated as colorless oil (0.35 g, 44 %) and di- propargylated (48e) product
was isolated as light yellow needles from EtOAc/ hexane (0.21 g, 18%).

'H NMR (400 MHz, CDCl3) 6 7.94 (bs, 1H, H-1"), 7.40 — 7.35
(m, 1H, H-3"), 7.22 — 7.15 (m, 2H, arom), 7.01 — 6.96 (m, 1H,
arom), 6.81 — 6.77 (m, 1H, H-5), 6.70 (dd, Js3 = 4.2 and Js5 =
2.6 Hz, 1H, H-4), 6.15—6.13 (m, 1H, H-4"), 6.11 — 6.07 (m, 1H,
H-5"), 5.93 (s, 1H, H-1", 5.81 — 5.80 (m, 1H, H-3), 5.68 — 5.61
(m, 1H, H-3"), 4.41 (d, J1~3~ = 2.5 Hz, 2H, H-1"), 2.33 (t,
Jymgm = 2.5 Hz, 1H, H-3").

13C NMR (101 MHz, CDCls) 6 139.5, 133.7, 132.3, 130.4, 130.0, 129.5, 128.2, 127.0,
121.2,117.2,109.4, 108.8, 107.7, 107.4, 77.9, 73.5, 39.9, 36.2.
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IR (ATR, cm™) 3376, 3291, 1723, 1571, 1468, 1434, 1285, 1235, 1115, 1072, 1046,
1029, 936, 884, 847, 751, 712, 663, 609.
HRMS calcd for C1gH1sCIN2 [M+H]": 295.0996 found: 295.0979.

'H NMR (400 MHz, CDCls) 6 7.41 — 7.37 (m, 1H, H-3"),
7.23-7.16 (m, 2H, arom), 7.00 — 6.95 (m, 1H, arom), 6.79 —
6.77 (m, 2H, H-5), 6.07 — 6.05 (m, 2H, H-4), 6.01 (s, 1H, H-
1, 5.52 — 5.49 (m, 2H, H-3), 4.42 (dd, , Jgeminal = 7.9 Hz and
/1 Jimgm = 2.5 Hz, 4H, H-1"), 2.37 (t, Ji= 3~ = 2.5 Hz, 2H, H-
Vi 3™,

13C NMR (101 MHz, CDCls) ¢ 138.2, 133.9, 131.6, 130.4,
129.5, 128.2, 126.9, 121.2, 110.0, 107.4, 78.2, 73.4, 37.0, 36.3.

IR (ATR, cm) 3295, 1475, 1434, 1339, 1306, 1291, 1254, 1233, 1130, 1071, 1044,
1029, 1016, 936,846, 819, 787, 777, 734, 706, 666, 628, 607, 574.

HRMS calcd for C21H17CIN2 [M+H]*: 333.1153 found: 333.1168

4.20. Synthesis of 1-prop-2-ynyl-2-(1H-pyrrol-2-ylmethyl)-1H-pyrrole (47g) and
1-prop-2-ynyl-2-[(1-prop-2-ynyl-1H-pyrrol-2-yl)methyl]-1H-pyrrole (489)

To a stirred solution of 2-(1H-pyrrol-2-ylmethyl)-1H-pyrrole (0.50 g, 3,42 mmol)
(41g) in DMF (30 mL) was added propargyl bromide (3.5 mL, 4.1 mmol) in DMF at
0 °C over a period of 30 min and the reaction was followed by portionwise addition of
NaH (0.09 g, 4.1 mmol). The reaction was completed after 11 h. and the further
procedure was done as described above. Mono- propargylated (47g) product was
isolated as colorless liquid (0.12 g, 51%) and di- propargylated (48g) product was
isolated as light yellow oil (0.14 g, 24%).

™) H NMR (400 MHz, CDCls) 6 7.84 (bs, 1H, H-1"), 6.72-6.70
N | (m, 2H, H-5, H-5"), 661 (dd, Ju3 = 4.0 and Jys = 2.5 Hz, 1H,

) m "1 H-4), 6.16 — 615 (m, 1H, H-4"), 6.02 — 5.98 (m, 2H, H-3").

i 2'"71'" " | 4420, Jige =25 Hz, 2H, H-1"), 3.99 (s, 2H, H-1Y), 2.3 (t,
3// Jpmg = 2.5 Hz, 1H, H-3").

13C NMR (101 MHz, CDCl3) 6 129.3,128.5, 121.1, 117.0, 108.6, 108.4, 107.5, 106.0,
78.8,73.2,36.1, 25.3.

45



IR (ATR, cm™) 3377, 3282, 1698, 1567, 1482, 1420, 1342, 1311, 1286, 1240, 1205,
1180, 1115, 1088, 1071, 1025, 935, 883, 775, 707, 640.
HRMS calcd for C12H12N2 [M+H]*: 185.1073 found: 185.1079.

\\ IH NMR (400 MHz, CDCls) J 6.73 — 6.71 (m, 2H, H-5), 6.08 —
1 6.06 (M, 2H, H-4), 5.92 — 5.89 (m, 2H, H-3), 4.55 (d, J1s- = 2.5
Q& )| Hz 2H H-1Y), 405 (s, 2H, H-1), 238 (t, Jrg =25 Hz, 1H, H-
5 Ny 3.

Il 13C NMR (101 MHz, CDCls) 5 128.9, 120.9, 108.6, 107.5, 78.4,
73.2,36.3, 24.3.

IR (ATR, cml) 3321, 3247, 2917, 2849, 1660, 1480, 1424, 1336, 1290, 1283, 1204,
1182, 1137, 1071, 1016, 930, 882, 800, 707, 693, 655, 629, 614.

HRMS calcd for C12H1aN2 [M+H]*: 223.1229 found: 223.1240.

4.21. Synthesis of 1-prop-2-ynyl-2-[1-(1H-pyrrol-2-yl)ethyl]-1H-pyrrole (47f) and
1-prop-2-ynyl-2-[1-(1-prop-2-ynyl-1H-pyrrol-2-yl)ethyl]-1H-pyrrole (48f)

To a stirred solution of 2-[1-(1H-pyrrol-2-yl)ethyl]-1H-pyrrole (0.49 g, 3.05 mmol)
(41f) in DMF (30 mL) was added propargyl bromide (0.31 g, 3.66 mmol) in DMF at
0 °C over a period of 30 min and the reaction was followed by portionwise addition of
NaH (0.08 g, 3.6 mmol). After 10 h. reaction was completed. The further procedure
was done as described above. Mono- propargylated product (47f) was isolated as
colorless liquid (0.08 g, 33%) and di- propargylated compound (48f) was isolated as
colorless liquid (0.26 g, 45%).

2" .| 'H NMR (400 MHz, CDCls) 6 7.72 (bs, 1H, H-1"), 6.78 — 6.70
+ H

o 2N | (m, 1H, H-5), 6.59 (dd, Jas = 4.1 and Jas = 2.5 Hz, 1H, H-4),
/
4

4 2 \ 5"
5 N 1 3" " 614 — 612 (m1 1H1 H-4")! 612 - 610 (m’ 1H’ H-5”)’ 610 o
4
2// 6.08 (m, 1H, H-3), 6.02 — 6.00 (m, 1H, H-3"), 4.40 (dd, Jgeminal
3 =6.7, 13" = 2.5 Hz, 2H, H-1"), 4.27 (q, Jr.2~ = 7.1 Hz, 1H, H-

1Y), 2.32 (t, Ji»3~ = 2.5 Hz, 1H, H-3"), 1.61 (d, J12~ = 7.1 Hz, 3H, H-2").

13C NMR (101 MHz, CDCls) 9 134.5, 134.5, 121.1, 116.6, 108.2, 107.3, 106.5, 104.7,
78.4,73.1, 35.9, 30.5, 21.3.

IR (ATR, cm't) 3383, 3284, 2971, 2930, 1682, 1561, 1481, 1372, 1343, 1283, 1242,
1116, 1071, 1027, 936, 882, 789, 763, 710, 641, 561.
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HRMS calcd for C13H1aN2 [M+H]": 199.1229 found: 199.1238.

= =] *HNMR (400 MHz, CDCL) 96,66 6.63 (m, 2H, H-5), 604

AN ~6.01 (M, 2H, H-4), 5.83 — 5.81 (M, 2H, H-3), 4.39 (d, J1 3~

) \ S, = 2.5 Hz, 2H, H-1"), 4.24 (q, Jr2~ = 6.9 Hz, 1H, H-1), 2.29

2/71 (t, Jimg» = 2.5 Hz, 1H, H-3"), 1.55 (d, Jy2~ = 6.9 Hz, 3H, H-
e

13C NMR (101 MHz, CDCls) 6 134.6, 120.9, 107.4, 107.0, 78.7, 73.13, 36.0, 29.5,
20.8.

IR (ATR, cm) 3286, 2927, 2851, 1712, 1479, 1420, 1373, 1340, 1283, 1234, 1202,
1128, 1077, 1011, 934, 789, 759, 706, 637, 572.

HRMS calcd for C16H16N2 [M+H]": 237.1386 found: 237.1395.

4.22. Synthesis of 2-[(2-nitrophenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-
pyrrole(47h) and 2-[(2-nitrophenyl)(1-prop-2-ynyl-1H-pyrrol-2-yl)methyl]-1-
prop-2-ynyl-1H-pyrrole (48h)

To a stirred solution of 2-[(2-nitrophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41h)
(1.05 g, 3.9 mmol) in DMF (20 mL) was added propargyl bromide (0.384 mL, 4.6
mmol) in DMF (5 mL) at 0 °C over a period of 30 min and the reaction was followed
by portionwise addition of NaH (0.112 g, 4.6 mmol). The reaction was completed after
12 h. and the further procedure was done as described above. Mono- propargylated
(47h) product was isolated as yellow sticky solid (0.24 g, 44 %) and di- propargylated
product (48h) was isolated as colorless cubic crystals (0.10 g, 12%) from CHCl3, m.p.
143-144 °C from EtOAc/ hexzane.

IH NMR (400 MHz, CDCls) 6 7.98 (bs, 1H, H-1"), 7.93 (dd,
Jaw z»=8.1and Ja» 5+ = 1.2 Hz, 1H, H-3"), 7.51 (td, Jg» 35 =
7.6and g 6+ = 1.2 Hz, 1H, H-4") 7.43 - 7.38 (m, 1H-5"), 7.13
(dd, Js» 5+ = 7.8 and Je~ 4~ = 1.0 Hz, 1H, H-6"), 6.87 —6.77 (m,
1H, H-5), 6.73 — 6.71 (m, 1H, H-4), 6.38 (s, 1H, H-5"), 6.17 —
6.15 (m, 1H, H-4"), 6.09 — 6.03 (m, 1H, H-3), 5.85 (s, 1H, H-
1'), 5.61 — 5.58 (M, 1H, H-3"), 4.49 (d, Ji=g~ = 2.6 Hz, 2H, H-1""), 2.33 (t, Jymg» =
2.6 Hz, 1H, H-3™).

13C NMR (101 MHz, CDCls) ¢ 148.6, 136.8, 133.0, 131.5, 130.9, 129.7, 127.8, 124.8,
121.6,117.6, 109.3, 108.8, 107.9, 107.4, 77.2, 73.7, 37.5, 36.2.
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IR (ATR, cm™) 3286, 2914, 2849, 1669, 1605, 1520, 1472, 1423, 1397, 1342, 1285,
1183, 1117, 1073, 1028, 937, 883, 834, 784, 713, 657, 604.
HRMS calcd for C1gH1sN3O2 [M+H]": 306.1237 found: 306.1237

'H NMR (400 MHz, CDCls3) 6 7.96 (dd, Ja 3» = 8.1 and Ja-,
5 = 1.2 Hz, 1H, H-3"), 7.51 (td, Js 3.5 = 7.6 and Ja- 6"
1.2 Hz, 1H, H-4") 7.47 — 7.37 (m, 1H-5"), 7.15 (dd, Js", 5-
7.6 and Je 4» = 1.2 Hz, 1H, H-6"), 6.81 — 6.75 (m, 2H, H-
5,),6.50 (s, 1H), 6.08 — 6.02 (m, 2H, H-4,), 5.50 —5.48 (m,
2H, H-3,), 4.36 (dd, Jgeminal = 13.9 Hz and Ji~3~ = 2.5 Hz,
4H, H-1"), 2.36 (t, Ji»a~ = 2.5 Hz, 2H, H-3").

13C NMR (101 MHz, CDCl3) 6 148.8, 135.5, 133.0, 131.3, 131.0, 128.0, 124.9, 121.5,
110.3, 107.5, 77.8, 73.7, 36.3, 36.0.

IR (ATR, cm) 3300, 3281, 1519, 1477, 1355, 1301, 1288, 1253, 1131, 1071, 1017,
937, 864, 836, 819, 742, 719, 687, 638, 606, 572.

HRMS calcd for C21H17N3O2 [M+H]": 344.1393 found: 344.1418

4.23. General procedure for NaH-supported cyclization reactions of N-propargyl
dipyrromethane derivatives

To a stirred solution of N-propargyl dipyrromethane derivatives (47a-g) (1 mmol) in
DMF (10 mL) was added solid NaH (1.2 mmol) portionwise at room temperature and
the reaction composition was mixed for 1 h. After completion of the reaction, the
composition was extracted with EtOAc (3 x 50 mL). Afterwards, DMF in media was
removed with brine (3 x 25 mL) and the mixture was dried over MgSQO4. Evaporation
of solvent gave the residue which was purified with gradient column chromatography

eluted with hexane:ethyl acetate (10:1 to 4:1) and crystallized appropriate solvent.

4.24. Synthesis of 5-methyl-11-phenyl-11H-dipyrrolo[1,2-d:2",1'-g][1,4]diazepine
(49a)

A stirred solution of 2-[phenyl(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole
(47a) (0.49 g, 1.88 mmol) in DMF (20 mL) was reacted with NaH (0.05 g, 2.25 mmol)
as described above to give cyclization product (49a). White tiny needles (0.37 g, 76%)
from EtOAc/ hexane, (m.p. 106-107 °C).
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'H NMR (400 MHz, CDCls) 6 7.24 — 7.15 (m, 4H, arom), 6.90
(bs, 1H, arom), 6.89 — 6.86 (m, 1H, H-3), 6.64 — 6.60 (m, 1H, H-
8), 6.29 — 6.25 (m, 1H, H-2), 6.23 (s, 1H, H-6), 6.23 — 6.18 (M,
1H, H-9), 6.10 — 6.07 (m, 1H, H-1), 6.06 — 6.05 (m, 1H, H-10),
5.40 (s, 1H, H-11), 2.08 (s, 3H, H-1).

13C NMR (101 MHz, CDCls) ¢ 140.4, 134.6, 134.5, 128.0,
127.3, 126.3, 123.2, 120.2, 118.2, 113.0, 109.5, 109.5, 107.7, 107.0, 42.1, 19.6.

IR (ATR, cm™) 3095, 1689, 1599, 1480, 1445, 1424, 1377, 1348, 1333, 1300, 1290,
1279, 1247,1215,1198, 1169, 1152, 1116, 1074, 1031, 1023, 889, 849, 828, 811, 776,
726, 713, 704, 694, 611, 591.

HRMS calcd for C16H16N2 [M+H]": 261.1386 found: 261.1398.

4.25. Synthesis of 11-(4-methoxyphenyl)-5-methyl-11H-dipyrrolo[1,2-d:2",1'-
0][1,4]diazepine (49d)

A stirred solution of 2-[(4-methoxyphenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-
1H-pyrrole (47d) (0.15 g, 0.5 mmol) in DMF (15 mL) was reacted with NaH (0.01 g,
0.6 mmol) as described above to give cyclization product (49d). Yellow needles (0.12
g, 87%) from EtOAc/hexane, (m.p. 65-68 °C).

e !H NMR (400 MHz, CDClIs) 6 6.86 — 6.84 (m, 1H, H-3), 6.83 —
6.81(m, 2H, H-3"), 6.75-6.73 (m, 2H, H-2"), 6.59 (dd, Js9=2.8
and Jg10= 1.4 Hz, 1H, H-8), 6.26 — 6.23 (m, 2H, H-9 and H-6),
6.20 — 6.16 (m, 1H, H-2), 6.05 - 6.02 (m, 1H, H-1), 6.02 — 6.00
(m, 1H, H-10), 5.32 (s, 1H, H-11), 3.73 (s, 3H, H-1"), 2.07 (s,
3H, H-1Y).

T 13C NMR (101 MHz, CDCl3) ¢ 158.2, 135.0, 134.9, 132.5,
128.5, 123.8, 120.2, 118.2, 113.4, 113.0, 109.6, 109.5, 107.6, 106.9, 55.2, 41.5, 19.7.
IR (ATR, cm) 2922, 1693, 1605, 1507, 1481, 1424, 1379, 1348, 1333, 1281, 1243,
1199, 1175, 1114, 1082, 1028, 889, 829, 789, 766, 700, 635, 609, 585, 562.

HRMS calcd for C19H1sN20 [M+H]*: 291.1491 found: 291.1508.
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4.26. Synthesis of 11-(2-chlorophenyl)-5-methyl-11H-dipyrrolo[1,2-d:2',1'-
g][1,4]diazepine (49e)

A stirred solution of 2-[(2-chlorophenyl)(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-
pyrrole (47e) (0.35 g, 1.2 mmol) in DMF (15 mL) was reacted with NaH (0.03 g, 1.44
mmol) as described above to give cyclization product (49e). Light orange liquid (0.21
g, 61%).

IH NMR (400 MHz, CDCls) 6 7.63 (dd, J34» = 7.6 and Jzs+ =
1.8 Hz, 1H, H-3"), 7.41 (dd, Je"5* = 7.7 and Je"4" = 1.6 Hz, 1H,
H-6"), 7.32 - 7.21 (m, 2H, arom), 6.87 (dd, J32 = 2.9 and J31 =
1.8 Hz, 1H, H-3), 6.64 (dd, Js9 = 2.9 and Js 10 =1.8 Hz, 1H, H-
8), 6.54 (s, 1H, H-6), 6.17 — 6.15 (m, 1H, H-9), 6.12 — 6.11 (m,
1H, H-2), 5.77 (s, 1H, H-11), 5.74 — 5.68 (m, 2H, H-10 and H-

1), 2.33 (s, 3H, H-1Y).

13C NMR (101 MHz, CDCl3) 6 136.5, 134.7, 134.4, 133.8, 131.3, 129.9, 128.4, 126.3,
123.4,120.3, 118.3, 113.2, 109.4, 109.4, 107.5, 106.9, 39.1, 20.1.

IR (ATR, cm™) 2924, 1732, 1694, 1570, 1474, 1434, 1418, 1380, 1347, 1316, 1288,
1242, 1160, 1197, 1115, 1084, 1041, 895, 857, 808, 782, 748, 698, 641, 607, 562.
HRMS calcd for C1gH1sCIN2 [M+H]*: 295.0996 found: 295.1000.

4.27. Synthesis of 5-methyl-11H-dipyrrolo[1,2-d:2',1'-g][1,4]diazepine (49Q)

A stirred solution of 1-prop-2-ynyl-2-(1H-pyrrol-2-ylmethyl)-1H-pyrrole (47g) (0.12
g, 0.65 mmol) in DMF (15 mL) was reacted with NaH (0.01 g, 0.78 mmol) as described
above to give cyclization product (49g). Light yellow solid (0.09 g, 81%) m.p. 58-60
°C.

'H NMR (400 MHz, CDCl3) 6 6.80 (dd, J3,2=3.0and J3,1 = 1.7

, M o/ Hz, 1H, H-3), 6.58 (dd, Js9=2.7 and Js10= 1.7 Hz, 1H, H-8),
3\ N N /8 6.47 (s, 1H, H-6), 6.19 (t, J = 3.2 Hz, 1H, H-9), 6.13 (t, J = 3.1

H Hz, 1H, H-2), 5.96 — 5.85 (m, 2H, H-1 and H-10), 3.85 (s, 2H,
H-11), 2.29 (s, 3H, H-1).

13C NMR (101 MHz, CDCls) 6 132.8, 132.6, 123.2, 119.4, 117.5, 112.7, 109.7 (2C),

105.3, 104.4, 26.0, 19.9.

IR (ATR, cm™) 2916, 2849, 1715, 1507, 1480, 1417, 1378, 1331, 1235, 1180, 1114,

1024, 885, 826, 747, 695, 610, 546.

HRMS calcd for C12H12N2 [M+H]™: 185.1084 found:185.1073.
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4.28. Synthesis of 5,11-dimethyl-11H-dipyrrolo[1,2-d:2",1'-g][1,4]diazepine (49f)
A stirred solution of 1-prop-2-ynyl-2-[1-(1H-pyrrol-2-yl)ethyl]-1H-pyrrole (47f) (0.08
g, 0.4 mmol) in DMF (15 mL) was reacted with NaH (0.01 g, 0.78 mmol) as described
above to give cyclization product (49f) as colorless liquid (0.06 g, 85%).

7 'H NMR (400 MHz, CDCl3) 6 6.81 (dd, Js2 = 2.7 and Js1 = 1.7

Hz, 1H, H-3), 6.60 — 6.57 (m, 1H, H-8), 6.52 (s, 1H, H-6), 6.22

~6.21 (m 1H, H-9), 6.15 — 6.14 (m, 1H, H-2), 5.92 — 5.84 (m,

6 2H, H-1 and H-10), 3.85 (q, Ju,1 = 7.0 Hz, 1H, H-11), 2.29 (d,
J=1.0 Hz, 3H, H-1'), 1.69 (d, J111* = 7.0 Hz, 3H, H-1").

13C NMR (101 MHz, CDCls) 6 138.0, 137.8, 123.7, 119.2, 117.3, 113.0, 109.4 (2C),

103.2, 102.5, 30.1, 19.8, 15.0.

IR (ATR, cm-t) 3100, 2973, 1686, 1556, 1482, 1454, 1432, 1418, 1379, 1344, 1300,

1261, 1223, 1186, 1170, 1157, 1114, 1087, 1051, 1038, 1022, 971, 884, 791, 730, 691,

622, 591, 579.

HRMS calcd for C1sHuN2 [M+H]*: 198.1157 found: 199.1236.

4.29. Synthesis of 5-methyl-11-(1H-pyrrol-2-yl)-11H-dipyrrolo[1,2-d:2",1'-
0][1,4]diazepine (49c¢)

A stirred solution of 2-[di(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-pyrrole (41c)
(0.89 g, 3.6 mmol) in DMF (15 mL) was reacted with NaH (0.1 g, 4.2 mmol) as
described above to give cyclization product (49c). Brown solid (0.5 g, 65%) m.p. 130-
131 °C.

5 . IH NMR (400 MHz, CDCls) 6 7.73 (s, 1H, H-1"), 6.87 (dd, Js2
=3.1and Js1 = 1.8 Hz, 1H, H-3), 6.66 — 6.59 (m, 2H, H-5" and
H-8), 6.30 (s, 1H, H-6), 6.24 (t, J = 3.2 Hz, 1H, H-9), 6.18 (t, J
= 3.1 Hz, 1H, H-2), 6.07 —6.03 (m, 3H, H-10, 4",1), 5.59 — 5.55
(m, 1H, H-3"), 5.43 (s, 1H, H-11), 2.15 (s, 3H, H-1').

13C NMR (101 MHz, CDCls) § 133.5, 133.3, 130.3, 122.9,
120.6, 118.5, 116.7, 112.6, 109.5, 109.5, 108.3, 107.3, 106.4, 105.9, 36.9, 19.8.

IR (ATR, cm't) 3285, 1651, 1528, 1475, 1402, 1368, 1337, 1314, 1282, 1246, 1218,
1075, 1030, 953, 939, 890, 785, 741, 641, 605.
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HRMS calcd for C16H1sN3 [M+H]*: 250.1338 found: 250.1350

4.30. Synthesis of 5-methyl-13-(1H-pyrrol-2-yl)-13H-
pyrrolo[1',2':4,5][1,4]diazepino[1,7-a]indole (49b)

A stirred solution of 2-[di(1H-pyrrol-2-yl)methyl]-1-prop-2-ynyl-1H-indole (41b)
(0.91 g, 3 mmol) in DMF (20 mL) was reacted with NaH (0.09 g, 3.6 mmol) as
described above to give cyclization product (49b). Yellow sticky oil (0.61 g, 72%).

1H NMR (400 MHz, CDCls) 6 7.79 (s, 1H, H-1"), 7.57 (d,
Jso =7.6 Hz, 1H, H-8), 7.32 (d, J11,10 = 8.1 Hz, 1H, H-11),
7.23 -7.18 (m, 1H, H-10), 7.17 — 7.12 (m, 1H, H-9), 6.92
—6.89 (m, 1H, H-3), 6.68 — 6.58 (m, 1H, H-5"), 6.53 (bs,
1H, H-3"), 6.44 (s, 1H, H-6), 6.29 — 6.24 (m, 1H, H-2), 6.14
(s, 1H, H-12),6.08 (dd, J = 5.6, 2.7 Hz, 1H, H-4"), 5.66 (bs,
1H, H-1), 5.58 (s, 1H, H-13), 2.24 (s, 3H, H-1").

13C NMR (101 MHz, CDCls) 6 136.2, 128.4, 128.3, 123.8, 122.0, 121.9, 120.8, 120.6,
118.8,116.9, 110.1, 109.7, 109.4, 109.3, 108.5, 107.8, 106.3, 100.3, 37.6, 19.9.

IR (ATR, cm™) 3396, 2917, 1715, 1556, 1480, 1458, 1426, 1373, 1350, 1314, 1243,
1175, 1087, 1024, 937, 884, 767, 746, 735, 707, 666, 604.

HRMS calcd for CooH17N3 [M+H]*: 300.1495 found: 300.1507

4.31. Synthesis of (Z)-2-((4-nitrophenyl)(2H-pyrrol-2-ylidene)methyl)-1H-
pyrrole (57)%

To a stirring solution of 2-[(4-nitrophenyl)(1H-pyrrol-2-yl)methyl]-1H-pyrrole (41i)
(0.5 g, 1.8 mmol) in DMF (10 mL), sodium hyride was added (0.04 g mL, 2 mmol)
portionwise and stirred for 2-3 minutes at room temperature. After completion of the
reaction which was monitored by using TLC, solvent was removed and water (10 mL)
was added. The resulting composition was extracted with ethyl acetate (3 x 20 mL).
The organic mixture dried over MgSQg, then filtered. After vaporisation of the solvent,
the compound 57 was chromatographed on silica gel column eluting with
hexane/EtOAc (7:1) to give (Z)-2-((4-nitrophenyl)(2H-pyrrol-2-ylidene)methyl)-1H-
pyrrole (57) (0.32 g, 64%) as yellow sticky solid.
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IH NMR (400 MHz, CDCls) 6 8.30 — 8.21 (m, 2H, H-3"), 7.63
—7.62 (M, 2H, H-2"), 7.63 — 7.59 (m, 2H, H-5), 6.41 (dd, J =
4.2 Hz and J = 1.0 Hz, 2H, H-3), 6.36 (dd, J = 4.2 Hz and J =
1.5 Hz, 2H, H-4).

13C NMR (101 MHz, CDCls) & 148.2, 144.6, 143.8, 139.8,
139.7, 131.5, 128.6, 122.9, 118.3.

4.32. Synthesis of 5-methyl-11-(1-(prop-2-yn-1-yl)-1H-pyrrol-2-yl)-11H-
dipyrrolo[1,2-d:2',1'-g][1,4]diazepine (60)

To a stirred solution of 5-methyl-11-(1H-pyrrol-2-yl)-11H-dipyrrolo[1,2-d:2',1'-
0][1,4]diazepine (49¢c) (0.5 g, 1.7 mmol) in DMF (20 mL) was added propargyl
bromide (0.170 mL, 2.04 mmol) in DMF (5 mL) at 0 °C over a period of 30 min and
the reaction was followed by portionwise addition of NaH (0.05 g, 2.04 mmol). The
reaction was completed after 12 h. and the mixture was extracted with EtOAc (3 x 50
mL). Then the organic extracts were washed with brine (8 x 50 mL) and dried over
MgSQas. The eluent was removed under reduced pressure and the residue was purified
with gradient column chromatography eluted with hexane:ethyl acetate (20:1 to
7:1).Compound 60 product was isolated as brown sticky solid (0.44 g, 61 %).

!H NMR (400 MHz, CDCls) ¢ 6.91 (bs, 1H. H-5"), 6.74 (bs,
1H, H-4"), 6.64 (bs, 1H, H-8), 6.44 (bs, 1H, H-3), 6.26 (m,1H,
H-2), 6.20 (m, 1H, H-9), 6.07 (m, 3H, H-1, 10, 3") 5.69 (s, 1H,
H-11), 5.61 (s, 1H, H-11), 4.57 (dd, Jgeminal = 8.7 and Jy» 3= =
2.3 Hz, 2H, H-1"), 2.43 (t, J1m 3~ = 2.3 Hz, 1H, H-3"), 2.27 (s,
3H, H-1).

13C NMR (101 MHz, CDCls) 6 133.8,133.2, 129.5, 123.3, 121.4, 120.3, 118.3, 113.0,
109.7, 109.6, 109.1, 107.1, 107.1, 106.4, 78.6, 73.5, 37.0, 36.1, 19.9.

IR (ATR, cm) 3264, 1698, 1480, 1424, 1394, 1266, 1250, 1237, 1225, 1184, 1163,
1120, 1087, 1075, 1033, 1019, 938, 909, 886, 852, 793, 771, 714, 701, 647, 617, 609.
HRMS calcd for CooH17N3 [M+H]": 288.1495 found: 288.1514.
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APPENDIX A

SPECTRAL DATA
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Figure 95 3C-NMR Spectrum of Compound 60 in CDCls
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Figure 96 IR Spectrum of Compound 60

Cartesian Coordinates for the Optimized Structure 50a
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