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ABSTRACT

ANALYSIS OF SOLUTIONS OF STOCHASTIC EVOLUTION EQUATIONS

ALALOUSH, Mohanad
Ph.D. Thesis Department of Statistics
Supervisor: Assist. Prof. Hatice TASKESEN
January 2021, 128 pages

Nonlinear evolution equations are equations that contain the time variable t as an
argument, appearing not only in many fields of mathematics but also in other branches of
science such as physics, mechanics, and materials science. Since the deterministic evolution
equations are insufficient in the modeling of physical phenomena, a term including the effect
of uncertainty is usually added to the deterministic evolution equations. In this thesis, we
investigate the effect of these terms, i.e. noise, on the solutions of some evolution equations.
For this purpose, we use the Hermite transform and Galilean transform to obtain the
stochastic equations deterministic counterparts and then use some analytical methods to
obtain the solutions. The first chapter of the thesis includes a motivating example explaining
why stochastic differential equations are needed. The second chapter summarizes the
literature review. The third chapter contains the basic concepts, definitions, and preliminaries
of the methods that are used in the thesis. In the fourth chapter, analytical solutions of
stochastic KdV-Burgers, stochastic KdV, stochastic Burgers, stochastic Kuramoto-
Sivashinsky and stochastic Kawahara equations are obtained by using Galilean transform and
tanh, extended tanh methods. Moreover, the solutions of a stochastic Wick-type extended
KdV equation are found by using Hermite transform and Jacobi elliptic functions. The

illustrations of some solutions are given to see the effect of noise apparently.

Keywords: Galilean transform, Hermite transform, Jacobi elliptic functions, KdV-

Type equations, Stochastic evolution equations.






OZET

STOKASTIK EVOLUSYON DENKLEMLERININ COZUMLERININ ANALIZi

ALALOUSH, Mohanad
Doktora Tezi Istatistik Anabilim Dali
Tez Danigsmani: Assist. Prof. Hatice TASKESEN
Ocak 2021, 128 pages

Dogrusal olmayan evoliisyon denklemleri, sadece matematigin bir¢ok alaninda degil,
ayn1 zamanda fizik, mekanik ve malzeme bilimi gibi diger bilim dallarinda da ortaya ¢ikan,
argliman olarak t zaman degiskenini iceren denklemlerdir. Fiziksel olaylarin
modellenmesinde deterministik evoliisyon denklemleri yetersiz oldugundan, deterministik
evolisyon denklemlerine genellikle belirsizligin etkisini igceren bir terim eklenir.Bu tezde bu
terimlerin, yani giiriiltiiniin baz1 evolisyon denklemlerinin ¢oztmleri Uzerindeki etkisini
arastirildi. Bu amacla, ¢alisilan stokastik denklemlerin deterministik karsiliklarini elde etmek
icin Hermite doniisiimii ve Galilean doniisimii kullanildi ve daha sonra bazi analitik
yontemlerle ¢ozimler elde edildi. Tezin ilk bolim, stokastik diferansiyel denklemlere neden
ihtiya¢ duyuldugunu agiklayan motive edici bir &rnek icermektedir. Ikinci boliim literatiir
taramasini  Ozetlemektedir. Uciincii béliimii, tezde kullanilan kavramlar, tanimlar ve
kullanilan yontemlerle ilgili 6n bilgileri, dordiincii boliimii ise, Galilean doniisiimii ve tanh,
genisletilmis tanh yontemleri kullanilarak stokastik KdV-Burgers, stokastik KdV, stokastik
Burgers, stokastik Kuramoto-Sivashinsky ve stokastik Kawahara denklemleri icin elde
edilmis analitik ¢ézlimleri icermektedir. Ayrica, stokastik Wick tipi bir genisletilmis KdV
denkleminin ¢dziimleri Hermite doniisimi ve Jacobi eliptik fonksiyonlari kullanilarak
bulunmustur. Giiriiltiinlin etkisinin goriilebilmesi i¢in bazi ¢dziimlerin grafiklerine de yer

verilmistir.

Anahtar kelimeler: Stochastic evoliisyon denklemler, KdV-Tipli denklemler,

Hermite dontisiimii, Galilean doniisiimii, Jacobi eliptik fonksiyonlar.
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1. INTRODUCTION

Nonlinear evolution equations are partial differential equations that contain the time
variable t as an independent variable and arise not only in many fields of mathematics but
also in other disciplines such as physics, mechanics, and materials science. The Navier-
Stokes and Euler equations are just a few of the nonlinear evolution equations that arise in
fluid mechanics, reaction-diffusion equations in heat transfer and biological sciences, Klein-
Gordon and Schrodinger equations in quantum mechanics, and Cahn-Hilliard equations in
material science. Since the deterministic models ignore the effects of many small
perturbations, stochastic equations adapt better to events. For example, in the modeling of
waves on the surface of shallow water, an unstable pressure may affect the surface of fluid
or the layer's bottom may not be flat, so, adding a stochastic term containing these effects
creates a more realistic and meaningful model. One way to make these unrealistic
deterministic models more meaningful is to take the average of some parameters, but this is
not a satisfactory way. The following example given in (Holden, @ksendal, Ubge, and Zhang,
2010) may explain this situation very well. Assume that a porous and dry (heterogeneous and
isotropic) rock is injected a fluid with the rate of injection f(t, x) (at the point x € R® and at
time t). Fluid flow on the surface of the rock can be defined mathematically as in the
following way:

Let us denote the saturation and pressure of the fluid by ¢(t,x) and p.(x),
respectively, at (t, x). Suppose that either we have full saturation ¢,(x) > 0 at time t, or the
point x is dry at time ¢, that is, @(t, x) = 0. Let the wet region at time t be defined by Q,

Qr={x; @ x) =@o(x)}

Then by combining the continuity equation and Darcy's law, which is describing the
flow of a fluid on a porous medium, we conclude a moving boundary problem for the
unknowns Q; and p;(x)

div(k(x)th(x)) = —fi(x);x € Q;

pe(x) = 0;x € 0Q, (1.0.1)
Po () - - (30,) = —k(xX)NT (x)Vp;; x € 0Q,

where the gradients and divergence are taken with respect to x, the density and viscosity are



taken as 1, and N(x) is the outer unit normal of dQ, at x. We assume that the initial wet
region £, is known and that suppf; c Q, for all t. In the third equation of (1.0.1), k(x) > 0
denotes the permeability, i.e., the ability to allow fluids to pass through the rock at point x
which is defined as the proportionality constant in Darcy's law
qe(x) = —k(x)Vp.(x),

where q.(x) is the flow velocity of the fluid. In a typical porous rock, k(x) is
fluctuating in an irregular, unpredictable way. Considering the difficulty of solving (1.0.1)
for such a permeability function k(x), one may be tempted to replace k(x) by its x -average
k (constant) and solve this system instead. This, however, turns out to give a solution that
does not describe what actually happens! For example, if we let f;(x) = §,(x) be a point
source at the origin and choose (), to be an open unit ball centered at 0, then it is easy to see
(by symmetry) that the system (1.0.1) with k(x) = k will give the solution {,},, consisting
of an increasing family of open balls centered at 0.

Actual experiments with fluid flow in porous rocks show that such a solution is, in
fact, a fractal. The following figures illustrates the averaged permeability constant, and the
fractal nature of the fluid diffusion through a rock.

Figure 1.1. A constant permeability k leads to Figure 1.2. A physical experiment showing the
solutions consisting of expanding balls centered at fractal nature of the wet region (dark area).
the injection hole.

We conclude from the above that it is necessary to take into account the fluctuations
of k(x) in order to get a good mathematical description of the flow. But how can we take

these fluctuations into account when we do not know exactly what they are?



We propose the following: The lack of information about k(x) makes it natural to
represent k(x) as a stochastic quantity. From a mathematical point of view, it is irrelevant if
the uncertainty about k(x) (or some other parameter) comes from "real" randomness
(whatever that is) or just from our lack of information about a non-random, but complicated,
quantity. If we accept this, then the right mathematical model for such situations would be
partial differential equations involving stochastic or "noisy" parameters - stochastic partial

differential equations (SPDEs) for short. The fundamental concepts of stochastic differential

equations theory are white noise W;(t), the Ito integral fotgb(s, w)dB;(w) and the

Stratonovich integral fotf(s,w)Ost, where B; = Bg(w), s=0 is n dimensional

Brownian motion. Brownian motion was first noticed by Robert Brown in 1827, when he
observed the presence of minute particles while examining the pollen grains of Clarkia
pulchella suspended in water under a microscope. Since Brownian motion is not
differentiable by definition, the integral state of SDE has been studied. The analytical solution
of the SDE could not be found with normal analysis methods. Japanese mathematician
Kiyoshi 1td made a great contribution to stochastic analysis by describing the "It lemma" in
1951. Analytical solutions of many SDEs can be found with this lemma. Nonlinear stochastic
equations of evolution contribute a wide area in applications from chemistry to biology,
physics, economics, and finance. So, finding exact solutions to the equations of nonlinear
evolution is very significant for testing the accuracy of the numerical methods used, as well

as the physical or mechanical problems that the equation models represent.






2. LITERATURE REVIEW

The lack of a specific method that can be used to reach exact solutions for all
nonlinear equations has prompted researchers to develop many methods to find exact
solutions to nonlinear equations of evolution, in which the search for solutions to study
nonlinear physical phenomena plays a significant role.

In recent years, researchers have developed many powerful methods and used in
solving nonlinear evolution equations to obtain wave solutions. In the following we review
some of these methods, to name but a few; Hirota’s bilinear transformation (Hirota, 1971; J.
Yan, 2011), inverse scattering (Ablowitz and Clarkson, 1991), Weierstrass elliptic function
(Chen and Wang, 2005; Kudryashov, 1990), Cole-Hopf transformation (Salas and Gomez S.,
2010), (G’/G)-expansion (Wang et al., 2008), (1/G’)-expansion (Yokucs and Durur, 2019;
Yokus and Kaya, 2017), generalized Riccati equation (Z. Yan and Zhang, 2001), truncated
Painleve expansion (Weiss et al., 1983; S.-L. Zhang et al., 2002), Backlund transformation
(Lu, 2012; Singh and Gupta, 2016), F-expansion (Abdou, 2007; Wang and Li, 2005),
homogeneous balance (Wang et al., 1996), Jacobi elliptic function expansion (Liu et al.,
2001; Z. Yan, 2003), tanh-coth (Abdel-All et al., 2011; Fan, 2000; Malfliet, 1992; Wazwaz,
2007), direct algebraic (Soliman and Abdo, 2012), exp-function (He and Wu, 2006; Mohyud-
Din et al., 2010; Naher et al., 2011, 2012), multi-wave (Shi et al., 2010) methods and so on.
Different exact solutions (such as periodic wave, shock wave, solitary wave solutions etc.)
are obtained using the above-mentioned methods. Due to the stochastic terms, it contains, the
stochastic equations of evolution are more difficult to analyze than the deterministic
equations of evolution, and there are not many studies on this topic. In modeling of turbulence
of dispersive shallow water wave and in nonlinear wave propagation in noisy plasmas, the
stochastic KdV equation come to light (Conte, 2003; Herman, 1990). In the scope of this
thesis, some KdV-type equations are treated. The applicability of the above methods will be
tested to search for exact solutions to the stochastic evolution of nonlinear equations given
below.

1. The stochastic Korteweg—de Vries —Burgers (KdV-B) equation



The KdV-B equation can be written as

Up + ULy — VUyy + UUyyy = 0, (2.0.1)
where u € R is the dispersion and v > 0 is the dissipation coefficient. The equation
(2.0.1) is used in physics and other fields in modeling wave processes in dissipative-
dispersive systems (N.A. Kudryashov, 1991). Fu and Liu (2011) studeid the existence
of travelling wavefronts of the KdV—Burgers equation from a monotone dynamical
systems point of view and obtained a sufficient condition for the existence. The

stochastic form of Equation (2.0.1) can be written as
Up + Uy — VUyy + Ulyyr = 1(T), (2.0.2)
by adding the n(t) noise term. Richards (2014) has investigated local well posedness
of stochastic KdV-Burgers equation with cylindrical white noise. The results obtained

in (Richards, 2014) are given in the following theorems.

Theorem 2.1 (Local Well-posedness). Given 0 < € < 1—16 ,lets > —% — &. Suppose

¢ € HS(L?; HS*172¢) is a Hilbert-Schmidt operator from L?(T) to H5(T) in the
form
(@H (M) = duf (). (2.0.3)
Then the following stochastic Korteweg—de Vries (KdV)-Burgers equation

{leit:) (:u::.)’— Upyx — W2),)dt + $p0,dW,t > 0,x €T (2.0.4)
is locally well posed in H5(T) for mean zero data. That is, if u, € HS(T) has mean
zero, there exists a stopping time T,, > 0 and a unique process u €

c([0, T,]; HS(T)) satisfying (2.0.4) on [0, T,,] a.

Theorem 2.2 (Global Well-posedness). Let ¢ € HS(L?; H). Then (2.0.4) is

GW in L2(T) for mean zero data. That is, if u, € L?(T) has mean zero, then for any
T > 0 there is a unique process u € C([0, T]; L?(T)) satisfying (2.0.4) on [0,T] a.s.

. The stochastic Korteweg—de Vries (KdV) equation

The celebrated KdV equation known as a simple nonlinear dispersive wave

equation appearing in the literature is one of the simplest and most useful nonlinear



model equations for solitary waves, and it represents the longtime evolution of wave
phenomena. If the shape of the wave changes over time due to the wavelength or
frequency of the wave speed, such waves are called dispersive waves (Zabusky and
Kruskal, 1965). KdV equation is in the form;

U + 6UUy + Uyyy = 0. (2.0.5)

The waves that are the solution of the KdV equation are called solitons.
Existence, uniqueness, and continuous dependence on the initial data are proved for
the local solution of the (generalized) Korteweg-de Vries equation was studied in
(Ginibre et al., 1990; Kato, 1979). The stochastic form of equation (2.0.5) can be
written as;

U + 6UUy + Uyyy = N(T). (2.0.6)

Wadati in (Wadati, 1983; Wadati and Akutsu, 1984) first analyzed the
equation of stochastic KdV using analytic way and then he set the long -time behavior
under Gaussian noise for single soliton solutions. In addition, several authors have
studied stochastic KdV equation, for example (de Bouard et al., 1999; de Bouard and
Debussche, 1998; Debussche and Printems, 1999; Konotop and Vazquez, 1994;

Printems, 1999), and so on.

Theorem 2.3. (de Bouard and Debussche, 1998) Assume that u, € L2(2; HX(R)) n
L*(2; L*(R)) and is G, -measurable, and @ € L3 (L?(R); H*(R)); then there exists
a unique solution of

u

tS(t—s) (uax

u(t) =Suy + f

0
in X, (T,) almost surely, for any T, > 0 and for any o with 3 / 4 < ¢ < 1 .Moreover,

) ds+ f St — )W), (2.0.7)
0

u € I? (n; (0, Ty; Hl(R))).
Theorem 2.4. (de Bouard and Debussche, 1998) Assume that & € LS (L2 (R), Ha(R))

for some 6 > 3/4.
Then # is almost surely in X, (T) for any T > 0 and any ¢ such that 3/4 < g < §.

Moreover



E(1l%,m) < €(0,6,DI®ys.
3. The stochastic Burgers’ equation

Expressed as

U + uu, + u, =0, (2.0.8)
Burgers equation is one of the most important nonlinear propagation equations. This
equation is the simplest nonlinear equation model for propagating waves in fluid
dynamics. It was first used by Burger to describe one-dimensional turbulence
(Burgers, 1995). Benia and Sadallah (2016) established the existence, uniqueness
and the optimal regularity of the solution in the anisotropic Sobolev space for Burgers

equation. The stochastic form of equation (2.0.8) can be written as
Uy + uuy, + u, = n(t). (2.0.9)
Here the term n(t) refers to external noise. There are several existence and
uniqueness results in the literature for mild solutions of stochastic Burgers equations

driven by colored noise (Giuseppe Da Prato and Gatarek, 1995).

Theorem 2.5. (Giuseppe Da Prato and Gatarek, 1995) Let u, be given which is F, -
measurable and such that u, € L?(0,1)

a.s.and let T > 0. Then there exists a unique mild solution of equation

10
_ - 2
du = <Au + P (u )) dt + g(uw)dw

u(0) = uy.

(2.0.10)

Theorem 2.6. (Giuseppe Da Prato and Gatarek, 1995) There exists a unique invariant
measure for the equation

10
du = (Au + == (u2)> dt + g(u)dw

2 0x (2.0.11)

u(0) = uy.
and by space-time white noise (Guiseppe Da Prato et al., 1994) in the case of
cylindrical Wiener process.

4. The stochastic Kuramoto - Sivashinsky (KS) equation



Kuramoto-Sivashinsky equation

Up + Uty + Uy — Viggxr = 0, (2.0.13)
arises in a wide variety of phenomena such as reaction-diffusion systems, two-phase
flows in cylindrical geometries, flame propagation and viscous film flow. Eq. (2.0.1)
was introduced independently by Kuramoto's study (Kuramoto and Tsuzuki, 1975)
on the analysis of reaction-diffusion systems and by Sivashinsky's study
(Sivashinsky, 1977) on instability in laminar flame and fluid dynamics. Although Eqg.
(2.0.1) is one of the simplest equations, it models chaotic behavior of complicated
dynamics. As the parameter v decreases, the large time behavior of the system
changes from steady-state solutions to chaotic solutions. Kudryashov (2013) studied
dissipative KS equation. He showed that the dissipative KS equation does not possess
solitary wave solutions and has only rational solutions (quasi-exact solutions).

Stochastic nonlinear Kuramoto-Sivashinsky equation can be given as

U + Uy + Uy — Uy = N(E). (2.0.14)
Stochastic KS equation was studied in many papers from different perspectives.
Duan and Ervin (2001) studied the existence and uniqueness of solutions of the
stochastic KS equation, the results of which are given below.
Theorem 2.9. (Local Existence and Uniqueness) For u, in H there exists a random
variable 7 taking values P — a.s. in (0, T] such that problem

du + (Uysxx + Uy + uu,)dt —dw =0 (2.0.15)
u(0,x) =up(x), -l <x <l andu(t,—0l) =u(t,l) =0fort >0, e
has a unique solution u on the interval [0, 7].

Theorem 2.10. (Global Existence) For u, € H = L?(I), there exists P a.s. a unique

solution u(:, x) € E of equations (2.0.1).

Yang (2006) obtained a pull-back random attractor for the initial-boundary
value problem of the stochastic KS equation. Existence and uniqueness of invariant
measures for the stochastic KS equation was investigated in (Ferrario, 2008). (Wu et
al.(2018) provided sufficient conditions guaranteeing global well-posedness of the
stochastic generalized KS equation with a multiplicative noise. Gao et al.(2018)
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simulated the effect of different noises on the solitary wave solutions of the stochastic
KS equation by using finite difference method.

The stochastic Kawahara equation (KH) equation

The Kawahara equation has formed as following:

U + ULy + Uysy — Ugsexex = 0, (2.0.16)
is a dispersive fifth-order equation arising in the modeling of magneto-acoustic waves
in a plasma and small-amplitude water waves with surface tension and was introduced
by Kawahara (Kawahara, 1972). The equation is also known as a special case of the
Benney-Lin equation, singularly perturbed KdV equation or fifth-order KdV
equation. Many studies have been carried out for solutions to the deterministic
Kawahara equation. Kabakouala and Molinet (2018) studied orbital stability of
solitary waves of a generalized Kawahara equation in H?(R) by using spectral
method. Kwak (2020) is concerned with global well posedness of a periodic modified
Kawahara equation in L2(T). Mancas (2019) obtained travelling wave solutions of
Kawahara equation by using elliptic function method. Biswas (2009) found travelling
wave solutions of a generalized Kawahara equation. The existence of compaction
solutions and solitary patterns solutions for Kawahara type equation is demonstrated
in (Wazwaz, 2003). By adding the external noise term n(t), the nonlinear stochastic
evolution equation can be given as:

Up + Uy + Uy — Uy = (0. (2.0.17)
Some studies were performed on stochastic Kawahara equation. (Hyder and
Zakarya (2019) studied local well-posedness of solutions of a modified Kawahara

equation in H%(R),s > _77 and global well-posedness in L?(R) by using the fixed-

point argument and the Fourier restriction method.

Theorem 2.11. Assume that s > Z,cp € Lg's,b € (0%) and b is close enough to % If

uy € HS(R) for almost surely w € 2 and u, is F, —measurable. Then for almost
surely w € 02, there exists a constant T,, > 0 and a unique solution u of the Cauchy

problem
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{du + (ausy + Buzy + ity + puuy)dt = AW (t) (2.0.18)

u(x,0) = uy(x),
on [0, T,,] which satisfies:
u € I2 (n; ([0, To); HS(R))), foranyTy > 0
Therefore, in the case of s = 0, we can obtain a global existence result for
o 0%B
Jdtox
where a # 0, 8, and y are real numbers; u is a complex number; u is a stochastic

Up + QUs, + Pusy, + YU, + puu, = (2.0.19)

process defined on (x,t) € R X R,; is a linear operator; and B is a two-parameter
Brownian motionon R X R,.

Precisely, the following theorem was stated for global existence:

Theorem 2.12. Let u, € L?(2, L2(R)) be an F, — measurable initial data, and let

@ € LY° Then, the solution u given by Theorem 2.1 is global and satisfies:

u€lL? (.Q; C([O, Tol; HS(R))), forany T, > 0.
Agarwal et al.(2020) constructed local and global well-posedness of a modified
stochastic Kawahara equation by using the same arguments of (Hyder and Zakarya,

2019).
. The Wick-type stochastic extended KdV equation

The name extended KdV equation was given by Bakirtas and Antar in
(Bakirtas and Antar, 2003), and Bakirtas and Demiray ( Bakirtas and Demiray, 2005)
to the following equation

U + ViUU, F Volyyy + w(Du, =0, (2.0.20)
where v; and v, are constants due to the initial deformation of the tube material, and
u(t)u, represents the contribution of the tapering of tube. They studied the weakly
nonlinear propagation of waves in elastic tubes filled with non-compressible viscous
fluid by using the method of reductive perturbation. They obtained the equation by
treating blood as a non-compressible viscous fluid and the arteries as tapered, flexible,

thin-walled, long circular conical tube. Also (Karczewska and Szczecinski (2019)
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studied the existence and uniqueness of the mild solution of the stochastic extended
KdV equation in the following form
3u ou  d%u oud’u
<$+ua+uﬁ+aﬁ> dt = odW, (2.0.21)
where W is a cylindrical Wiener process. They obtained sufficient conditions
for the existence and uniqueness of a local mild solution using a fixed point argument
as follows.

Theorem 2.13. Assume that u, €, L*(2; H*(R)) n, L*(2; L*(R)) and it is F, -
9% [t

measurable and @ € L3(L*(R); HI(R)). If = [ INZCS s)cde(s)] €

L2(0; LA(LY)) holds then there exists a unique mild solution to the equation (2.0.2)

with initial condition u(x,0) = uy(x), x€R, t =0, such that u €, X,(T)

almost surely for some T > 0 and for any ¢ € G 1).

The Wick-type stochastic extended KdV-equation for equation (2.0.2) is
given in the following form
U+ Hy(£) o Uy + Hy(t) o U o Uy + Hy(t) 0 Uy = 0, (2.0.22)

where o is the Wick product on the Hida distribution space(S(Rd))* and

H;(i = 1,2,3) are the white noise functions. More recently, the white noise function
approach has been applied to the stochastic partial differential equations by several
authors and obtained many new solutions to the stochastic partial differential
equation. Xie et al in (Xie, 2003) found stochastic soliton solution using Hermit
transformation and homogeneous balance method for Wick-type stochastic KdV
equation. In (Chen and Xie, 2005), Chen et al obtained a series of soliton-like
solutions to the Wick-type stochastic KdV equation with the help of Hermit
transformation and an algebraic method. In addition, some solutions of the Jacobian
elliptic function for two types of stochastic KdV equation were derived by Wei et al
in (Wei et al., 2005) by Hermit transformation and the method of Jacobi elliptic

function expansion.
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In this thesis study, some analytical solution methods will be employed to obtain exact
solutions of nonlinear stochastic differential equations. Analytical solutions of nonlinear
stochastic differential equation are obtained using the combination of Galilean
transformation and nonlinear methods. Moreover, a Wick-type stochastic extended KdV
equation is investigated, and the solutions will be interpreted with graphs. More clearly, the
answer to the following questions

e How are solutions of nonlinear evolution equations influenced by external noise?

e Can tanh and extended tanh be used in order to find exact solutions to stochastic
evolution equations?

e Can F-expansion method and Hermit transform be used for the nonlinear Wick-type
stochastic extended KdV with Gaussian white noise to obtain exact elliptic function
solutions?

will be investigated.
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3. MATERIALS AND METHODS

3.1. Preliminaries

In this section, we provide some basic definitions, theorems, and the outlines of the
methods we used throughout the thesis. Since the solutions of stochastic differential
equations are stochastic processes defined in a probability space, we should firstly give basic
definitions on probability theory for a better understanding of the thesis.
3.1.1. Probability theory

Probability theory deals with mathematical models, the results of which are linked to
chance. The probability function, which is given in the following form:

P:{Set of Events} — [0,1],

has a history that goes back to the 17th century (Céaceres, 2017). The above definition may
be interpreted as probability function is ascribing real numbers in [0,1] to subsets of A < Q,
where ( is the possible outcomes of an event, which is called sample space. The structure
of the probability function was shaped by the axioms put forward by the Russian
mathematician A. N. Kolmogorov in 1933.
Definition 3.1. o-Algebra (Grimmet and Stirzaker, 2020). A collection of subsets F of Q is

called a o-algebra if the following properties are satisfied:

1. ¢eFand QE€EF;
2. A€F = A° € F (F is closed under complements);

3. AjeFfori=1,23,..= U2, 4; € F (F is closed under countable unions).

The elements of F are named measurable sets, and the pair (Q, F) is named a measurable

space.

Definition 3.2. Probability Measure (Grimmet and Stirzaker, 2020). A measure p on (Q, F)
is a probability measure, if it fulfills the following conditions:

1. 0<ud)<1forA €F.

2. w(d) =0and u(4) =1.
3. If{w;}i2; € F,then pn(U2;4;) = X2, n(4y).
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Definition 3.3. Probability Space (Koralov and Sinai, 2007).The triplet (Q, F, ) is called a
probability space, if the measure of entire sample space is equal to one: u(Q) = 1, where
(Q, F) isameasurable space. Hereafter, for a probability space, the measure p will be denoted

by P for convenience.

Definition 3.4. Filtration (Koralov and Sinai, 2007). Let (Q, F, ) be a probability space. A
collection of increasing sub-sigma algebras of F is called a filtration. In other words, if F, <

F,t e Tthenforall s < t, F; € F;, where T is a parameter set.

Definition 3.5. Stochastic Process (Guiseppe Da Prato and Zabczyk, 2014). A family of
random variables {X(t)}; € I defined on some probability space (Q,F,P) is called a

stochastic process, where I is an interval of R?.

3.1.2. Stochastic calculus

The foundations of stochastic processes were laid when Robert Brown noticed the
erratic movements of pollen particles floating on the water. The physical interpretation of the
movement is explained by Einstein in 1905, by random collisions with water molecules. The
complete mathematical treatment is provided by Wiener in 1923. This mathematical
treatment by Wiener still plays an important role in the theory of stochastic processes. The
Wiener integral constructed by Wiener was later developed by Ito in 1942 which is known
as the Ito integral. In this subsection, we mention some basic concepts such as Brownian
motion, white noise, stochastic integrals, 1to's formula which are basis for the other sections.

Definition 3.6. Brownian Motion. In 1827, the botanist Robert Brown detected the
chaotic motion of pollen particles suspending in water but until the studies of Einstein, Perrin,
and some other physicists a mathematical model was not provided. In 1905, Albert Einstein
established a relation between the microscopic random motion of particles and the
macroscopic diffusion equation confirming the existence of atoms. In the following, we will
summarize this connection (Sarkka, 2012).

Take n particles floating in a liquid and suppose that At is a small-time interval. Let
us denote the displacement in x —coordinates of particles by A over the time interval At. The
number of particles displacing between A and A + dA is given by

dn = ny(A)dA,
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where ¥ (.) is a symmetric probability density satisfying ¥ (x) = ¥(—x) and is
nonzero only for very small values of A. Denoting the number of particles per unit volume

by w(x, t), the number of particles located at x + dx in time ¢t + At may be derived from

w(x,t) as
w(x, t+ At) = f w(x + A t)y(A)dA. (3.1.1)
Since At assumed to take very small values, one can write
ow(x, t)
w(x, t + At) = w(x, t) + At Framt (3.1.2)
and w(x + A, t) may be expressed in terms of A as a Taylor series as follows
ow(x,t) A%0%w(x,t
wlx+At)=w(xt)+A w )+— w )+--- (3.1.3)
0x 2 0x?
Using (3.1.2) and (3.1.3) in (3.1.1) yields
ow(x,t) o ow(x,t) [® 2w(x, t) [ A2
w(x,t) + At Fra w(x,t) j_wl,b(A)dA + Tf_ooAlp(A)dA + 2 f_m7¢(A)dA + e

In the above all the odd order terms vanish. Consideration of f_°°oo Y(A)dA =1, and

setting

co AZ
| Sv@aa=p,

yields the diffusion equation
ow(x,t) b 0°w(x,t)

ot 0x?
A relation was derived by Einstein for $D$ in terms of atomic properties of the matter
,_ kT
~ Némnr’

where 7 is the viscosity of liquid, T is the temperature, r is the radius of the Brownian
particles, N is the Avogadro's number, and R is the gas constant. Using the above diffusion

constant, mean squared displacement of the particles were predicted by Einstein as

RT
3Nmna

z(t) =

t,

where a is the diameter of the particles.
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Although Einstein presented a consistent explanation to the Brownian motion,

Langevin's equation
du/dt = —fu+ A(t),

containing random and frictional force terms is a milestone in the modern theory of the
Brownian motion of a free particle. Here u is the velocity of the particle. With respect to the
above equation, the effect of the external environment on the motion of the particle can be
divided into two parts: first, the effect of dynamical friction experienced by the particle, —fu,
and second, the main characteristic of the Brownian motion, A(t), the fluctuating part
(Chandrasekhar, 1943). The illustrations of Einstein's and Langevin's model are given in the

following figure.

@(A)
((@))
ﬁ /
Random _fqru: ‘@F %. \ 7 | 7 /f
from collisions /'_“ . J ’_ dl\réa;:xg;l}hrﬁ:ﬂlﬁ\&cd /
I
‘Tﬁ—’
Figure 3.1. Illustration of Langevin’s model of Figure _3-2~ Illqstration of Einstein’s model of
Brownian motion. Brownian motion.

Now, we shall define one-dimensional Brownian motion on a probability space.
Definition 3.7. Standard Brownian Motion (Koralov and Sinai, 2007). A system of random

processes {B(t),t € [0, o)} on a probability space (£, F, P) is called a Brownian motion if

=

B(0) = 0.

E [(B(t) - B(s))z] = |t —s].

B(t) has continuous sample paths.

> w D

The covariance function is defined by I'(s, t) = E[B(s)B(t)] = %(lsl + [t] — |s — t]).

Definition 3.8. White Noise. (Sarkka, 2012). A real-valued Gaussian process W (t) with

the following properties is called a white noise:
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1. Ift; #t,,then W(t;) and W (t,) are independent.
2. Forthe mapt — W(t),

m(t) = E[W(8)] = 0,
Co(t,s) = EIW@®WT(t)] = 8(t — 5)Q,
where § is the Dirac-delta and Q is the spectral density of the process.

From the properties of the white noise, one can also conclude that the sample path of

t —» W (t) is discontinuous a.e. The following figure illustrates a scalar white noise process.

= 1 1 1 1
"o %] o2 [-F] [:F } s one or ] oa 1

Figure 3.3. White noise.

For most of the applications, the noise function does not satisfy the first property, i.e.,
when t; and t, are close enough W (t;) and W (t,) are not independent. The notion of

smoothed white noise is adapted for this case as given in the following way:

Wy = Wy () = (0. 8) = [ #(5)d By(w),

where t is the time, w is a random element, the integral is Ito integral which will be defined
below, ¢ is a test function, and ¢; is the t-shift of ¢ given as ¢,.(s) = ¢(s —t), s,t € R.

There is a connection between white noise and Brownian motion. We can roughly
say that white noise is formal derivative of Brownian motion. Integration by parts for Wiener-

It integrals yields
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9%
— (—1)d
fRdcb(X)d B(x) = (=1) fRd xr 0%, (x)B(x)d x.

Accordingly
K 0*B
W) = [ eedBe = ((—1>d—¢’ B) - <¢> —)
R4]-

0xq ...0x4" "0xq ...0x4
where (.,.) is the usual inner product in the space L?(R%). Namely, in the sense of
distributions we have

2B

W= 0xy ...0x4

Theorem 3.1. (Ito’s formula). For any function f(t,x); f € C%? that has two continuous
derivatives with respect to x and continuous derivative with respect to t. Then, the process

£(t, X(t)) satisfies

1
df (6, X(®)) = [ft + Eazfxx] (t, X(0))dt + f(6, X(©)dX (D), (3.1.5)
where
dx(@®) = u(t, X(©)dt + o(t, X)) dW (1), (3.1.6)

is a diffusion process. Now by substituting (3.1.6) in (Error! Reference source not found.) w

e can obtain the useful form of the following Ito rule:

1
df(t,X(D) = [ft +uf, + 507 fxx] (6X(®)dt + @f)(£X®)aw(®).  (3.1.7)

Definition 3.9. Box Algebra (Steele, 2001). This is an algebra for linear combination of the

formal symbols dt and dB; In this algebra, the addition operation is usual algebraic addition,
and their products are found by traditional rules of transitivity and associativity Please (see
Table 3.1, Table 3.2).

Table 3.1. Box Algebra Multiplication Table

dt dB,
dt 0 0
dB, 0 dt
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Table 3.2. Extended Box Algebra

dt dB! dB2
dt 0 0 0
dBt 0 dt O
dB2 0 0 dt

The experience with Itd's formula as a tool for understanding the dB; integrals now
leaves one with a natural question: Is there an appropriate analog of 1t6's formula for dX;

integrals? That is, if the process X, can be written as a stochastic integral of the form

ftf(a), s)d X, & ftf(a), s)a(w,s)d s + ftf(w, s)b(w, s)d B, (3.1.8)
0 0 0

and if g(t,y) is a smooth function, can we then write the process Y; = g(t, X;) as a sum of
terms which includes a dX, integral?

Of course, there is a positive answer to these questions, and it turns out that it is well
expressed with a simple formal aid usually called the box calculus, though the term box
algebra would be more precise. This is an algebra for the set A of linear combinations of the
formal symbols d t and dB, where adapted functions are regarded as the scalars. In this
algebra, the addition operation is just the usual algebraic addition, and products are then
computed by the traditional rules of associativity and transitivity together with a
multiplication table for the special symbols d t and dB;. The new rules one uses are simply

dt-dt=0, dt-dB,=0, and dB;-dB;=dt.

As example for the application these rules were apply, it can be checked the product

(adt + bdB;) - (adt + BdB;),
can be simplified by associativity and commutativity to give
aadt - dt + afdt - dB; + badB; - dt + bBdB, - dB; = bpdt.
If one uses this formal algebra for the process X; which we specified in longhand by

using

t t
X = f a(a),s)ds+f b(w,s)d B, (3.1.9)
0 0
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or in shorthand by using
dXt = a((l), t)dt + b((l), t)dBt, XO = O. (3.1.10)

Hence one can arrive at the following version of general formula It6:

df (t,X,) = f:(t, X )dt + f,.(t, X)dX; + %fxx(t, X,)dX, - dX,. (3.1.11)

This simple formula sums up an enormously useful amount of valuable information
as well as being exceptionally productive.
The proof of dW,.dt = 0. Someone always ask why dw times dt is zero or why dt squared

is zero.
dw,dt = 0, (3.1.12)

the answer may vary but it can be as simple as saying if dt is 0.1 then dt squared it will be
0.01. We will provide more convincing proof of this below. First, let's write the equation

(3.1.12) in the following integral form
t
f d Wsds, (3.1.13)
0

now, applying what we have learned in deterministic calculus, we know that the integral is
the limit of discrete sum within the interval form 0 to t. Let's now take the interval from 0O to

t and divide it into n of length At as in (Figure 3.4).

o ——

& o

[ g
v

t ts

Figure 3.4. Split interval from O to ¢

Now we split the interval and let us represent the endpoints of the intervals by ¢; with i going

from 0 to n the number of sub intervals and one can then approximate the integral via sum
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of AW times At over these sub intervals hoping that as we increase the number of sub

intervals the approximation will give the value of the integral.

n—-oo

t n n
f dW,ds = lim z AW, Aty = lim Z(Wtk W, Nt —tee),  (3.1.14)
0 n—oo -

By the way AW and At are just the changes in the value of W and t over the sub intervals
so easy to calculate once one has a Brownian path over time. Let's now substitute AW times
At by x, = AW, At; to convert the thing into something familiar and let us represent the
sequence by X, = Y.7-; xx. Now in the calculation, we are quite accustomed to limiting

subsequent iterations and let's say the limiting value is X nice and easy.

t

d W,ds = lim X,, = X, (3.1.15)
n—-oo

0

but this limit won't do here reason being our axes are random variables. So, this some
probability associated with them but the limit we have doesn't contain any probability and
stochastic calculus. One talks about convergence and there are several modes of such
conversions some easier to prove than others. The most common one used in the stochastic
integration problem we have here is mean square conversion. So, mean square convergence
is what we're going to use we say the sequence X,, converges to X in the mean square if the
expected value of the squared deviation from X goes to zero as n become very large

711_{210 E [|1X,, — X|?] = 0. we are claiming that our sequence converges to zero. So, we replace
X by zero so T{I_I)‘EIOE [1X,, — 0]?] = 0 and now we can replace X,, by the sum then we get
711_{210 E[R=1x)?] = 0 and we are done with the capital X. We only introduce this symbol
so that we can see all we are doing is taking the limit of the sequence in some sense

2

n
f d W,ds = lim E (Z xk> =0. (3.1.16)
n-—-oo

k=1
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Now we can split the square of the sum and square in class terms so this is just a multivariate
version of (a+b)2=a?+b*+2ab , so we get Croix ) =Y xf +

2 Yko1 X521 xx;. Now let's make the substitution

" n n k-1
f dW,ds = lim E Z xZ + Zz X% |, (3.1.17)
0 " k=1 k=1j=1
we can replace x, = AW, Aty
¢ n k-1
f dWids = lim E Z AWtkAtk + 2 Z Z AWy, At AW, At |, (3.1.18)
0 n—-oo _1 —
= ]_1

Expectation of the sum is the sum of expectations and we took $\Delta t$ out of the
expectation because it's deterministic

t n -1
j d W,ds = lim ZE[AWtk]Atk ZZ E|aw, aw, | Aty |, (3.1.19)
0 n—-o0o

now we just need the properties of the Brownian increments. Brownian increments and non-

overlapping intervals are independent so the second term E [AWtkAWtj] is 0.

f d W,ds = lim [AWtfc]At,ﬁ, (3.1.20)

then expected value of AW squared is equal to the length of the sub interval

t n

dW,ds = lim ) At,AtZ, (3.1.21)
n—-oo

0 k=1

and we can combine the At term so we get At cube

n

t
f dWds = lim ) At}, (3.1.22)
0 =
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now as n become very large this limit goes to O to see that let's consider the time interval
from 0 to 1. Let us say we start with n equal to 1 as there is only one interval the length of
the interval from 0 to 1 is obviously 1. Then we take At to the power 3 means we take the
cube 1 which gives 1. Now let us increase n to 2 so the length of each sub interval is now 0.5
and we have two of them if we calculate the cube of At and sum across the intervals we get
0.25 so the sum of At to the power 3 has declined from 1 to 0.25 as we doubled end from 1
to 2. Now let's double and again to 4 so 4 sub intervals each are planned 0.25 and if we
calculate the cube of At and each sub interval and sum across intervals we see it has declined
again and now if we double the number of sub intervals to 8 so the sub interval is now upland
0.125 and if we calculate the cube of At and sum it we see the sum has declined if we continue
increasing n we will see the sum of At to the power 3 will go to 0 and we just conclude that
the integral of dW times dt goes to 0 mean square

n—)OO

j d Wgds = lim Atk =0=dW.dt =0, (3.1.23)

and this is what they mean when they say dW times dt is equal to zero (see Figure 3.5).

n=8 At=0.125 | 0.125% | 0.125% | 0.125% | 0.125% | 0.125% | 0.125% | 0.125% | 0.125% |o0.015625
n=4  At=0.25 0.253 0.25° 0.253 0.25° 0.0625
n=2  At=0.5 0.52 0.5? 0.25
n=1 At=1 13 1
to=0 t,=1 >

Figure 3.5. Calculating of the sum cube At

Now we can go and apply the same logic to dt squared which should be slightly simpler and

dW squared which is slightly complicated.

The proof of dt? = 0. In the previous paragraph we explained why the term dW times dt is

zero and now we use the same logic to find out why dt squared is equal to zero. It is going
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to be a bit easier because we do not have any stochastic term in dt squared. First as in the

previous paragraph we can write dt? in the following form:

t
f ds?, (3.1.24)
0

let us divide the interval from zero to t into n sub intervals, each of which is essentially At,
we split the intervals into sub intervals along At and let us represent the endpoints of some
periods on t; with i going from 0 to n the number of sub intervals; (see Figure 3.4), so from
(3.1.24) we obtain ;

n—)OO

jds = lim Atk, (3.1.25)

=1

as we mentioned in the previous paragraph the most convergence used in the stochastic
integration problem is mean square conversion, so let us see if the mean square convergence
produces 0 for dt squared. We say the sequence X,, converges to X in the mean square if the

expected value of the squared deviation from X goes to 0 as n become very large.

lim E [|X,, — X|?] = 0, (3.1.26)
n—-oo

now, in order to achieve our goal, we replace in the (3.1.26), X,, by the partial sum and X

with zero

=0, (3.1.27)

and we are claiming that the limit (3.1.27) goes to zero. Now in place of the point-wise limit
(3.1.25) we write the probabilistic limit (3.1.27) to be consistent with the approach used for

the other rules. So, we obtain.

t n 2
fdsz = lim E (Z At,i) ) (3.1.28)
0 " k=1
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but the expected value upper deterministic term is the deterministic term and At = % S0 we

get;

J, as2= ££@<
.
(z (5) > ) (3.1.29)

This is what they mean when they say dt? squared is equal to zero.

The proof of dW? = dt. By following the same steps in the previous two paragraphs, we can

write;

t n z
J dWZ = lim E (Z AWE — t) , (3.1.30)
0 n—-oo
k=1

whereas we used the definition of the mean square convergence
lim E [|X,, — X|?] = 0.
n—-oo
Then replaced X, with Y%_; AWZ and t in place of X. We are claiming that the

lim E [(Z’,}zlAWEk - t)z] = 0. After substituting each term in place, we get;
n—oo

n 2
k=1

2 )

n
+ t? — ZtZ AW}
k=1

n—-oo

t i
f dW? = limE
0

n
— Ji 2
= ,QET'OEE (2 AWlk>

[ \k=1

(3.1.31)

now we know that;
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by using (3.1.32) in (3.1.31) we obtain;

¢ [ n 2 n
f dW;? = limE (Z AW&() +t? — ZtZ AWE
0 | \k=1 k=1
[ n n k-1 n
| k=1 k=1 j=1 k=1

now we know from the moments of Brownian's motion that;

E[Bt2k+1] — 0
E[BZ] = 2k — 1)1tk k = 0,1,2, -

where
nl'=nn-2)(n—4).
So if that ;
E[B,] =0
E[Bf] =t
E[B}]=0 "~
E[B}] = 3t?

using previous relationships, we find that;

E[AW{] = 3At2, E[AW?] = At

)

(3.1.32)

(3.1.33)

(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)

Now from (3.1.33) and because the Brownian increments and disjoint interval are

independent, we replace expected value of AW squared by At we obtain;
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n n k-1 n
= lim 32 Aty + zz AtpAt; + t* — ZtZ Aty
" k=1 k=1 j=1 k=1

" [ n n k-1
f dW? = lim 32 At? + ZZ At At; + t* — 22
0 B = k=1 j=1
[ n n k-1
= lim 32 At,§+zz z At At; — t*
| k=1 k=1 j=1

n 2 n k-1
. t tt
T DNORDIMEE
n—-oo n nn
k=1 k=1 j=1
, t? nn—-1)t>
Sttt et
t? 1
= lim 3—+(1——)t2—tzl
n—-oo n

=0

AWZAWZ + t? — ZtZ AWZ|,  (3.1.38)

, (3.1.39)

and we thus conclude that the integral of dW squared over an interval goes to the length of

the interval;
t
J dW?2 =t = dwW? = dt,
0

and this is what is meant by dW squared equal to dt.

(3.1.40)

Definition 3.10. Stochastic Integral. For any function f = f(t) the stochastic integral is a

function like W = W (t), t € [0, T] which is given by,
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¢ N
W© = [ F©)dBs) = lim Y flt) (Bl - Blee), (31.41)
0 k=1

kt
where t;, = ~

The main types of stochastic integrals that appear in SDEs are:

1. Ito stochastic integral.

2. Stratonovich integral.

Definition 3.11. Ito's Integral. Ito was the inventor of the theory that describes movement
due to random events, which is called the theory of stochastic differential equations, in 1942,
as Ito began his work from scratch in reconstructing the stochastic integrals in addition to the
theory of analysis associated with it. Ito continued and developed his thoughts on stochastic
analysis after receiving his doctorate in 1945. Besides, Ito published many effective papers
on this topic. Among these papers are “On a stochastic integral equation” (1946), “On the
stochastic integral” (1948), “Stochastic differential equations in a differentiable manifold”

(1950), “Brownian motions in a Lie group” (1950), and “On stochastic differential equations”
(1951).

The Ito stochastic integral for the step process G € L?(0,T) on the interval (0,T) is given

by the following form:

T m-—1
f GdWw = Z Ge(W (ties1) =W (tr)), (3.1.42)
0 k=0

Definition 3.12. Stratonovich integral. The stochastic calculus that can be used as an
alternative for Ito calculus was invented by Stratonovich. Besides, when looking at physical
laws, Stratonovich calculus is considered completely natural. Additionally, Stratonovich
integral appears in his stochastic calculus. Moreover, he solved the optimization problem
other than non-linear filtering on the basis of his theory of Markov conditional processes,
which published in his papers in 1959 and 1960. The Kalman-Bucy (linear) filter (1961) is a
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special case of Stratonovich's filter. In addition, he developed the value of information theory
(1965). The other most popular stochastic integral besides Ito stochastic integral is,

Stratonovich stochastic integral defined as

myp—1
T X n+ — X(t"
L B(X,t) odB(t) = |Pl1ilr|r_1)o ; B ( (tx 1)2 (tx) ,t,’}) (W) — WD)

provided this limit exists in L2() for all sequences of partitions P™, with

|P™| — 0. Here X (.) astochastic process with values in R™. The symbol "o" is used to denote
that the integral is the Stratonovich integral. Two integrals find use in different areas. The Ito
integral is used mostly in the fields of mathematics and finance because of martingale
property, the Stratonovich integral is more popular in physics because of the limit of smooth
noise argument. In particular, two integrals are mathematically equivalent in the following

sense; any Stratonovich process
dXt = f(th t)dt i O-(Xt, t) o dBt

has an equivalent Ito process with identical solutions, which is given by
100
dXt = f(Xt' t)dt * O-(Xt, t)dBt i Ea (Xt’ t)a(Xt, t)dt.

This formula holds in both directions. So, if we already have a well-defined SDE, either in
the Ito or Stratonovich sense, then we can convert between the two conventions arbitrarily,
depending on which properties we feel are more convenient for the problem at hand. Notice

that the conversion formula basically comes down to a modification of the drift (dt) term.

3.1.3. Stochastic differential equations

If one or more of the terms of a differential equation is a stochastic process, then this
equation is called a stochastic differential equation (SDE). In addition, the resulting solution
is also a stochastic process in itself. There are various phenomena such as thermal
fluctuations or the fluctuation of stock prices that subject to randomness. For their modeling,
SDE is used. We also know that from the Brownian motion (or Wiener process) white noise

is derived which would normally be incorporated into SDEs.
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Systems in many branches of science and industrial sectors are often affected by
different types of environmental noise. Therefore, in order for the mathematical modeling of
many problems to be closer to reality, either the coefficients of the terms of the differential
equations should contain randomness or a forcing term containing randomness must be added
to the equation.

For an example, let's take the population growth model given in (Mao, 2007) and
(Dksendal, 2003) as follows

dN(t)
dt

= f(ON(),N(0) = N, (3.1.43)

where N(t) is the population size at time ¢, f(t) is related with deterministic growth rate at
time ¢, and dl;—it) is the rate of change in population size. Consider that the function f(t) is
not known completely but depends on some random external effects. In other words, it is
written in the form;

f(t) =r(t) + o(t)"noise". (3.1.44)

Here, the behavior of the term "noise” is not completely known, only the probability
distribution is known. Let us consider that the function r(t) is non-random and replaced with
f(t) in the previous population growth model, we find that

dN(t)
dt

=r(t)N(t) + o(t)N(t)"noise". (3.1.45)

It can be written in the integral form as follows

t t

r(s)N(s)ds + f o(s)N(s)"noise"d s. (3.1.46)
0

N(t) =N0+J

0
Whereas the mathematical interpretation of the term "noise™ in the literature is derived from
Brownian motion (Wiener process) and is denoted by d”;—ft). Based on the above, the term

"noise"dt can be expressed as "noise"dt = W (t)dt = dW (t) and
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J; 3(s)N(s)"noise" ds = [, a(s)N(s) dW (s). The following form of (3.1.46) Called the
integral formula

t t

r(s)N(s)ds+f o(s)N(s)dW(s), (3.1.47)

Nt=N0+f
0

0

and the differential form of (3.1.46) is
dN; = r(t)N(t)dt + o(t)N(t)dW (t). (3.1.48)

Now if we include the parameters ¢, the continuous time t and the variable N, then the

differential equation (3.1.48) in a general form can be written as follows
dN(t) = b(N(t),t,d)dt + o(N(t),t, d)dW (t), (3.1.49)

or in integral form as

t t
N(t) =Ny + | b(s,Ny)ds +j o(s, Ng)dWw;, (3.1.50)

to to
whereas the drift and diffusion coefficients are b and o, respectively, and the above
differential equation is called the Ito stochastic differential equation. N, is called the initial
value of the random variable at moment t,, and the stochastic process N, is called the solution

for (3.1.49) or (3.1.50).

3.1.4. Existence and uniqueness theorem for SDE
Let A,B:R x [0,T] — R be continuous functions satisfying (@ksendal, 2003),

|A(x, t) — Ay, )| < 8|x — |

Vx,y €ER,t€|0,T], 3.1.51
B, t) — By, )] < 8lx — y| 757 0.7}, G151

Lipschitz condition {

|A(x,t)] < 6(1 + |x])

B, )| <61+ |xp7F ERTLE [0,T], (3.1.52)

Linear growth condition {

for some constant 8. Let X be a random variable independent of the filtration F,, relative to

a standard Brownian motion {W,} , such that

E|X|? < oo,
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Then there exists a unique solution X, € L?(0, T) of the SDE

{dXt = A(Xt, t)dt + B(Xt, t)th
XO = X
3.1.5. Wick-product

In 1991 Lindstrom et al. (Lindstrem et al., 1991) proved that there is a close

relationship between the deterministic differential equation of the form
dx
d_tt = b(x;) + s(xp) Z x,(t)zy, (3.1.53)
k

and the Ito-Skorohod stochastic differential equation of the form
dX; = b°(Xp)dt + a°(X,)4. (3.1.54)
Here b°, a° show Wick versions of functions b and o, respectively. The connection
is achieved by converting the stochastic process X, taken from L? into the analytical function
H (X,)(zy,2y,-++) with the help of the 2 Hermite transformation and its '~ inverse. The
Wick product was firstly defined by G.C. Wick (Wick, 1950) in the scope of his work on
guantum theory in 1950, and a similar concept was later introduced in the field of probability
theory by Hida and Ikeda in 1965. Then the Wick product has become an important tool in
the study of stochastic differential equations. To establish a connection between stochastic
differential equations and deterministic ones, we need to use Hermite transform which
converts the Wick products into ordinary products. The basic idea of using the Hermite
transform is to make a correspondence between the elements of the space of stochastic
distributions and a space of analytic functions of complex variables. In the white noise space,
the name of the Wick product is given over the standard multiplication of two items. On the
other hand, in a white noise space the Wick product is unstable so we must look at larger (or
smaller) space where it is stable. The so-called weighted stochastic spaces whose elements
are characterized by their Wiener chaos coefficients which include Hida and Kondratiev
spaces of stochastic test functions and stochastic distributions are the required spaces. Below
we will give a brief description of them.
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3.1.6. Preliminaries on white noise analysis

The Schwartz space S(R%) consists of rapidly decreasing functions f: R% — C such
that £ € C*°(R%) and for all multi-indices @ > 0 and g > 0 the function mapping x to
x®3B f(x) is bounded on R® (Adams and Fournier, 2003). The space of tempered
distributions S’(R%) equipped with a weak-star topology is dual of S(R%). Tempered
distributions can be thought of as distributions that do not grow faster than a polynomial at

infinity. By the Bohner-Minlos theorem there exists a unique probability measure p on Borel

subsets B(S’(Rd)) of S'(R%) which forms a white noise probability space

(5’(Rd), B(S’(Rd)),u). Throughout this work, we also use the spaces (S) and (S)* which

provide a suitable environment for stochastic differential equations and are named as Hida
test function space and Hida distribution space, respectively. Hida distribution and test
function spaces are subspaces of L?(R) in some respects corresponding to Schwartz

subspaces of L2(R). Let the Hermite polynomial h,,(x) of order n be defined by

X2 n XZ
h,(x) = (—1)ne? d—(e‘?), n=012,.., (3.1.55)

dxm

and the nth Hermite function ¢, (x) be defined by

12

() =4 (- D) hy(V2x), n> L. (3.1.56)

Then ¢, (x) € S(R?) is an eigenfunction for the operator A = — (%)2 + x2 + 1, and

{¢,,},>1 constitutes an orthonormal basis for L2 (R). Therefore, the family of tensor products

lo =y ag) = Say @ -+ @ (g, (a € N¥) forms an orthogonal basis for L?(R), where a =

(ay,...,ay) denote d —dimensional multi-indices with a4, ...,a; € N. Assume that the
family of i -th multi-index a® = (af), . ag)) is given in some fixed ordering

i<jzaP+-+al <a? 4. 4ol

i.e., the {a(j)};il is formed in an increasing order. Let us define
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M =Cew =Co® @ w 21
To take the multi-indices of arbitrary length, we consider multi-indices of elements
of the space (NJ). , of all sequences a = (ay,a,,...) with elements a; € Ny and with
compact support. Let ] = (N))., and « € J . Before defining Kondratiev and Hida spaces,
we will give the following useful theorem named Wiener-Ito chaos expansion which provides
an orthonormal expansion using Hermite polynomials.
Theorem 3.2. (Wiener-Ito chaos expansion). Holden et al. (2010). Every element f in L2

has a unique expansion

flw) = Z CoHg(w),

a

where ¢, € R™. By H,, we define the random variable
Ho(w) =121 he, ({0, 1)), @ = (wy, ., 0p) € S'(RY).

Moreover, let us note that {H, },¢; forms an orthogonal basis in L? (5’(Rd)), and has
norm expression
|H“|i2(s'(Rd)) =al=a!a,!..
Now, we will define the Kondratiev spaces of stochastic test and distribution spaces.

Definition 3.13. Space of the Kondratiev test functions. For k = 1,2,--and —1 <p <1,
let

(S)p,k = {f € LZ(“):f((l)) = Z Calo(w), cq € R};

o

such that

1 = ) (@) PCEN) < oo,

o

where
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1<i,jsm’

@nke = | @i - vm+pe,ifa= (o)
ij=1

The space of Kondratiev test functions (8),, is defined by

) = [ o
k=1

Definition 3.14. Space of Hida distributions. The space of the Hida distributions can be

described in simple terms as follows:

e The space of Hida distributions, (5)_,, is defined by

-5 = )0
k=1

e We have
(8), c L*(w) c (5,

Definition 3.15. Wick product. Let F = Y., aqHy and G = Yg agHpg be the two elements
taken from (8)™,, a,, b € R™. In this case, the Wick product of F and G is denoted by F o
G and identified by

FoG = Z agbgHgip = Z cyH,.

ap Y
Where ¢, = Yq4p=y aabp.
The following basic algebraic properties of the Wick product follow directly
from the definition.

e (Commutative law) F,G € (§)*; = FoeG =G o F.
e (Associative law) F,G,K € (8)%; = Foe (GeK)=(FoG) K.
e ( Distributive law )F,G,K € (8)?; =2 F¢(G+K)=F oG+ F oK.
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Definition 3.16. Hermite transform. Let F = )., b,H, taken from (8)*,, a, € R™. In this

case, the Hermite transform of F, which denoted by HF or F, is defined by

HF(2) = F(z) = Z byz® € C™,

oj .
where z = (24,75, ...) € CN and z* = z;*z,? w2 Tifa = (a,0,..) € J where z) = 1

3.1.7. Galilean transform

The set of equations that relate the coordinates of space and time in classical physics
for two systems moving at a constant speed relative to each other are called Galilean
transformations. These transformations were mentioned in the paper of Wadati and Akutsu
(Wadati and Akutsu, 1984) to convert the stochastic PDE into a deterministic PDE. In this
thesis, we will use these transformations for solving stochastic differential equations. For an
example and clarification about this transformation, we will review an example from

Wadati’s article (Wadati and Akutsu, 1984). Example. By using the following Galilean

transform
u(x,t) =UX, t) + W(t)
X =x+m(t)
m(t) = 6f w(tHat" (3.1.58)
0

t
W) = f n(s)ds
0
we can transform the following stochastic equation
Up — 6UUy, + Uyyy = 1(T), (3.1.59)
to the following deterministic form
U(x,t) — 6U(x, t)U,(x,t) + Uyyre(x, t) = 0. (3.1.60)

3.2. Basic Concepts on The Nonlinear Methods
Throughout the thesis we use tanh, extended tanh and F-expansion methods. The aim

of this section is to provide basic information on these methods.
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The methods of tanh and extended tanh methods mainly lead to transforming of a
traveling wave as u(x,t) = u(x —vt) = U(§) , where U(§) is the wave solution traveling
at speed v. Then these methods assume a priori that travelling wave solutions may be
expressed in terms of the function tanh. In the following, we explain these methods.

3.2.1. Preliminaries of the method of tanh
Firstly, we start by considering the equation of nonlinear partial differential in a general

form with two independent variables t and x describing the waveform u(x,t)
P(u, U, Uy, Uy, ) = 0, (3.2.1)

where P in its arguments represents a polynomial and we want to know that if the travelling

waves are solutions of (3.2.1), or not.

1. Asa first step, we introduce the following transformation to produce the traveling
wave solution for Eq. (3.2.1)
u(x,t) =V(z2),z = k(x — ct), (3.2.2)

where both constants k and ¢ are determined later. As a result of this

transformation, the derivatives are changed into

0 d 0 d
— = —KC—,— = —K—
Jat dz’ 0x dz
(3.2.3)
@ L d P&
0x2 dz?’ 0x3 dz3'"’

and so on for the other derivates. Substitution of (3.2.3) into (3.2.1) yields the
following form of the ODE
P, v, vV, .)=0. (3.2.4)

2. In this step there are two options, for more details see (Malfliet, 2004).

a) With zero boundary condition. In some cases, boundary conditions may be
imposed a priori, for example, if we analyze the problems with vanishing tail
or front, we implement conditions such as

d™"V(z)
ﬁ
dz"

V(z) - 0, 0, n=12,..) for z— too. (3.2.5)
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In this case, the constants resulting from the process of integrating the
differential equation with respect to the derivative z are selected as zeros
(Malfliet, 1992, 2004). Then we obtain a simplified ODE.
b) Without boundary conditions.We move to the step (3) without integrating
the ODE.
3. Now we change the independent variable z to another new independent variable as

follows

Y =tanh(z) or Y = coth(2). (3.2.6)

As a result of the previous transformation, we get a change in the derivatives as

follows
d d
— (1 —_Vv2)—
dz a-v )dY
d? d d?
= —(1—v [ vy _y2y
1 1-v )< 2Y dY+ 1-Y )de> (3.2.7)

@ _ 1-Y? [ (6Y%2 -2 d 6Y(1—Y?) @ + (1 -Y?)? i

a7 = )|\ (¢ ) ay ( dy? dy3 )

4. Applying the previous steps, the solution will be written as a series of powers of Y
as follows

M
V(z) = Z aYs, (3.2.8)
s=0
where M is a parameter determined in the next step by using homogeneous balance.
Then by using both of (3.2.7) and (3.2.6) in ODE (3.2.4) we obtain an equation in
the powers of Y .

5. The balancing integer term M can be calculated using the principle of homogeneous

balance after using (3.2.4) in (3.2.6), as follows:

D[t =M+q

dz4q

D[vr (dq—")s] = Mr + s(q + M)

dz4q
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Therefore, the value of M in Eq. (3.2.8) is found.

6. Reaching this step means that the integer positive number M is known. If we make
the coefficients of the powers of Y in the resulting equation from step 4 equal to zero
we obtain a system of algebraic equations with the unknown parameters ag, (s =
0,1,..., M). By solving this system, we obtain the required parameters. Finally, using

(3.2.8), we obtain the analytical solution in closed form of (3.2.1).

3.2.2. Preliminaries of the method of extended-tanh
In this method, the same algorithm is followed in the tanh method except for step 4, the

expansion is replaced by the next expansion of the solution u(x, t)
M

M
V(z) = Z aYs+ ) a v, (3.2.9)
s=0 s=1
Likewise, in the tanh method, we obtain the parameter M by applying the principle of

homogeneous balance between the higher order nonlinear and linear terms. Then we

replace (3.2.9) in ODE (3.2.4) and proceed as suggested with the method of tanh.

3.2.3. Preliminaries of the F-expansion method

A brief description of the essential steps of the F-expansion method will be provided here
since the method was explained in several papers (Wang and Li, 2005; Zhou et al., 2003).
Before applying the F-expansion method, the Wick-type equation will be transformed to an
ordinary products equation by using the Hermite transform. So, the first step will be the

Hermite transformation.

1. The Wick-type equation.

A°(t,x,0:,V,, U, w) =0, (3.2.10)

will be transformed to the following partial differential equation (PDE)

A(t,x,0,V,,U,21,2,,..) =0, (3.2.11)
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by use of the Hermite transform. This step replaces the real-valued function with a
complex-valued function. Now, we have to solve a deterministic PDE with complex
coefficients.
. The deterministic PDE with complex coefficients (3.2.11) will be converted into an
ordinary differential equation (ODE) by considering the transformation of the form
U(t,x,z) = u(t,x,z) = u(Q),l = f(t,x)x + g(t,x). The converted equation reads
as follows

A(uw,ug ug, ... ) = 0. (3.2.12)
. We assume that the solution of Eq. (3.2.12) can be expressed in the form of finite

series as follows

n

u@ = ) a6, DFQ), (3:213)
i=0
where the function F () satisfies the following elliptic equation of first kind
F7 = Ay + A;F? + A3F%, (3.2.14)

Eq. (3.2.14) has 24 Jacobian elliptic function solutions given in Table 3.3.

Table 3.3. The 24 Jacobian elliptic function solutions of Eq. (3.2.14).

Case Ay A, Aq F(Q)

1 1 —(1+m?) m? sn(Q)

2 1 —(1+m?) m? cd(Q

3 1—m? 2m? —1 —-m? cn(Q)

4 m?—1 2 —m? -1 dn(Q)

5 m? —(1+m? 1 ns(Q)

6 m? —(1+m? 1 dc(Q)

7 —m? 2m? -1 1—m? nc(Q)

8 -1 2 —m? 1-m?nd(Q nd(Q)

9 1 2 —m? 1—m? sc(Q)

10 1 2m? —1 -m?(1 —m?) sd(Q)

11 1 —m? 2 —m? 1 cs(Q)

12 -m?(1-m? 2m? —1 1 ds(Q)

m_z m? -2 m?
13 4 3 ) ns() = ds(0)
m? m?—2 m? )

14 42 22 ) 42 sn(Q) +icn(Q)
15 = = T 1-misd@ @
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Table 3.3. (Continue) 1.

Case Ay Ay A3 FQ
. % 1-m? 1 msn(Q) + idn(Q)
2 4 -
18 % 1 _zmz % ns(Q) £ cs(Q)
1 1—m? 1
19 2 - 2 V1 —=m2sc(Q £+ dc(0
m?—1
20 7 mirl mi-d msd(Q) +nd(Q)
2 4
1 —m?
’1 Z m? +1 1-m? nc(Q) + sc(Q)
2 4
2 _ 4 2 1
,y 1t 471 m*  m 2+ 1 -3 men(Q) + dn(Q)
(1 —m?)? 2 1
. — m 2+ 1 = ds(Q) + cs(Q)
m*(1 —m?)

2(1 — m? 1—m?
( m) Z(Z—Tnz) dc(Q) £ 1 —m2nc(Q)

24 2(2 —m?) T

* m is the module of Jacobian elliptic function.

. To specify the parameter n of step 3, the highest order nonlinear term and highest
order derivative term in Eq. (3.2.12) will be balanced. Substitution of n into Eq.
(3.2.13) yields the solution of Eq. (3.2.12) as follows

u(Q) =ay(t,z) + a,(t,2)F(Q + -+ a,(t, 2) F(Q™. (3.2.15)
. The next step is substitution of Egs. (3.2.14) and (3.2.15) into Eq. (3.2.12). Then
setting the coefficients of all powers of F', xF' and F;F" of the resulting equation to
zero gives a set of algebraic equations. By solving the set of algebraic equations, the
parameters f, g,a;(i = 0,1, ...,n) can be obtained explicitly.
By putting the parameters obtained in the previous step into Eq. (3.2.15) and { =
f(t, x)x + g(t, x) we obtain the general formal solution u(¢) = u(t, x, z) of Eq.
(3.2.11).
. Obtain general formal solution for Eq. (3.2.10). Taking the inverse Hermite

transformation of u(t, x, z) obtained in Step 6, i.e., U(t, x) = H (u(t, x,z)).We
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deduce U(t, x) which is a general formal solution of Wick-type stochastic Eq.
(3.2.10).

Derive the solutions of Jacobian elliptic function for Eq. (3.2.10). Replacing

Ay, Ay, A3, F(Q) in U(t, x) obtained in step 7 with corresponding values in the Table
3.3, we obtain a series of solutions of Jacobian elliptic function for Wick-type
stochastic Eg. (3.2.10).



4. RESULTS

In this chapter, the method of tanh and extended tanh, the first two of the proposed
methods for solving the evolution equations, are applied to a set of famous equations. As a
first step, the search is for the appropriate Galilean transformation that transfers the stochastic
equation into the deterministic case. Then methods of tanh and extended-tanh are used here
to find solutions to the resulting equation, and then by replacing the Galilean transformation
in the resulting equations, closed solutions of the studied equations are obtained. Finally, we
visualize some solutions using computer programs to show the effect of stochastic terms on

the solution.

4.1. Using Galilean Transform for Solving the Stochastic KdV-Burgers Equation Via
The Method of Tanh

The Korteweg-de Vries-Burgers equation is often used in the description of wave
processes in dissipative-dispersive systems in many areas of physics ( Kudryashov, 1991).
Let us start with the following equation

U, + UUy — BUxy + RUyxx = n(T), (4.1.1)
we call Eg. (4.1.1) a stochastic Korteweg de Vries-Burger's (KdVB) equation. Here
inhomogeneous term n(T) stands for external noise and both of X and T point to partial
differentiations with respect to X and T, respectively. One simply applies the following
Galilean transformation

UX,T)=ul,t)+ W(T),x=X+m(t),t=T, (4.1.2)

T T
m(T) = —f w(THdT', W(T) =f n(THdT, (4.1.3)
0 0

to convert the stochastic Kortewegde Vries-Burger's equation into its deterministic
counterpart

Up + Uy — Buyy + Ry = 0. (4.1.4)

In the following sections, both the method of tanh and extended tanh will be applied,

respectively, to the stochastic Korteweg de Vries-Burger's equation to develop solitary wave

solutions. It should be noted that the method of extended tanh gives further solitary wave

solutions. Boundary conditions can be applied a priori to reduce unnecessary calculations.
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4.1.1. The method of tanh with zero boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the

Korteweg de Vries-Burger's equation (4.1.4) into an ODE "with zero boundary condition”,

d?v(z)

dz?

anv (z)

i.e, forV(z) - 0, -0, —>0as z—> Foo,

1
—ckV + EVZ — Bk?V' + RE3V" = 0. (4.1.5)

Balancing V"'with V2 in (4.1.5) lead to
M+2=2M. (4.1.6)

Therefore
M =2. (4.1.7)

Hence the next step of the method of tanh gives the following finite expansion

V(z) =ag+ a,Y + a,Y% Y = tanh(2). (4.1.8)

From the two relations (4.1.8) and (4.1.5), we get the following system of algebraic
equations for ay, a,, a,, k and c after collecting the coefficients Y%, (S = 0,1,2, ...,4) with

each other and equating them to zero

YO -kad+ 2a,Rk® — Bk?a, — ckag = 0

Y. —2Rk3a, — 2Bk?a, — cka, + kaga; =0

Y2 kaga, + %ka% — 8a,Rk? + Bk?*a; — cka, = 0 (4.1.9)
Y3.. 2Rk3a; + 2Bk?*a, + kaja, =0

vt skay +6a,Rk® =0

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following two cases of solutions:

1.
6B2 B 3B? _ 682 _ 3B2

3R’ K=o ™= " M T g % T g (4110)
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_68 B _ 92 _ 6B? 3B 1)
2R’ “T1or' ™ TR T 73R’ 2T TosRe -

Solutions of the case 1. Substituting the following soliton solutions (4.1.10) into (3.2.8) and
using (3.2.6), (3.2.2), we obtain the solution;

3B?
u(x, t) = _ﬁ 1+ tanh[cl)])z, (4.1.12)
and
3B?
u,(x, t) = _ﬁ(l + coth[}])?, (4.1.13)

2
where ¢ = wiR (%t + x) We should note that in the above solution if ¢ — —co then

tanh[¢] = —1 and the solution u, satisfies boundary conditions. From (4.1.12)- (4.1.13)
and Egs. (4.1.2)-(4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1),

which are simplified as follows:

U,(X,T) = —% (1 + tanh[dp; (X, T)])? + W(T), (4.1.14)
and
3B?
U,X,T) = — 2R (1 + coth[d, (X, TH]D? + W(T), (4.1.15)
where

B 6B2 T
GLXT) = by (X, T) = [w—R (25—RT L x— f W r)]
0

Solutions of the Case 2. Substituting the solutions (4.1.11) into (3.2.8) and using (3.2.6),

(3.2.2), we arrive to the following soliton solutions;

t) = 332 1 + tanh B 6th t h—B 6th 3 41.16
us(x,t) = —o5p A Torz\25r anh | 0rz\25R ¢~ %)~ 3) (*116)

and
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(x,t) = — 3% (1 + cotn |2 (652, m|Z_ (88, 3). (41.17)
uglX, ) = —oep| I+ coth|ooma(2eg t — % || )\ O | Torz (28R F = -

(x - —t) then tanh ¢ — 1

We should note that in the above solution if we take ¢ = -

10R?
when ¢ — oo, and the solution us(x,t) = % (1 — tanh ¢)(3 — tanh ¢) satisfies
boundary conditions. From (4.1.16)- (4.1.17) and Egs. (4.1.2)- (4.1.3), we arrive at a set of

exact stochastic solutions of Eq. (4.1.1), we arrive at a set of exact stochastic solutions of
Eq. (4.1.1), which are simplified like this:

2

3B
Us(X,T) = = 5= (1 + tanh[5 (X, DD (tanh[ps (X, T)] = 3) + W(T),  (4.1.18)

and

2

U,(X, T) = —% (1 + coth[d, (X, T)])(coth[d, (X, T)] = 3) + W(T),  (4.1.19)

where

B [(6B?
¢)3(X,T)=¢4(X,T)=[10R2<25RT X+f W(T)dT)l

4.1.2. The method of tanh without boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the

Kortewegde Vries-Burger's equation (4.1.4) into an ODE with " no boundary conditions".
—ckV' + kVV' — Bk?V" + Rk3V"" = 0. (4.1.20)

Balancing V""" with V'V in (4.1.20) gives

M+3=M+1+M. (4.1.21)

So that

M =2. (4.1.22)
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Hence the next step of the method of tanh gives the following finite expansion
V(z) = ay+ a,Y + a,Y?Y = tanh(z). (4.1.23)

From the two relations (4.1.23) and (4.1.20), we get to the following system of algebraic
equations for ay, a,, a,, k and c after collecting the Y5, (S = 0,1,2, ...,5) coefficients to
each other and equating them with zero

Y°.. —2Rk3a, —2a,Bk?® — cka; + kaga; =0

Y'.. —16Rk3a, + 2Bk?a, — 2cka, + 2kaqa, + ka? = 0

Y2.. 8Rk3a, + 8Bayk?+ cka, — kaga; + 3ka,a, =0

Y3 . 40Rk3a, — 2Bk?a, + 2cka, — 2kaya, — ka? + 2ka3 = 0, (4.1.24)

Y4 .- —6Rk3a1 - 6Ba2k2 - 3ka1a2 == 0
—24Rk3a, — 2ka3 = 0.
Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following solution:

_ .3 - _B ~ 682 _ 3p?
c= ao, = Ay =a, a;= a, = TR

25R 10R’ 25R’ (4.1.25)

Substituting the solutions (4.1.25 ) into ( 4.1.23) and using (3.2.6 ),(3.2.2 ), we arrive to

the following solitons solution which may be interpreted as a dark soliton solution:

B 3B? B 3B?
Tor\\258 ~ %)t ** Tor\\258 ~ %)t +*

where the arbitrary constant a, affects the solution (and therefore its boundary condition)

+ 2tanh >, (4.1.26)

3B2 )
ulx, t) =ay, — >R tanh

as well as the velocity of the stationary wave. From (4.1.26) and Eqgs. (4.1.2)- (4.1.3), we

arrive at a set of exact stochastic solutions of Eq. (4.1.1), which are simplified as follows:

UX,T)=ay,— ESLR (tanh?[¢p(X, T)] + 2 tanh[p (X, T)]) + W(T), (4.1.27)

or
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UKX,T) = ag — 35 (1 — sech?[b(X,T)] + 2 tanh[d(X, T)]) + W(T),  (4.1.28)

25R
where
dX,T) 5 (332 )T +X fTW(T')d T
) =75 |55 — % -
10R \ \25R o
2
Remark 1. In (4.1.27) if we take a, = — % we obtain solution (4.1.14).

4.1.3. Visualization of Some Solutions

-
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Figure 4.3. 3D, 2D, Contour Plots of the solution (4.1.15) for B=R=1, where W (T) = exp(noise * T).
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Figure 4.7. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where W (T) = exp(noise * T)
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Figure 4.8. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where W (T) = noise * T?.

4.2. Using Galilean Transform for Solving the Stochastic KdV-Burgers Equation Via
The Method of Extended Tanh

4.2.1. The method of extended tanh with zero boundary condition
Based on what was previously found, the balancing parameter takes the value M = 2.

Hence using (3.2.9) the next step of the method of extended tanh gives the following finite

expansion

V(Z) = Qg + a1Y + aZYZ + a_1Y_1 + a_ZY_Z, Y = tanh(Z) (4‘21)

From the two relations ( 4.2.1) and (4.1.5), we get the following system of algebraic
equations for a,, a;,a,,a_q,a_,, k and c after collecting the Y5, (S = 0,1, ...,8)

coefficients with each other and equating them to zero

YO Za?,+6Rk*a_, =0,

Y. 2Rk?a_,+2Bka_,+a_,a_;=0

Y2 . %a%l —ca_, +a_,ay—8Rk?*a_, + Bka_, =0

Y3.: —2Rk?a_,—2Bka_,—ca_,+a_,a; +a_ja,=0. (4.2.2)
Y4 %a% —cay +a_,a, + a_ja, — Bka; + 2Rk?*a_, + 2Rk?a, — Bka_,; = 0

YS.:  —2Rk?*a, —2Bka, —ca; +a_,a, + aga; =0

Yo . %a% + apa, — 8Rk?a, + Bka,; —ca, = 0

Y”.. 2Rk?a;+ 2Bka, +aja, =0

Y8 Za?+6Rk?a,=0.
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Now, using one of the symbolic calculation programs to solve the above algebraic system,
we get the following four cases of solutions:

1.
_68 B _ 3B? _ 6B? 92 o o (423)
€T2rR "T1or 42T TR’ 1T Tspr W T gy TY REE e
2.
6B . B 3B? 6B 3B o o 42.4)
c=——, k=—, a,=-—, a,=—-——, ay=——, a;=0, a,=0. 2.
25R 10R 2 25R ! 25R° 25R° 1 2
3.
6B _ B 3B _ 3B 3B? _ 3B* 3B (425)
CT3rR " T20r"% 2T 100k T TR TR’ T T 25" T T 100k o
4,
_ 6B _ B _ 3B? _ 3B 9B* 382 3B (426
CT TR T2 T TTo0R’ M T T2 T Ts0rr M T T 257 T T 100k o

Solutions of the Case 1. Substituting the solutions (4.2.3) into (3.2.9) and using ( 3.2.6),

(3.2.2), we obtain the following soliton solution;

t—3B2 th? 5 6th tanh B 6th +1]( 3tanh 5 6th 1 (4.2.7)
u(x,t) = co x an Tor\25R x an Tor\Z5R x . 2.

25R 10R \25R
. L B 6B2
We should note that in the above solution if we take ¢ = or (x - ﬁt) then tanh ¢ — 1

2
when ¢ — oo, and the solution can be written as u, (x,t) = % (1 — tanh ¢) --- satisfies

boundary conditions. From (4.2.7) and Eqgs. (4.1.2 )-( 4.1.3), we arrive at a set of exact

stochastic solutions of Eq. (4.1.1 ), which are simplified as follows:

2

U,(X,T) = %cothz[q)l(X, T)] (tanh[d; (X, T)] + 1)(3tanh[p, (X, T)] — 1) + W(T), (4.2.8)

where

XT) = B 6B2T X ' THYdT'
¢1(,)—m<ﬁ—+LW() >l

Solutions of the Case 2. Substituting the solutions (4.2.4 ) into (3.2.9) and using ( 3.2.6),

(3.2.2), we obtain the following soliton solution.
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(x,t) = 35° th? 5 6th+ tanh 5 6th+ +12 (4.2.9)
N8 =755 O |1or\25R " T )|\ ™ [Tor \25R T T ¥ LoRe

We should note that in the above solution if we take ¢ = % (%t + x) then tanh ¢ —
2

—1 when ¢ - —oo , and the solution can be written as u, (x,t) = —%coth2 [d] (1 +

tanh[¢])? satisfies boundary conditions. From (4.2.94.2.7) and Egs. (4.1.2 )-( 4.1.3), we

arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which are simplified as follows:
2

U,(X,T) = —%cothz [, (X, T)] (tanh[d, (X, T)] + 12 + W(T). (4.2.10)

Where

X,T) = B_(68° T+X jTW(T’)d T’
N AVE: 0
Solutions of the Case 3. Substituting the solutions (4.2.54.2.4 ) into (3.2.9) and using (

3.2.6), (3.2.2), we obtain the following soliton solution.

2

100R

us(x,t) = — coth?[¢3(x,t)] (tanh?[dp5(x, t)] — 6 tanh[d3(x, t)] + 1) (tanh[Ps(x, t)] + 1)?, (4.2.11)

where

B [6B?
(1)3(.96,1') = 20—R<25—Rt—x>l.

We should note that in the above solution if we take ¢ = [x -2 (% t)] = —b3(x,t)

20R
then tanh ¢ — 1 when ¢ — oo, and the solution can be written as u;(x, t) =

- % (1 — tanh[¢])? satisfies boundary conditions. From (4.2.11) ,(4.2.9) ,(4.2.7) and

Egs. (4.1.2 )-( 4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which

are simplified as follows:

2

B coth?[¢d3(X, T)] (tanh?[d3 (X, T)] — 6 tanh[dp3(X, T)] + 1) (tanh[p3 (X, T)] + 1)? + W(T), (4.2.12)

where b5 (X, T) = [% (%T — X+ [ W(T")d T)]
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Solutions of the Case 3. Substituting the solutions (4.2.64.2.54.2.4 ) into (3.2.9) and using (

3.2.6), (3.2.2), we obtain the following soliton solution.

(x,t) = 3B° th? 5 6th+ tanh 5 6th+ +14 (4.2.13)
Wl 8= "700r " [20r\25R “ T I\ [20R \25R " T SR b

2
We should note that in the above solution if we take ¢ = % (%t + x) then tanh ¢ —
2
—1 when ¢ — —oo , and the solution written as u, (x, t) = —% (1 + tanh[])* coth?[d]

satisfies boundary conditions. From (4.2.13) ,(4.2.11) ,(4.2.9) ,(4.2.7) and Egs. (4.1.2 )-(
4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which are simplified

as follows:

2

coth?[¢, (X, T)] (tanh[d, (X, T)] + 1)* + W(T), (4.2.14)

where

B [6B? T
b, (X, T) = 20—R<25—RT+X—f W(T’)dT’)l
0

4.2.2. The method of extended tanh without boundary condition
Based on what was previously found, the balancing parameter takes the value M = 2.
Hence, using (3.2.9) the next step of the method of extended tanh gives the following finite

expansion
V(Z) =Qy + a1Y + aZYZ + a_1Y_1 + a_ZY_Z,Y = tanh(Z) (4‘215)

From the two relations (4.2.15) and (4.1.20), we get to the following system of algebraic
equations for ay, a,, a,, a_;,a_,, k and c after collecting the Y5, (S = 0,1, ...,10)

coefficients to each other and equating them to zero.
Y%.: —24Rk%a_, —2a%, =0,
Yl - _6Rk2a_1 - 6Bka_2 - 3a_2a_1 = O

YZ .- 40Rk2a_2 - ZBka_l + 2C(1_2 + ZaEZ - Za_zao - a%l =0
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Y3.. 8Rk%*a_;+8Bka_,+ca_,+3a_,a_;—a_,a; —a_,a,=0
Y*..  —16Rk?a_, + 2Bka_; —2ca_, + 2a_,ay +a%; =0

Y>.. —2Rk?a_; —2Rk?a, —2Bka_, — 2Bka, —ca_; —ca, + a_,a, + a_;ay +
a_1a2 + aoal = 0

Y®.. —16Rk?a, + 2Bka, — 2ca, + 2a4a, + a? = 0, (4.2.16)
Y”.. 8Rk%a; +8Bka, + ca; —a_ja, — apa; + 3a;a, =0

Y®.. 40Rk?a, — 2Bka, + 2ca, — 2aga, — a3 + 2a5 = 0

Yo . —6Rk?a, — 6Bka, — 3a,a, = 0

Y.  —24Rk?a, —2a3 =0

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following solution:

3B2 B 3B2 3B2 3B2 3B2
=——,  (42.17)

= _—,k:_ ,A_o, = — ,ad_14 = ) = )] = )
€= %" 50R 20R’ %27 TT00rR’ 1t T 25’ P T M T o5p %2 T T100R

Substituting the solutions ( 4.2.17) into (3.2.9) and using ( 3.2.6), (3.2.2 ), we obtain the

following soliton solution.

6B?
u(x,t) = ap + coth? |— + 2 coth [—

50R

B 3B? B 3B2 1
10R <a0 50R>t—x T0R <a0—50—R>t—x _§>' (4.2.18)

where the arbitrary constant a, affects the solution (and therefore its boundary condition)

as well. From (4.2.18) and Eqgs. (4.1.2 )-( 4.1.3), we arrive at a set of exact stochastic

solutions of Eq. (4.1.1 ), which are simplified as follows:

2

5 (cothz [b(X,T)] + 2 coth[d(X, T)] %) LW, (42.19)

UXT) = a0+ 5

where

B 3B?
m(( 50R>T X+JW(T)‘”>]
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Remark 2. For cases (4.2.3) and (4.2.4) the obtained solutions are same with the solutions
(4.1.17) and (4.1.15) respectively. But for cases (4.2.5) and (4.2.6) we obtain new solitary

wave solutions.

4.2.3. Visualization of Some Solutions

7]
|

'

10

Figure 4.11. 3D, 2D, Contour Plots of the solution (4.2.12) for B=R=1, where W (T) = exp(noise * T)
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e

x

Figure 4.14. 3D, 2D, Contour Plots of the solution (4.2.19) for B=R=1, where W (T) = 0.
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= exp(noise = T).

-10

Figure 4.17. 3D, 2D, Contour Plots of the solution (4.2.19) for B=R=1, where W (T) = noise * T2.
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Figure 4.18. 3D, 2D, Contour Plots of the solution (4.2.19) for B=R=1, where W (T) = noise * 1.

4.3. Using Galilean Transform for Solving the Stochastic Korteweg—De Vries (KdV)
Equation Via the Method of Tanh

The KdV equation is often used in the description of wave processes in dissipative-
dispersive systems in many areas or physics (Ablowitz and Clarkson, 1991). Let us start from
the following equation

U, + UUy 4+ RUyxx = n(T), (4.3.1)

we call Eq. (4.3.1) a nonlinear stochastic Kortewegde Vries (KdV) equation. Here
inhomogeneous term n(T) stands for external noise and subscripts X and T denote partial
differentiation with respect to X and T, respectively. One simply applies the Galilean

transformation

UX, T) =ulx,t) + W(T),x=X+m(t),t =T, (4.3.2)

T

m(T) =—j W(THd T, W(T)=J nTHdT’, (4.3.3)
0 0

to transform the stochastic Kortewegde Vries into Kortewegde Vries equation
U + Uty + Ry, = 0. (4.3.4)

In the following sections, we will first use the tanh method to develop solitary wave
solutions to the Stochastic Kortewegde Vries equation (4.3.1). The extended tanh method

will be employed as well to develop more new solitary wave solutions.



61

4.3.1. The method of tanh with zero boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the

Korteweg de Vries equation (4.3.4) into an ODE "with zero boundary condition”

1
—ckV + EkVZ + RK3V" = 0. (4.3.5)

Balancing V" with V?2in (4.1.20) gives
M+2=2M (4.3.6)

Therefore
M=2 (4.3.7)

Hence the next step of the method of tanh gives the following finite expansion
V(z) = ay+a,Y +a,Y?Y = tanh(z) (4.3.8)

From the two relations (4.3.8) and (4.3.5), we get to the following system of algebraic
equations for ay, a,, a,, k and ¢ after collecting the Y5, (S = 0,1, ...,4) coefficients to each

other and equating them with zero
Yo %ka% + 2a,Rk3 — ckag = 0
Yl - —2Rk3a1 - Cka1 + ka0a1 = 0

YZ. 1, 3
kaya, + Eka1 — 8a,Rk® — cka, = 0. (4.3.9)
Y3 .- 2Rk3a1 + ka1a2 = 0

Y*.: “ka} +6a,Rk® = 0

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following solution:

c=4k?R, k=k, ay=12k?R, a, =0, a,=—12k?R. (4.3.10)
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Substituting the solutions (4.3.10) into (4.3.8) and using (3.2.6),(3.2.2), we arrive to the

following solutions;
u(x,t) = 12k*R(1 — tanh[k(4Rk?t — x)]) (1 + tanh[k(4Rk?*t — x)]), (4.3.11)
or
u(x,t) = 12k?R(1 — tanh?[k(4Rk?*t — x)]) = 12k?Rsech?[k(4Rk?*t — x)], (4.3.12)

the well-known solitary wave in bell-shape form. We should note that in the above solution
if we take ¢ = k(4Rk?t — x) then tanh ¢ — 1 when ¢ — oo, and the solution satisfies
boundary conditions. From (4.3.11) - (4.3.12) and Eqgs. (4.3.2) - (4.3.3), we arrive at a set

of exact stochastic solutions of Eq. (4.3.1), which are simplified as follows:

U(X,T) = 12k?R(1 — tanh[¢p(X, T)]) (1 + tanh[p (X, T)]) + W (D), (4.3.13)
or
U(X,T) = 12k?R(1 — tanh?[¢p(X, T)]) + W(T) (43.14)
= 12k?R sech?[¢p(X,T)] + W(T) ' h
where
T
dX,T) = Ik <4Rk2t - X+ f W (T"d T>l
0
4.3.2. The method of tanh without boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the
Korteweg de Vries equation ( 4.3.4) into an ODE with "no boundary conditions”
—ckV' + kVV' + RK3V"" = 0. (4.3.15)
Balancing V""" with V'V in ( 4.1.20) gives
M+3=M+1+M. (4.3.16)
So that
M =2. (4.3.17)

Hence the next step of the method of tanh gives the following finite expansion
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V(Z) =0y + a1Y + azyz,y = tanh(Z) (4‘318)

From the two relations (4.3.18 ) and (4.3.15 ), we get to the following system of algebraic
equations for ay, a,, a,, k and ¢ after collecting the Y5, (S = 0,1, ...,5) coefficients with

each other and equating them to zero
YO .- _ZRk3a1 - Ckal + ka0a1 = O
Y'.. —16Rk3a, — 2cka, + 2kaga, + ka? = 0

Y2.. 8Rk3a,+ cka; — kayga; + 3ka;a, =0

Y3.. 40Rk3a, + 2cka, — 2kaya, — ka? + 2ka3 = 0. (4.3.19)
Y4 .- —6Rk3a1 - 3ka1a2 = O
Y5.. —24Rk3a, —2ka3 =0

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following solution:
c=ay,—8Rk? k=k ay=a, a =0, a,=—12Rk> (4.3.20)

Substituting the solutions (4.3.20) into (4.3.18) and using (3.2.6), (3.2.2), we arrive to the

following solutions;

u(x, t) = ag — 12Rk? tanh?[k((8Rk? — ap)t + x)], (4.3.21)
and

u(x,t) = ag — 12Rk? coth?[k((8Rk? — ay)t + x)], (4.3.22)

where the arbitrary constant a, affects the solution (and therefore its boundary condition)
as well as the velocity of the stationary wave. From (4.3.21)-(4.3.11) and Egs. (4.3.2) -
(4.3.3), we arrive at a set of exact stochastic solutions of Eq. (4.3.1), which are simplified

as follows:
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UX,T) = ag — 12Rk? tanh?[d(X, T)] + W(T),

and
UX,T) = ag — 12Rk? coth?[$(X, T)] + W(T),
or
UX,T) = ag — 12Rk? + 12Rk?sech?[d(X, T)] + W(T),
and
UX,T) = ag — 12Rk? — 12Rk?csch?[p(X, T)] + W(T),
where

¢X,T) =

T
((8Rk2 —a)T+X— f W(T")d T)]
0

Remark 3. In (4.3.25) if we take a, = 12Rk? we obtain solution (4.3.14).

4.3.3. Visualization of Some Solutions

(4.3.23)

(4.3.24)

(4.3.25)

(4.3.26)

Figure 4.19. 3D, 2D, Contour Plots of the solution (4.3.14) for B = R = 1, where W(T) = 0.
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-10

-10 -5 [ 5 10

Figure 4.20. 3D, 2D, Contour Plots of the solution (4.3.14) for B=R=1, where W (T) = sin[noise * T].

-10 -5 [ 5 10

-10 -5 [ 5 10

Figure 4.22. 3D, 2D, Contour Plots of the solution (4.3.14) for B=R=1, where W (T) = noise * T2.

1s 0 5 s 10 15
4 10
= 0
-10
-15)
-15 -10 -5 ] 5 10 15

Figure 4.23. 3D, 2D, Contour Plots of the solution (4.3.23) for B=R=1, where W (T) = 0.
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-10

-10 -5 [ 5 10

Figure 4.24. 3D, 2D, Contour Plots of the solution (4.3.23) for B=R=1, where W (T) = sin[noise * T].

-10 -5 [

N

for B=R=1, where W (T) = exp(noise = T).

-10 -5 [ 5 10
T

Figure 4.26. 3D, 2D, Contour Plots of the solution (4.3.23) for B=R=1, where W (T) = noise * 1.

4.4. Using Galilean Transform for Solving the Stochastic Korteweg—De Vries (KdV)
Equation Via the Method of Extended Tanh

4.4.1. The method of extended tanh with zero boundary condition
Based on what was previously found, the balancing parameter takes the value M = 2.
Hence using (3.2.9) the next step of the method of extended tanh gives the following finite

expansion

V(Z) = Qy + a1Y + aZYZ + a_1Y_1 + a_ZY_Z, Y = tanh(Z) (441)
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From the two relations (4.4.1) and (4.3.5), we get to the following system of algebraic

equations for ay, a,, a,, a_4, a_,, k and c after collecting the Y5, (S = 0,1, ...,8)

coefficients to each other and equating them with zero

Yo .

YS .
Yo .

Y7 .

6Rk?a_, +2a2, =0
2Rk2a_1 + a_za_l = 0
%ail —ca_, +a_,a, —8Rk*a_, =0

—2Rk?a_; —ca_;+a_,a; +a_jaq =0

1
Ea?) —cag+a_,a, +a_,a;, + 2Rk*a_, + 2Rk?a, = 0.

—2Rk?a, —ca; + a_ja, + aga; =0

1
Eaf —ca, + apa, — 8Rk?a, =0

2Rk2a1 + aa, = O

~a} + 6Rk%a = 0

(4.4.2)

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following cases of solutions:

¢ =4Rk?* k = k,a_, = —12Rk? a_; = 0,a, = 12Rk? a, = 0,a, = 0.

c =16Rk%* k =k,a_, = —12Rk? a_; = 0,ay = 24Rk?,a; = 0,a, = —12Rk?.

(4.4.3)

(4.4.4)

Solutions of the case 1. Substituting the solutions (4.4.3) into (3.2.9) and using (3.2.6),

(3.2.2), we obtain the following soliton solution.

u;(x,t) = —12Rk?coth?[k(4Rk?*t — x)] sech?[k(4Rk?*t — x)].

(4.4.5)
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We should note that in the above solution if we take ¢ = k(4Rk?*t — x) and sech?[¢] =
1 — tanh?[¢] then tanh ¢ » 1 when ¢ — oo, and the solution satisfies boundary
conditions. From (4.4.5)-(4.3.11) and Eqgs. (4.3.2) - (4.3.3), we arrive at a set of exact

stochastic solutions of Eq. (4.3.1), which are simplified as follows:
U,(X,T) = —12Rk?coth?[$p, (X, T)] sech?®[p, (X, T)] + W(T), (4.4.6)
where
T
$,(X, T) = Ik <4Rk2T X+ f W (T"d T)l
0

Solutions of the Case 2. Substituting the solutions (4.4.4) into (3.2.9) and using (3.2.6),
(3.2.2), we obtain the following soliton solution.

u,(x,t) == —12Rk?coth?[k(16Rk?*t — x)] sech*[k(16Rk?*t — x)]. (4.4.7)

We should note that in the above solution if we take ¢ = k(16Rk?t — x) and sech?[¢] =
1 — tanh?[¢] then tanh ¢ — 1 when ¢ — o, and the solution satisfies boundary
conditions. From (4.4.5),(4.3.11) and Eqgs. (4.3.2) - (4.3.3), we arrive at a set of exact
stochastic solutions of Eq. (4.3.1), which are simplified as follows:

U,(X,T) = —12Rk?coth?[¢p, (X, T)] sech*[¢p, (X, T)] + W(T). (4.4.8)

where
T
(X, T) = lk (16Rk2T -X+ f W (T")d T)l
0

4.4.2. The method of extended tanh without boundary condition
Using (3.2.9), the next step of the method of extended tanh gives the following finite

expansion
Vi) =ay+a,Y +a,Y?+a_Y 1 +a_,Y7? Y = tanh(2). (4.4.9)

From the two relations (4.4.9) and (4.3.15), we get to the following system of algebraic
equations for ay, a,, a,, a_,, a_,, k and c after collecting the Y5, (S = 0,1, ...,10)

coefficients to each other and equating them with zero
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Y°.. —24Rk?a_, —2a*,=0
Yl .- _6Rk2a_1 - 3a_2a_1 = O

YZ .- 40Rk2a_2 + an_z + Zazz - Za_zao - a%l =0

Y3.. 8Rk%*a_,+ca_,+3a_,a_;—a_,a; —a_jay = 0. (4.4.10)
Y*.: —16Rk?a_, —2ca_, +2a_,ay+a*; =0

YS.. —2Rk%*a_, —2Rk%a; —ca_;—ca, +a_,a; +a_ja,+a_,a, +aga; =0

Y®.. —16Rk?a, — 2ca, + 2aqa, + a2 =0

Y”.. 8Rk?*a,+ca, —a_ja, —aga, + 3a,a,

Y8.. 40Rk%a, + 2ca, — 2aga, — a? + 2a5 =0
Y9 .- —6Rk2a1 - 3a1a2 = 0

Y19.. —24Rk?a, —2a5 =0

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following cases of solutions:
c=ay,—8Rk? k=k a_,=-12Rk?* a_,=0, ay=ay a =0, a,=-12Rk? (4.4.11)

Substituting the solutions (4.4.11) into (3.2.9) and using (3.2.6), (3.2.2), we arrive to the

following solitons solution;

u(x,t) = ag — 12Rk?(tanh?[k((ay — 8Rk?)t + x)| + coth?[k((a, — 8Rk?)t + x)]), (4.4.12)

or
u(x, t) = ag + 24Rk? — 48Rk? coth?[2k((a, — 8RkH)t + x)], (4.4.13)

or
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u(x, t) = ag — 24Rk? — 48Rk?csch?|2k((a, — 8Rk?)t + x)], (4.4.14)

where the arbitrary constant a, affects the solution. From (4.4.12 )-(4.4.14 ) and Eqgs.
(4.3.2) - (4.3.3), we arrive at a set of exact stochastic solutions of Eq. (4.3.1), which are

simplified as follows:

U(X,T) = ay — 12Rk?(tanh?[p(X, T)] + coth?[d(X, T)]) + W(T), (4.4.15)
or
UX,T) = ag + 24Rk? — 48Rk? coth?[2¢d (X, T)] + W(T), (4.4.16)
or
UX,T) = ag — 24Rk? — 48Rk?csch?[2d (X, T)] + W(T), (4.4.17)
where

d(X,T) = [k ((a0 —8RK)T + X — jTW(T’)>]
0

Remark 4. Solutions (4.4.17) and (4.3.25) can be obtained from one to the other.

4.4.3. Visualization of Some Solutions

=l
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Figure 4.27. 3D, 2D, Contour Plots of the solution (4.4.6) for B=R=1, where W (T) = 0.
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-10 -5 [] 5 10
T

Figure 4.30. 3D, 2D, Contour Plots of the solution (4.4.6) for B=R=1, where W(T) = noise * T>.

4.5. Using Galilean Transform for Solving the Stochastic Burgers' Equation Via the
Method of Tanh

This equation, quoted as the most simple nonlinear wave equation, models fluid
turbulence in a channel (Burgers, 1974). Also unidirectional sound waves in a gas, governed
by the Navier Stokes equation, are described by such an equation (Karpman, 1975). The most
appealing application, however, is its relation to shock waves in real fluids. Let us start from
the following equation
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U, + UUy — BUyy = n(T). (4.5.1)

We call Eq.(4.5.1) a Burgers’ nonlinear stochastic evolution equation.Here
inhomogeneous term n(T) stands for external noise and subscripts X and T denote partial
differentiations with respect to X and T , respectively. One simply applies the Galilean
transformation

UX,T)=ul,t)+ W(T), x=X+m(t),t=T, (4.5.2)
T T
m(T) = —fo w(THdT', W(T)= fo n(THdT’, (4.5.3)
to transform the stochastic Burgers’ into deterministic Burgers’ equation
u; + uu, — Bu,, = 0. (4.5.4)

In the following sections, we will first use the tanh method to develop solitary wave

solutions to the Stochastic Burgers’ equation (4.5.1).
4.5.1. The method of tanh with zero boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the Burgers’

equation (4.5.4) into an ODE "with zero boundary condition”
1
—ckV + EkV2 — Bk2V' = 0. (4.5.5)
Balancing V'with V2 in (4.5.5) gives
2M =M + 1. (4.5.6)

Therefore
M=1. (4.5.7)

Hence the next step of the method of tanh gives the following finite expansion
V(z) =ay+ a,Y,Y = tanh(z). (4.5.8)

From the two relations (4.5.8) and (4.5.5), we get to the following system of algebraic
equations for ay, a,, k and c after collecting the Y5, (S = 0,1, ...,2) coefficients to each

other and equating them with zero

Yo %ka% — Bk?a; — ckay, =0
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Y'.. —cka; + kaya, = 0. (4.5.9)

Y2 %ka% + Bk?a,; =0

Now, using one of the symbolic calculation programs to solve the above algebraic system,
we get the following solution:
c=2kB, k=k, a,=2kB, a,=-2kB (4.5.10)

Substituting the solutions (4.5.10 ) into (4.5.8 ) and using (3.2.6), (3.2.2), we arrive to the

following solitons solution
u(x,t) = 2kB(tanh[k(2Bkt — x)] + 1) = —2kB(1 — tanh[k(x — 2Bkt)]), (4.5.11)

where the arbitrary constant a, affects the solution (and therefore its boundary condition)
as well as the velocity of the stationary wave. From (4.5.11) and Egs. (4.5.2 )-(4.5.3 ), we

arrive at a set of exact stochastic solutions of Eq. (4.5.1), which are simplified as follows:
U(X,T) = 2kB(tanh[p(X, T)] + 1) + W(T), (4.5.12)

where
T
dX,T) = [k <ZBkT - X +f W(T")d TI)]
0

4.5.2. The method of tanh without boundary condition
Introducing the following wave variable u(x,t) = V(z),z = k(x — ct) carries the Burgers’

equation (4.5.4) into an ODE "No boundary conditions"
—ckV' + kVV' — Bk?V" = 0. (4.5.13)

Balancing V"’ with V'V in (4.5.13) gives
M+2=M+1+M. (4.5.14)

Therefore
M =1. (4.5.15)

Hence the next step of the method of tanh gives the following finite expansion
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V(z) = ay+ a,Y,Y = tanh(z2). (4.5.16)

From the two relations (4.5.16) and (4.5.13 ), we get to the following system of algebraic
equations for ay, a,, k and c after collecting the Y%, (S = 0,1, ...,3) coefficients to each

other and equating them with zero
Y% —cka;+kaga; =0
Yl.: 2Bk%a, + ka? = 0. (4.5.17)
Y2 cka, —kaga, =0
Y3.. —2Bk?a,—ka?=0

Now, using one of the symbolic calculation programs such as Maple and mathematica to
solve the above algebraic system, we get the following two cases of solutions:
c=ay, k=k ay=a, a =-2Bk. (4.5.18)

Substituting the solutions (4.5.18) into (4.5.16) and using (3.2.6), (3.2.2), we arrive to the

following solitons solution

u(x,t) = ag — 2Bk tanh[k(x — a,t)], (4.5.19)
and

u(x,t) = ag — 2Bk coth[k(x — ayt)], (4.5.20)

where the arbitrary constant a, affects the solution (and therefore its boundary condition)
as well as the velocity of the stationary wave. From (4.5.19 ) and Eqgs. (4.5.2 )-(4.5.3 ), we
arrive at a set of exact stochastic solutions of Eq. (4.5.1), which are in the form of a shock

wave and simplified as follows:

U(X,T) = ay — 2Bk tanh[$(X, T)] + W(T), (4.5.21)
and

U(X,T) = ay — 2Bk coth[p(X, T)] + W(T), (4.5.22)

where
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dX,T) = lk (X - fTW(T')d T' — a0T>l.
0

Remark 5. In (4.5.21) if a is chosen appropriately we obtain solution (4.5.12).

4.5.3. Visualization of some solutions

-10 -5 0 s 10

Figure 4.31. 3D, 2D, Contour Plots of the solution (4.5.12 ) for B=R=1, where W (T) = 0.

-10 -5 0

Figure 4.33. 3D, 2D, Contour Plots of the solution (4.5.12) for B=R=1, where W (T) = exp(noise * T).



76

.

;

g T 3 b

pU

-5

-10

-10 -5 0 8 10
-

Figure 4.36. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where W (T) = sin[noise * T].

Figure 4.37. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where W (T) = exp(noise * T).



77

Figure 4.38. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where W (T) = noise * T?.

4.6. Using Galilean Transform for Solving the Stochastic Burgers' Equation Via the
Method of Extended Tanh

4.6.1. The method of extended tanh with zero boundary condition
Based on what was previously found, the balancing parameter takes the value M = 1.

Hence using (3.2.9) the next step of the method of extended tanh gives the following finite
expansion

V() =ag+a,Y +a_,Y LY = tanh(2) (4.6.1)

From the two relations (4.6.1 ) and (4.5.5 ), we get to the following system of algebraic
equations for ay, a,, a_,, k and c after collecting the Y5, (S = 0,1, ...,4) coefficients to each
other and equating them with zero

Yo %azl + Bka_, =0

Y. a_jap—ca_; =0

2. 1
e a_,a, — cay — Bka, + Ea% — Bka_, = 0. (4.6.2)

Y3.:. —ca;+apa; =0

Y. %a% + Bka,

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following two cases of solutions:
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c = 4‘Bk, k = k, a_q = _ZBk, ag = 4‘Bk, a, = —2Bk. (4‘.6.3)

c=—-2Bk, k=k, a_;=-2Bk, ay,=-2Bk, a;=0. (4.6.4)

Solutions of the Case 1. Substituting the solutions (4.6.3 ) into (3.2.9) and using (3.2.6),

(3.2.2), we obtain the following soliton solution;

u, (x,t) = 2Bkcoth [k(2Bkt — x)](tanh [k(2Bkt — x)] + 1)?

= —2Bkcoth [k(x — 2Bkt)](1 — tanh [k(x — 2Bkt)])? (4.6.5)

From ( 4.6.5) and Eqgs. ( 4.5.2)- (4.5.3 ), we arrive at a set of exact stochastic solutions of
Eq. (4.5.1), which are simplified as follows:

U,(X,T) = 2Bk coth[d, (X, T)] (tanh[d, (X, T)] + 1) + W(T), (4.6.6)
where

T
$,(X, T) = Ik <2BkT X+ f W(T"d T>l
0

Solutions of the Case 2. Substituting the solutions (4.6.4 ) into (3.2.9) and using (3.2.6),
(3.2.2), we obtain the following soliton solutions;

u,(x,t) = —2Bk coth[k(2Bkt + x)] (1 + tanh[k(2Bkt + x)]). (4.6.7)

From (4.6.7 ) and Egs. (4.5.2)- (4.5.3), we arrive at a set of exact stochastic solutions of

Eq. (4.5.1), which are in the form of shock wave and simplified as follows:

U,(X,T) = —2Bk coth[d, (X, T)] (1 + tanh[b, (X, T)]) + W (T), (4.6.8)
Where d,(X,T) = [k (ZBkT +X = [ W(T")d T)]

4.6.2. The method of extended tanh without boundary condition

Based on what was previously found, the balancing parameter takes the value M = 1.

Hence using (3.2.9) the next step of the method of extended tanh gives the following finite

expansion
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V(z) =ay+a,Y +a_,Y LY = tanh(2). (4.6.9)

From the two relations (4.6.9 ) and (4.5.13 ), we get to the following system of algebraic
equations for ay, a,, a_,, k and c after collecting the Y%, (S = 0,1, ...,6) coefficients to each

other and equating them with zero

Y°.: —2Ba_jk—a%,=0
Y. ca_y—a_4a,=0

Y2 .- ZBa_lk + dzl = O

y3 . —€a-1—ca +a_jay+ aga; =0. (4.6.10)

Y*.: 2Bka;+a?=0
YS < a4y —apgaq = 0

Yé.: —2Bka;—a?=0
Now, using one of the symbolic calculation programs such as Maple and mathematica to
solve the above algebraic system, we get the following solution:
c=ay,, k=k, a.,=-2Bk, ay,=a, a =-2Bk. (4.6.11)

Substituting the solutions (4.6.11) into (3.2.9) and using (3.2.6), (3.2.2), we arrive to the

following solitons solution;
u(x,t) = ag + 2Bk(coth[k(ayt — x)] + tanh[k(ayt — x)]), (4.6.12)

or
u(x,t) = ag + 4Bk coth[2k(ayt — x)], (4.6.13)
where the arbitrary constant a, affects the solution (and therefore its boundary condition)
as well as. From (4.6.12 )-( 4.6.13) and Eqgs. (4.5.2)- (4.5.3), we arrive at a set of exact
stochastic solutions of Eq. (4.5.1 ), which are simplified as follows:
UX,T) = ay + 2Bk(coth[d(X, T)] + tanh[d (X, T)]) + W(T), (4.6.14)

or
UX,T) = ag + 4Bk coth[2d (X, T)] + W (T), (4.6.15)
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where

¢(X,T) = lk (aOT —-X- fTW(T’)>l
0

Remark 6. In (4.6.15) if a is chosen appropriately we obtain solution (4.6.6).

4.6.3. Visualization of some solutions

-10 5 [ i 10
-

Figure 4.39. 3D, 2D, Contour Plots of the solution (4.6.6) for B=R=1, where W(T) = 0.
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Figure 4.40. 3D, 2D, Contour Plots of the solution (4.6.6) for B=R=1, where W (T) = sin[noise * T].

s
-10 -5 [ s 10
-

Figure 4.41. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where W (T) = 0.
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Figure 4.42. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where W (T) = sin[noise * T].

Figure 4.43. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where W (T) = exp(noise * T).

4.7. Using Galilean Transform for Solving The Stochastic Kuramoto - Sivashinsky
(KS) Equation Via The Method of Tanh

The present section is concerned with solitary wave solutions (solutions preserving
their shapes as they travel with a phase speed c) of Kuramoto-Sivashinsky (KS)
Up + Uty + Uy + Vilgprr = 0, (4.7.1)
Linear terms in the KS equation describe the balance between short wave stability and long
wave instability while nonlinear terms provide a mechanism for transferring energy between
wave modes (Sajjadian, 2014). The equation that is studied in the present section is as
follows:

U, + AUUx + BUxx + RUxxxx = n(T), (4.7.2)
where A, B and R are arbitrary constants, n(.) stands for the external noise and the subscripts
represent the partial derivatives with respect to X and T. Eq. (4.7.2) arises in the modeling
of erosion processes by ion sputtering in the surface of amorphous materials (Cuerno et al.,
1995). We start by applying the Galilean transformation to Eq. (4.7.2)
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UX, T) =ulx,t) + W(T),x=X+m(t),t =T, (4.7.3)

m(T) =—Af w(ThdT/, W(T):f nTHdT’, (4.7.4)
0 0

to transform the stochastic Kuramoto—Sivashinsky equation into its deterministic
counterpart

Uy + Auu, + By, + Ruyyy = 0. (4.7.5)

In the following, we use the tanh method to obtain solitary wave solutions to the
stochastic Kuramoto—Sivashinsky equation (4.7.2). Then by using the change of variable
u(x,t) =V(z),z=k(x —ct) and integrating the resulting equation, the KS equation
(4.7.5) transforms into an ODE of the form

A
—cV + 5V + BV + RK*V" =0, (4.7.6)

where the constant of integration is set to zero. By balancing V'"’with V2 (4.7.6), we have

M +3=2M, (4.7.7)

hence
M = 3. (4.7.8)

Consequently, we use the following solution expansion for the tanh method
V(z) = ay+a.Y +ayY? + azY3,Y = tanh(2). (4.7.9)

If we use (4.7.9) in (4.7.6) and set the coefficients of different degree of Y5, (S = 0,1, ...,6)
to zero, we get the following system of algebraic equations for a,, a,, a,, as, k and c:

YO —cay+ %Aa% + 6a3Rk3® — 2Rk3a, + Bka, = 0

Y. —16Rk3a, + Aaga, + 2Bka, — ca, =0

Y?.: 3Bkas + Aaga, — 60asRk® + 8Rk*a; — Bka, — ca, +5Aa} = 0

Y3.. 40Rk3a, + Aagas + Aa;a, — 2Bka, — ca; = 0. (4.7.10)
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Y*.: Aajas+114a;Rk® — 6Rk3a, — 3Bkas +5Aaj = 0
YS .- _24Rk3a2 +Aa2a3 = O

Y6 .. —60a;Rk3 +24a2 =0
2

The following two cases of solutions are found by solving the above algebraic system via

symbolic calculation programs:

30B 458 _ 15B |-B -B 308 |-B <0, 4711)
% =794 |19R" ™ T 194 [TorR" ¢ %= "T94 9R =2 |19r’¢ 19R’ : "
30B [11B 1358 |11B _ 165B [11B 113 _30B |11B >0 47.12)
% =794 198 194 |19R %= "T94 |19R 19R 19R

Solutions of the case 1. Substituting the solutions (4.7.11 ) into ( 3.2.8) and using( 3.2.6 ),

(3.2.2), we get the following soliton solutions forg <0;

uy (x,t) = 1251 ToR —— (2 + 3 tanh[@(x, t)] — tanh3[@(x, 1)]), (4.7.13)
and
u,(x,t) = %ﬁ % (2 + 3 coth[(x, t)] — coth®[@(x, )]), (4.7.14)
where

o6 — _B 308 |-B
YU =5 1Tor\ ¥ T 19 [19R
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However, forg > 0, complex solutions can be easily obtained. From (4.7.13)-(4.7.14) and

Egs. (4.7.3)- (4.7.4), we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which

are simplified as follows:

15B |—B
U(X,T) = 7o | 1gx (2 + 3tanh[§ (X, T)] — tanh®[§, (X, T)]) + W(T).  (4.7.15)

Figure 4.46. 3D, 2D, Contour Plots of the solution (4.7.15) for B=-1,A=R=1, W (T) = noise = T2,
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and
15B
U,(X,T) = To7 |ToR (2 + 3 coth[d, (X, T)] — coth®[dp, (X, T)]) + W(T), (4.7.16)
where

—-B
$1(X,T) = (X, T) = [ /19 X — Af w(T)dT' - 19RT

Solutions of the Case 2. Inserting the solutions (4.7.12) into (3.2.8) and

using(3.2.6),(3.2.2), we have the soliton solutions for g > 0;

15B |[11B
us(x,t) = 194 |19R —— (2 — 9tanh[@(x,t)] + 11 tanh3[@(x, t)]), (4.7.17)
and
uy(x,t) = E—j Ei (2 — 9 coth[p(x, t)] + 11 coth®[p(x, t)]), (4.7.18)
where

: t)_1 11B 308 |11B
PU =5 [Tor| * ™ 19 |19R

As for the previous case, complex solutions can be easily obtained for % <0,

From ( 4.7.17)-(4.7.18 ) and Eqgs. (4.7.3)-( 4.7.4), we get a series of exact stochastic

solutions of Eq. (4.7.2) which are simplified as follows:

15B |11B

UL (X,
(X, 1) = 194 .|19R

—— (2 — 9tanh[¢p3(X,T)] + 11 tanh3[p5 (X, T)]) + W(T), (4.7.19)

and
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15B |11B

UsX,T) = 771

Tor (2~ 9 coth[$4(X, T)] + 11 coth? [ b4 (X, TI]) + W(T), (4.7.20)

where

/113 30B |11B
G (X, T) = ¢ (X, T) = [ Tor\ X~ Af w(T)dT' — Tor !

4.8. Using Galilean Transform for Solving the Stochastic Kuramoto - Sivashinsky
(KS) Equation Via the Method of Extended-Tanh

Recalling that M = 3 and using (3.2.9), we have the following finite expansion for

the extended-tanh method
Viz)=ag+a;Y +aY?+azY3+a Y 1 +a_,Y 24+a_3Y 3 Y =tanh(z). (4.8.1)
Inserting (4.8.1) into(4.7.6), setting the coefficients of the same degree of
YS,(S=0,1,..,12) to zero, we get to the following system of algebraic equations for

Ao, aq,05,03,a_1,0_,,a_3, k and c:

P —60Rk*a_s +5Aa%; =0
Y. —24Rk3a_,+Aa_za_, =0
Yz . 3 3 1 2
114Rk>a_; — 6Rk”a_; + Aa_za_; + EAa_2 —3Bka_; =0, (4.8.2)

Y3 .- 4‘0Rk3a_2 + Aa_3a0 + Aa_za_l - ZBka_z - Ca_3 =0

Y*.:  _60Rk3a_; + 8Rk3a_, + Aa_sa, + Aa_,a, + %Aafl + 3Bka_; — Bka_, —
ca_, =0,
YS.. —16Rk3a_, + Aa_sza, + Aa_a, + Aa_,ay + 2Bka_, — ca_; = 0,

Y®.. 6Rk3a_; —2Rk3a_, — 2Rk3a, + 6Rk3a; + Aa_za; + Aa_,a, + Aa_,a, +
%Aa(z) + Bka_, + Bka, — ca, = 0,
Y”.. —16Rk3a, + Aa_,a; + Aa_,a, + Aaya, + 2Bka, — ca; =0,
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Y®.: 8Rk%a; — 60Rk*as + Aa_,a; + Aaga, + 5 Ad? — Bkay + 3Bkas — ca, = 0,

Y°.: 40Rk3a, + Aayas; + Aa,a, — 2Bka, — caz = 0,

' —6Rk*a; + 114Rk%as + Aaya; + 5 Aaj — 3Bkas = 0,

Yll .- - 24‘Rk3a2 +Aa2a3 = 0,

Y'2.: _60Rk3as +=Aa2 =0
2

Two cases of solutions are obtained by solving the above system via symbolic calculation

programs.
308 | =B 1358 |-B _, __1sB |-B _ 1358 |-B
%= Toa 19r" T 1524 |19R" TV BT 1524 |19r" %' T 1524 /19R’
0. 1B |-B . _1|-B 308 |-B (483)
42 =00-3="T54 [Tor” “T 2 |19 ¢ 7 19r’ <
2.
30B 11B 45B 11B 1653 B
=" " =" |7, a,=0, a3
194 19R 1524 19R 152A 19R
45B 11B 1653 11B 11B
a_]_ = - ’_, a_z = 0, a_3 ’ ’
1524 19R 152A
c=38 12" By, (4.8.4)
19 19R R

Solutions of the case 1. Inserting the solutions (4.8.3) into (3.2.9) and using (3.2.6),(3.2.2),

. . . . B
we arrive to the following soliton solutions for =< 0,

15B B
— 3 _ 3
u(x,t) = 1524 /19R (16 + 9 tanh[@] — tanh*[¢] + 9 coth[] — coth’[@]), (4.8.5)

ke etk = _B _308 |-B B _
P=RXTLE=Y |TorR” T 19 |1T9rR’ R
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However, complex solutions are obtained forg > 0.From (4.8.5) and Egs. (4.7.3)-( 4.7.4),

we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which are simplified as

follows:

15B |—-B
Ux,T) = . ’ (16 + 9 tanh[¢p] — tanh3[¢p] + 9 coth[Pp] — coth3[d]) + W(T), (4.8.6)

3OB
¢ = ¢(XT)—[ /19 X - Aj W(T)dT' — RT

Solutions of the Case 2. Substituting the solutions (4.8.4) into (3.2.9) and using

where

(3.2.6),(3.2.2), we arrive to the following soliton solution for% > 0;

( t)—lSB 11B(16 3 tanh[¢] + 11 tanh3[¢] — 3 coth[¢] + 11 coth3[¢]), (4.8.7)
u(x, = 1524 |T9R anh|¢ anh”[¢ coth|g coth®|g]), (4.8.

k(r—en ol [HB 308 1B B
PErRXTALE=Y 1ToR” T 19 |19R’ R

However, forg < 0, complex solutions can be easily obtained. From (4.8.7)and Egs.

where

(4.7.3)-(4.7.4), we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which are

simplified as follows:

UX,T) = 1155—212 ’ (16 — 3tanh[¢] + 11 tanh3[¢d] — 3 coth[¢p] + 11 coth®[¢p]) + W(T), (4.8.8)

where (I) = (b(X, T) = [i /%(X —AIOTW(T’)d T' —% %T)I
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Figure 4.47. 3D, 2D, Contour Plots of the solution (4.8.8) for B=A=R=1, where W(T) = 0.

Figure 4.49. 3D, 2D, Contour Plots of the solution (4.8.8) for B=A=R=1, where W (T) = noise = T2.

4.9. Using Galilean Transform for Solving the Stochastic Kawahara (KH) Equation
Via the Method of Tanh

The present section is concerned with solitary wave solutions (solutions preserving

their shapes as they travel with a phase speed c¢) of Kawahara equation

Up + Uy + Uyx + Vigypxx = 0, (4.9.1)



90

with external noise, where v is positive and represents the viscosity of the system for (4.9.1).
Kawahara equation is a dispersive fifth-order equation arising in the modeling of magneto-
acoustic waves in plasma and small-amplitude water waves with surface tension and was
introduced by Kawahara in 1972 (Kawahara, 1972).

The equation that is studied in the present section is as follows:

Ur + AUUy + BUyxx + RUyxxxx = n(T), (4.9.2)
where A, B and R are arbitrary constants, n(.) stands for the external noise and the subscripts
represent the partial derivatives with respect to X and T. Eq. (4.9.2) arises in the modeling
of small-amplitude water waves with surface tension when the surface of the fluid is
subjected to a non-constant pressure or when the bottom of the layer is not flat. Let's start
from the following equation.

Ur + AUUy + BUyyx + RUyyxxx = n(T). (4.9.3)
Here inhomogeneous term n(T) stands for external noise and subscripts X and T denote
partial differentiations with respect to X and T , respectively. The following Galilean
transformation

UX,T)=ul,t)+ W(T),x=X+m(t),t=T, (4.9.4)

m(T) =—Aj W(T)HdT', W(T)=f n(THdT’, (4.9.5)
0 0

is applied to transform the stochastic Kawahara equation into its deterministic counterpart
Us + Auu, + Buyyy + Riyyyxy = 0, (4.9.6)

In the following , we use the tanh method to obtain solitary wave solutions to the

stochastic Kawahara equation (4.9.2), and then use the extended-tanh method to develop

new solitary wave solutions. Then by using the change of variable u(x,t) =V (2),z =

k(x — ct) and integrating the resulting equation, the Kawahara equation (4.9.6)

transforms into an ODE of the form

A
—cV + Evz + Bk2V" + Rk*V'"" =0, (4.9.7)

Balancing V""" with V2 in (4.9.7) in (43) yields
M+ 4 =2M, (4.9.8)
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where we obtain
M = 4. (4.9.9)

Then, we use the following solution expansion for the tanh method
V(z) =ay+a;Y +a,Y? +azY3 + a,Yh Y = tanh(2). (4.9.10)

From the two relations (4.9.10) and (4.9.7), we get to the following system of algebraic
equations for ay, a,, a,, as, as, k and c after collecting the coefficients of Y5, (S =

0,1, ...,8) with each other and equating them to zero
Y?.: 2Bk?a, + 24a,Rk* — 16Rk*a, — cao + 5 Aa} = 0
Y'.. 16Rk*a, — 120Rk*a; — 2Bk?a, + 6Bk?a; + Aaga; —ca; =0
Y2 —ca, + %Aa% + Aaya, — 8Bk?a, + 12Bk?a, + 136Rk*a, — 480a,Rk* = 0
Y3.. —40Rk*a, + 576Rk*a; + 2Bk?a, — 18Bk?a; + Aaga; + Aa,a, — caz = 0
Y*.: %Aa% — ca, + Aaga, + Aaja; — 240Rk*a, + 6Bk?a, — 32Bk?a, + 1696a,Rk* = 0
YS5.. 24Rk*a, —816Rk*a; + 12Bk?a; + Aa,a, + Aaya; = 0, (4.9.11)
Y®.: —2080a,Rk* +Ad3 + Aaya, + 120Rk*a; + 20Bk?a, = 0

Y”.. 360Rk*a; + Aaza, =0

Y®.: 840a,Rk*+2Ad2 =0
2

Now, using one of the symbolic calculation programs to solve the above algebraic system,

we get the following two cases of solutions:

1.

_ 33p2 _, _ 210B? _, __lose® 1| B _ 3682 B 0. 49.12)
%= 77604 U TV 2T Te0ar’ BTV T 7Teoar T2/ 13" “T1e9rR’ R°- VT
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10582 ., _ 21082 ., __lose® 1| B _ 368 B_ o
“W="Teoar' “=0 %=Tgoap ©=0 @="Tgor k=3 | @rp T Ier > OEO13
Solutions of the Case 1. Substituting the solutions (4.9.12) into (3.2.8) and using

(3.2.6),(3.2.2), we arrive to the following solitons solution forg <0;

2

169AR

u(x,t) = — (11 — 70 tanh?[ ¢, (x, t)] + 35 tanh*[¢p, (x, 1)]), (4.9.14)

and

2

" 1694R

u,(x,t) = (11 — 70 coth?[¢, (x,t)] + 35 coth*[¢, (x, )]), (4.9.15)

L 1| B 3652
¢12068) =5 =3 * ~ ToR

Though, we arrive to the following periodic solutions for g > 0.

where

2

169AR

uz(x, t) = — (11 + 70 tan?[g3 (x, t)] + 35 tan*[ 5 (x, )]), (4.9.16)

and

2

" 1694R

: t)_1 B 3652
P340 =5 173 \* T 169R

From (4.9.14) -(4.9.17) and Eqgs. (4.9.4) - (4.9.5), we arrive at a set of exact stochastic

solutions of Eq. (4.9.2), which are simplified as follows:
2

169AR

uy(x,t) = (11 + 70 cot? [, (x, )] + 35 cot*[@,(x, t)]), (4.9.17)

where

Uy (X, T) = —

(11 — 70 tanh?[, (X, T)] + 35 tanh*[¢p, (X, T)]) + W(T), (4.9.18)
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and
U,(X,T) = —7¢ 9; = (11 = 70 coth? [, (X, T)] + 35 coth*[p, (X, T)]) + W (T), (4.9.19)
where
1 B 36B2
P1(X.T) = (X, T) = Ej;(x Af WadT -2 T)

For = > 0:

Us(X,T) = — 169;R (11 + 70 tan?[d5 (X, T)] + 35 tan*[d5 (X, T)]) + W(T), (4.9.20)
and

U,(X,T) = — 169;R (11 + 70 cot?[d,(X, T)] + 35 cot*[d, (X, T)]) + W(T), (4.9.21)
where

Solutions of the Case 2. Substituting the solutions (4.9.13) into (3.2.8) and using (3.2.6),

(3.2.2), we arrive to the following solitons solution for

o 10532 36B2 (4922)

st = " 169aR " 13R +tTeor¢ 7
oo 10582 |1 |_B +36th (4923

Ut = = 760ar <" (2. | 3R\ * " 160R " )|’ 7

The following periodic solutions are obtained forg > 0.

and
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oo 10582 |1 | B +36th (1924
W8 = " 169ar %¢¢ |2 /3R \* T 160R * /|’ s
and
10582 ’ 3632
us(x,t) = —TeoaR ¢ [ 13\ * T Teor" (4.9.25)

From (4.9.22) - (4.9.25) and Eqgs. (4.9.4)-( 4.9.5), we get a series of exact stochastic
solutions of Eq. (4.9.2), which are simplified as follows:

BZ
Us(X,T) = — TeoAR sech*[dps (X, T)] + W(T), (4.9.26)

Figure 4.50. 3D, 2D, Contour Plots of the solution ( 4.9.26) for B=-1,A=R=1,where w(T) = 0.

Figure 4.51. 3D, 2D, Contour Plots of the solution ( 4.9.26) for B=-1,A=R=1, where w(T) = sin[noise * T]
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Figure 4.52. 3D, 2D, Contour Plots of the solution (4.9.26) for B=-1,A=R=1,where W (T) = noise * T2

and
U(X,T) = 10557 h* [ (X, T)] + W(T (4.9.27)
6(! )__169ARcseC (I)6(I ) ()I T
where
X, 7) = X, 7= ! B X AJTW(T’)dT’+ 36BZT
q)5 ) _¢6 ] - 2 13R o 169R
For 5> 0:
R
U,(X,T) = 10557 Hp, (X, T)] + W(T (4.9.28)
7( ) )_ 169ARS€C ¢7( ) ) ( )I 7.
and
Ug(X,T) = L Hbg(X, T)] + W(T) (4.9.29)
s(X.T) = —Tgoar c5e¢ [bs (X, T)] ' -
where

1 B T , , 36B%
¢, (X, T) = dg(X,T) = 5 13_R<X _Af W(Tr)HdT" + 169R T>
«’ 0

4.10. Using Galilean Transform for Solving The Stochastic Kawahara (KH) Equation
Via The Method of Extended-Tanh

Recalling that M = 4 and using (3.2.9), we obtain the following finite expansion for the

extended-tanh method



96

V() =ag+a,Y +aY? +azY3 +a,Y*+a Y ta_,Y 2 +a_3Y 3 +a_,Y™4Y = tanh(z), (4.10.1)

Inserting (4.10.1) into (4.9.7) and equating the coefficients of the same degree of
YS, (S =0,1,...,16) yields the system of algebraic equations for a,, a;, a,, as,

A4,a_q1,0_5,a_3,a_4,k and c:

Yo . 1680Rk*a_, + Aa?, = 0,

Yl - 720Rk4a_3 + 2Aa_4,a_3 = O, (4‘102)

Y2 . — 4160Rk*a_, + 240Rk*a_, + 40Bk%a_, + 24a_,a_, + Aa®, = 0,

Y3. —1632Rk*a_; + 48Rk*a_, + 24Bk*a_; + 2Aa_sa_, + 2Aa_za_, = 0,

Y4 3392Rk*a_, — 480Rk*a_, — 64Bk%a_, + 12Bk?a_, + 2Aa_,a, +
ZAa_3a_1 + Aazz - an_4 = 0,

YS . 1152Rk*a_; — 80Rk*a_, — 36Bk?a_; + 4Bk*a_, + 2Aa_,a, +
2Aa_zag + 2Aa_ya_; — 2ca_3 =0,

Yo . —960Rk*a_, + 272Rk*a_, + 24Bk?a_, — 16Bk%a_, + 2Aa_,a, +
2Aa_za; + 2Aa_jyay + Aa?, — 2ca_, = 0,

Y7 . — 240Rk*a_; + 32Rk*a_, + 12Bk?a_; — 4Bk*a_, + 2Aa_sa; +
2Aa_za, + 2Aa_,aq + 2Aa_qay — 2ca_4 =0,

Y8 . 48Rk*a_, — 32Rk*a_, — 32Rk*a, + 48Rk*a, + 4Bk?a_, + 4Bk?a, + 2Aa_,a, +
24a_sa; + 2Aa_ja, + 2Aa_ja, + Aaj —2cay, =0,

Yo. 32Rk*a, — 240Rk*a; — 4Bk?a; + 12Bk?a; + 2Aa_sa, + 2Aa_,a; +
ZAa_1a2 + 2Aa0a1 - anl = O,

y1o . 272Rk*a, — 960Rk*a, — 16Bk?a, + 24Bk?a, + 2Aa_,a, + 2Aa_ a3 +
2Aa0a2 + Aa% - anz = 0,

Y. —80Rk*a; + 1152Rk*a; + 4Bk?a,; — 36Bk?a; + 2Aa_,a, + 2Aaya; +
2Aa a, — 2caz = 0,

Y12 . — 480Rk*a, + 3392Rk*a, + 12Bk%a, — 64Bk?a, + 2Aaya, +
ZAa1a3 + Aa% - 26(14 = 0,

yis . 48Rk*a,; — 1632Rk*a; + 24Bk?a; + 2Aa,a, + 2Aaya; = 0,

Y14 . 240Rk*a, — 4160Rk*a, + 40Bk?a, + 2Aa,a, + Aas = 0,

Y15 .- 720Rk4a3 + ZAa3a4, = O,

ye . 1680Rk*a, + Aa2 = 0,
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Now, using one of the symbolic calculation programs to solve the above algebraic system,
we get the following two cases of solutions:

1.

31582 ~ _ 10582 ~ 10582 Y
= 713524r" N7V 2T G76ar7 BTV YT 737084 1TV
_doser __A0se*  1|-B 368 B __ (4103)
42 =576aR’ 2T T 72708ar" “T 4 1B °T T169R’ RO "
2.
26182 o _ 10582 o 10582 o
G =13524r" TV 2T giearr BTV % T 737084 1TV
_lose® __dosg® 1 |-B 368 B _ (4104
42 =576aR’ 2T T 727084 "2 13" “T169R’ RO Y

Solutions of the Case 1. We obtain the following soliton solutions forg < 0 by inserting the

solutions (4.10.3) into (3.2.9) and using (3.2.6) , (3.2.2).

105B2

— — 2 4 _ 2 4
>704AR (6 — 4 tanh?[@] + tanh*[¢] — 4 coth*[@] + coth*[¢]), (4.10.5)

u,(x, t) = —

0 - k( t)k_1 _B _ 3682 B __
P =X == T3 T "169R’ R

The following periodic solutions are obtained for % > 0.

10582
2704AR

(e ) = k( t)k_l B _ 36B%
P =X E=Y 13 7 T 169R

uy(x,t) = — (6 + 4tan?[@] + tan*[¢] + 4 cot?[] + cot*[¢p]),  (4.10.6)

where
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From (4.10.5) and Egs. (4.9.4)-(4.9.5), we have a series of exact stochastic solutions of

Eq. (4.9.2), which are simplified as follows:

2
U;(X,T) = — 27044R (6 — 4tanh?[¢,] + tanh*[d;] — 4 coth?[d,] + coth*[Pp;]) + W(T), (4.10.7)
where
T = |2 =2 (x -4 TWT’dT’ 36BZT
1= XT) = |7 [ (x - fo (AT + Lo
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Figure 4.53. 3D, 2D, Contour Plots of the solution ( 4.10.7) for B=-1,A=R=1, where $W(T)=0 $
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Figure 4.54. 3D, 2D, Contour Plots of the solution (4.10.7) for B=-1,A=R=1, W(T) = sin[noise = T].
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Figure 4.55. 3D, 2D, Contour Plots of the solution ( 4.10.7) for B=-1,A=R=1, where W (T) = noise * T2.
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For 5>0,
R
2

2704AR

= b,(X,T) = LB (y AfTW(T’)dT’+36B2T
P2 = b5 T) =17 |T3R o 169R

Solutions of the Case 2. Inserting the solutions (4.10.4 ) into (3.2.9) and using

U,(X,T) = — (6 + 4tan?[d,] + tan*[p,] + 4 cot?[p,] + cot*[d,]) + W(T), (4.10.8)

where

(3.2.6),(3.2.2), we obtain the soliton solutions forg <0
2

3
S708AR (174 + 140 tanh?[¢] — 35 tanh*[¢]+140 coth?[¢] — 35 coth*[¢]), (4.10.9)

us(x,t) =

where

0 — k( t)k_1 _B _3682 B__
P =X == 113" T 169R’ R

The following periodic solutions are also obtained for % > 0.

2

3
70aaR (174 — 140tan’[o] — 35 tan*[¢] — 140 cot*[¢] — 35 cot*[¢]), (4.10.10)

0 — k(e — etk L |8 _ 3682
P =X TR =7 113R ¢ T 169K’

From (4.10.9) and Egs. (4.9.4)-( 4.9.5), we arrive at a set of exact stochastic solutions of

U, (x, t) =

where

EQ. (4.9.2), which are simplified as follows:

3
2704AR

o) =2 |22 (x—a ' T’ 36BZT
¢3 = p3(X,T) = 2 ﬁ( - JOW( ) ~ TZ9R )

U;(X,T) = (174 + 140 tanh?[¢3] — 35 tanh*[¢p3]+140 coth?[dp3] — 35 coth*[p3]) + W(T), (4.10.11)

where
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For 5>0,
R
2

2704AR

= b,(X,T) = LB (y AfTW(T')dT' 36327‘
Pa = PXT) =17 |37 o 169R

4.11. Exact Solutions for Wick-Type Stochastic Extended KdV Equation
In this chapter, we aim to provide exact solutions to the Wick-type extended KdV

UsX,T) = (174 — 140 tan?[¢,] — 35 tan*[¢,] — 140 cot?[d,] — 35 cot*[d,]) + W(T), (4.10.12)

where

eqgaution
U+ H @) oU, +Hy(t) oU o Uy + Hy(t) 0 Upyy = 0, (4.11.1)
where o is the Wick product on the Hida distribution space (S)*, and H;(i = 1,2,3) are the
white noise functions. The F-expansion method and Hermit transformation are employed. By
means of these methods and with the help of a symbolic computation package, we get
periodic wave solutions for the Wick-type stochastic extended KdV equation. 2D, 3D, and
contour graphs have been drawn by giving special values to the constants in the solutions via
computer software. Moreover, by considering different random values to the noise, the effect
of the noise on the wave-forms has been exhibited. The obtained results has been discussed

in detail.
The KdV equation was introduced as a model for waves on shallow water surfaces.
It is one of the simplest equations involving the interaction of nonlinearity and dispersion
effects. Then, it was used as a model for shock wave generation, solitons, turbulence,
boundary layer behavior and mass transport in many fields such as fluid dynamics, plasma
physics, aerodynamics and lattice dynamics, and many studies were performed on by
mathematicians (Adem and Khalique, 2012; Bona and Smith, 1975; Kato, 1979; Kenig et al.,
1991; S. Zhang et al., 2008; Zhou et al., 2003). Bakirtas and Antar (2003), Bakirtas and
Demiray (2005), using the method of reductive perturbation, studied the weakly nonlinear
propagation of waves in elastic tubes filled with non-compressible viscous fluid where long-
wave approximation was used. The KdV equation obtained in (Bakirtas and Antar, 2003) and

(I. Bakirtag and Demiray, 2005), by treating blood as a non-compressible viscous fluid and
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the arteries as tapered, flexible, thin-walled, long circular conical tube, is as follows

U + VUL, + Volyyy + 1(Du, =0, (4.11.2)
where v, and v, are constants due to the initial deformation of the tube material, and u(t)u,
represents the contribution of the tapering of tube. The equation (4.11.2) is called the
extended-KdV equation by the authors of ( Bakirtas and Antar, 2003).

The deterministic KdV equation is insufficient in the modeling of physical
phenomena that include uncertainty due to the difficulty of describing the physical systems
of the real-world with deterministic equations. In order to eliminate this deficiency, Wadati
(Wadati, 1983), added a forcing term comprising external noise

Up — OUUy, + Uyyy = (1), (4.11.3)
and lizuka (lizuka, 1993) added a derivative term multiplicated by noise with long-range
correlation

U + Uy + Uy — N(Du, = 0. (4.11.4)

Eqg.(4.11.3) models traveling waves in noisy plasmas while Eq. (4.11.4) with
multiplicative noise arises in the modeling of diffusive behavior of the solitons (especially
anomalous diffusion of solitons (lizuka, 1993). In (Wadati, 1983), Wadati discovered
diffusion of soliton for Eq. (4.11.3). Moreover, Wadati and Akutsu (1984) considered the
effect of friction by adding a damping term to (4.11.3). Lin et al. (2006) studied Eq. (4.11.4)
with homogeneous boundary conditions. They obtained numerical solutions of (4.11.4) using
discontinuous Galerkin and finite difference methods with considering three different noise
types: additive noise, multiplicative noise, and a combination of both noises. The main
purpose here is to obtain the periodic wave solutions of Eq. (4.11.1) with a random term of
white noise type. As known, in nonlinear science construction of traveling wave solutions
has an important role and several methods have been developed to obtain traveling wave
solutions. Among these methods, we use the F-expansion method for obtaining the periodic
solutions. We also aim to demonstrate the effect of noise on the wave-form by visualizing
the solutions with different noise functions. To illustrate the F-expansion method and the
possibilities it offers, we now investigate stochastic extended KdV Equation in detail.

Depending on the steps presented in Section (3.2.3), we will present the detailed solution to
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the Wick-type stochastic extended KdV equation ( 4.11.1) as follows. By applying the
Hermite transform to Eq. ( 4.11.1 ), we obtain the following equation
U, + H(t,2)U, + Hy(t,2)UU, + H3(t, 2) Upry = 0, (4.11.5)
where z = (z1,2,,..) € CN is a vector parameter. Let's denote u(t,x,z) = U(t,x,z) and
H;(t,z) = H,(t,z)(i = 1,2,3) for simplicity. Suppose the formal solution to Eq. (4.11.5)
takes the following form
u=u({), {=f(tx)x+g(t x). (4.11.6)
Whereas in the previous equation, both f(t,x) and g(t,x) are functions that will be
determined later. Anyway, let's consider the solution of the Eq. (4.11.5). It is expressed in

the following form

n

u(@) = Z a;(t, DF(Q). (4.11.7)
i=0
The balancing integer term n can be calculated using the principle of homogeneous
balance between the highest order linear term and the nonlinear term in Eq. (4.11.9). Also
the functions a;(t,z) and F{({)(i = 0,1,2, ...,n) will be determined later. Assuming that

solutions of the elliptic equation (4.11.8) is the function F({) given in the equation (4.11.7).

F7 = Ay + A;F2(Q) + AsF*(D), (4.11.8)

where A4, A,, A; and F({) are values determined using the corresponding values which
geves in Table 3.3 .The following equation is obtained by substituting Eq.(4.11.6) into Eq.
(4.11.5).

(fex + goug + Hyfug + Hafuug + Ha f3ugee = 0. (4.11.9)

Balancing uug with ug; givesn = 2, then, the ansatz takes the following form

u=ay+aF+a,F> (4.11.10)
Now from Eq.(4.11.10) and Eq. (4.11.9) we get
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Aot + altF + aZtFZ + 2H3a2f3FF<Z< + H3f3a1F(Z( + 6H3a2f3F<ZF( + 2H2a§fF3F< + 3H2a1a2fF2F(
+(2ayfex + 2Hyxay f + 2Hyayf + Hpaif + 2a,9. + 2Ha0a,f)FF;

+(a1ftx + a1 ge + Hlalf + Hzaoalf)FZ =0. (4’.11.11)
According to Eq. (4.11.8), we get
Fy = AyF + 245F3, (4.11.12)

Using Egs. (4.11.8),(4.11.12) and (4.11.13) into Eq. (4.11.11), we
aor + ay¢F + apeF? + (a1 (fix + g¢) + Hiay f + Hyapas f + Hsa f2A5)F;
+Qay(fex + g)+2H ayf + Hyai f + 2Hya0a,f + 8Hza, f3A,)FF;
+(3Hya,0a,f + 6H3a,f3A3)F2F; + (2H a5 f + 24Hza,f3A3)F3F; = 0. (4.11.14)
From the Eq. (4.11.14), we get the following system of algebraic equations for ay, a;, a,, f
and g after collecting the coefficients of F?, F"Fg(i = 1,2,3) with each other and equating

them to zero, we have

Aot = A1¢ = Ay = 0, (4.11.15)

a,(fix + g, + Hif + Hyaof + H3f3A,) =0, (4.11.16)

2a,(fix + g; + Hif) + Hyf (a2 + 2aqa,) + 8Hza,f3A, = 0, (4.11.17)
3a,f(H,a, + 2H3f?43) = 0, (4.11.18)

2a,f(Hya, + 12H5f%A3) = 0. (4.11.19)

Solving Egs. (4.11.15),(4.11.16), we get
ao = Co, a1 = Cl' az = Cz, (41120)
where ¢, c; and c, are arbitrary constants. Through equations (4.11.16) and (4.11.17), we

find that
f(t,z) = fo, (4.11.21)

where f;, # 0 is constant. Also from both equations (4.11.19) and (4.11.21), we derive

1245 f¢ Hs(t, 2)

a,(t,z) = — H,(t.2)

(4.11.22)

Comparing the equations (4.11.20) and (4.11.22), yields
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H;3(t, z) = YH,(t, 2), (4.11.23)

where y is constant. From both equations (4.11.23 ) and (4.11.22), we have
a,(t,z) = —1245f2y. (4.11.24)

Also, through equations (4.11.18) and (4.11.20), we find that
a,(t,z) =¢; =0. (4.11.25)

Now, by using equations (4.11.21), (4.11.24) and (4.11.25) in equation (4.11.17), we get

t t
g9(t,z) = —fy jo H,(s,z)ds — (fyao + 4Yf03A2)L H,(s,z)ds. (4.11.26)

In view of Egs. (4.11.6), (4.11.21) and (4.11.26) we get

t t
(= fox — fof H,(s,z)ds — (fpao + 4yf03A2)f H,(s,z)ds. (4.11.27)
0

0

In view of equations (4.11.10), (4.11.20), (4.11.22) and (4.11.25), we get the solution of
the Eqg. (4.11.5) as follows
u(t,x, Q) = cg — 1245 f2YF(Q)?, (4.11.28)

where C is calculated based on Eq.(4.11.27) and F () is all solutions of the Jacobian
elliptic function fulfilled for Eq. (4.11.8). Let h(t) be integrable function on
R_ and b;(i = 1,2) be arbitrary constants and

H,(t) = b,W(t), H,(t) = h(t) + b,W(t). (4.11.29)

In Eqg. (4.11.29), Gaussian white noise and Brown motion are denoted by W (t) and B(t),
respectively. Also from the stochastic analysis, we have W (t) = B(t). Through Eq.
(4.11.23), we have

Hy(t) = bW (¢),
Hy(t) = h(t) + bW (1),
Hy(t) = y(h(t) + b,W (D). (4.11.30)

Using the Hermite transformations for Egs. (4.11.29) and ( 4.11.30) , respectively, we
obtain
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H~1(t, Z) = b1W(t, Z)’
H,(t,z) = h(t) + b,W(t, 2),
M (t,2) =y (h(®) + bW (t, 2)), (4.11.31)

where W(t,z) = X5, fotnk(s)dszk. Through Eqs.(4.11.28) and (4.11.27), we can find
the general formal
U(t,x) = cg — 1245 f2yF* (D), (4.11.32)

where F(Q) is all solutions of the Jacobian elliptic function fulfilled for Eq.( 4.11.8) and

_ t t
= fox—fo ] Hy(s)ds — (fyao + 4vf3 ;) f Hy(s)ds
0 0

= fox — fob1B(t) — (foay + 4Yf3A,) (sz(t) + f h(s)ds). (4.11.33)
0

In view of exp®(B(t)) = exp (B(t) — %tz) (see (Holden et al., 1996), Lemma 2.6.16). By

means of Eqs.(4.11.33), (4.11.32), (4.11.30) and (4.11.31) we obtain
U(t,x) = ¢y — 1243 f2YF%(0), (4.11.34)

where
§=fox = fo [ b 8B = Goao + 4432 [ (h(s)ds + b,88(5))
0 0
— 1 2 3 1 2 ¢
= fox — foby (B(t) -5t ) ~(foap + 4yf2A,) <b2 (B(t) -5t ) + jo h(s)ds) (4.11.35)

Also, it must be noted that we used the following relation in Eq.(4.11.35)

]lll(t) o W(t)dt = j‘P(t)SB(t), Y(t) € L?(R), (4.11.36)
R R

where the stochastic integral [(.)8B(s) is the Skorohod integral. Using the values of
A,, A3, F(Q) from Table 3.3 in Egs. (4.11.35) and (4.11.34), we obtain a series of solutions
of Jacobian elliptic function of Eq. (4.11.1).
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In view of case 1. as an example, we obtain
Uy (t,x) = ¢y — 12m2fZysn?(Q), (4.11.37)

where

1 1 t
(= fix — foby (B(t) - Et2> — (foao + 4Yf2(1 +m?)) (bz <B(t) - Etz) + f h(s)ds) (4.11.38)
0

Also, we know that sn(0) - tanh(0) when m — 1. Therefore, we can find a stochastic
soliton-like solution for Eq. (4.11.1) in the following form:
U; (t,x) = ¢y — 12fFytanh?(Q), (4.11.39)

where

1 1 t
(= fox — foby (B(t) - Et2> = (foao + 8Yf3) (bz (B(t) — Etz) + f h(s)ds> (4.11.40)
0

Graphs of some solutions for particular values of parameters cy, fo, b1, b2, ap, y and

different values of, B(t), h(s) are visualized below.

Figure 4.56. Graph of solution (4.11.39 ) forcy = fo =b; =b, =ay, =y =1,B(t) =0,h(s) = s

u I w*
( B 3 3

Figure 4.57. Graph of solution (4.11.39) forc, = f, = b; = b, = ay, = y = 1, B(t) = e™%¢*t h(s) = s?
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Figure 4.58. Graph of solution (4.11.39) forcy = fy =b; = b, =a, =y =1, B(t) = 0, h(s) = sin(s)

Figure 4.59. Graph of solution (4.11.39) for ¢, = f = by = b, = ay = y = 1, B(t) = e™0ise*t h(s) = sin(s)

In view of case 3. We have
Us(t,x) = ¢ + 12m2fZycn?(Q), (4.11.41)

where
1 1 t
U= fox — fob; (B(t) - Etz) — (foao — 4vfé(1 — 2m?)) (bz (B(t) - Et2> + j h(s)ds) (4.11.42)
0

Also, we known that cn(¢) — sech(¢) when m — 1. So if that we can find a stochastic

soliton-like solution for Equation (4.11.1) in the following form:
U;(t,x) = co + 12f¢y Sech?(Q), (4.11.43)
with

1 1 t
U= fox — foby (B(t) - Et2> — (foap + 4yf3) (bz (B(t) - Etz) + f h(s)ds) (4.11.44)
0
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Graphs of some solutions for particular values of parameters cy, fo, b1, b2, ay, Yy and

different values of, B(t), h(s) are visualized below.

' "

28

Figure 4.61. Graph of solution (4.11.43)forc, = fy, = b, = b, = a, =y = 1, B(t) = e™¢*t h(s) = s
In view of case 14. we obtain

Up4(t, x) = co — 3m?f@y(sn(Q) + icn(())z, (4.11.45)
where

1 1 t
U= fox — foby (B(t) - §t2> — (foao — 2vf¢(m? - 2)) (bz (B(t) - Etz) + j h(s)ds). (4.11.46)
0

Also, we known that sn(7) — tanh() and cn({) - sech({) whenm — 1. So, if that we

can find a stochastic soliton-like solution for Equation (4.11.1) in the following form:
Ui, (t,x) = ¢y — 3fEy(tanh ({) + iSech ({))?, (4.11.47)
with

1 1 t
¢ = fox = fobr (B = 52) = (oto +¥/3) (bz (B -3¢2)+ f h(s)ds>, (4.11.48)
0
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Graphs of some solutions for particular values of parameters cy, fo, b1, b2, ag, y and

different values of, B(t), h(s) are visualized below.

141 LTy

) 3 E B 3

Figure 4.62. Graph of solution (4.11.47) forcy = fo = b, = b, =a, =y =1, B(t) = 0, h(s) = s2,
Im[U7,(x, )]
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Figure 4.63. Graph of solution (4.11.47) forco = fy = b; = b, = ay =y = 1, B(t) = e™"¢*t h(s) =
s2, Im[U;,(x, t)]

Rellhy] RefUyy’]

Figure 4.64. Graph of solution (4.11.47) forcy = fo = b, = b, =a, =y =1, B(t) = 0, h(s) = s2,
Re[Uf,(x, t)]

) =] 1 3



110

Relliy
I

1 2 H

T

Figure 4.65. Graph of solution (4.11.47) forcy = fy, = b; = b, = a, =y = 1, B(t) = e™¥¢*t h(s) =
s%, Re[U7,4(x, )]

LTy

Figure 4.66. Graph of solution (4.11.47) forc, = fy = b, = b, =a, =y =1, B(t) = 0, h(s) = sin(s),
Im[U;,(x, )]
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Figure 4.67. Graph of solution (4.11.47) forcy = fo =b; = b, = ag =y =1, B(t) = sin(noise * t), h(s) =
sin(s), Im[Uf,(x, t)]
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Figure 4.68. Graph of solution (4.11.47) forc, = fy = b, = b, =ay =y =1, B(t) = 0, h(s) = sin(s),
Re[Uf,(x, t)]
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Figure 4.69. Graph of solution (4.11.47) forcy = fy = b; = b, = ay =y =1, B(t) = sin(noise * t),
h(s) = sin(s), Re[Uj,(x, t)]

In view of case 22. we derive

Uy (t,x) = ¢o + 3fZy(men(Q) + dn(())z, (4.11.49)
where

1 1 t
8= fox = foby (B = 5¢7) = (foao + 24f3 (1 + m?) <b2 (B2 -5¢) +f h(s)ds). (4.11.50)
0

Also, we known that dn () — sech(Q) and cn(q) — sech(Q). So, if that we can find a

stochastic soliton-like solution for Equation (4.11.1) in the following form.
U3, (t,x) = co + 3f2y(Sech(Q) + Sech(D)’, (4.11.51)
with

1 1 t
{ = fox — foby (B(t) - §t2> = (foao + 4Yf) (bz (B(t) — §t2> + f h(s)ds> (4.11.52)
0

Graphs of some solutions for particular values of parameters cy, fo, b1, b2, ag, Yy and

different values of, B(t), h(s) are visualized below.

_Un® Up®
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Figure 4.70. Graph of solution (4.11.51) forcy = fy =b; = b, =a, =y =1, B(t) = 0, h(s) = sin(s)

Figure 4.71. Graph of solution (4.11.51) forcy = fy = b; = b, = ay, =y = 1, B(t) = e™¥¢*t h(s) =
sin(s)

By the following properties of the Jacobian elliptic function

Tlrgn)1 sn (¢) = tanh(Q), Tlr{_n)nl cn (Q) = sech(Q), Tlr{Lnl dn (0) = sech(Q) (4.11.53)

Tlrgn)1 ns (0) = coth(Q), Tlr{_n)nl ¢s (Q) = csch(Q), Tlr{_rpl ds (0) = cech(Q) (4.11.54)

o B
sd(Q) = anQ’ cd(Q) = @)’ nd(Q) = n® (4.11.55)
d
se() = %,de(() - % ne(© = o (4.11.56)

The solutions of the hyperbolic function corresponding to Eq. (4.11.1) We can derive it

simply from solutions of the Jacobian elliptical function not mentioned here



5. DISCUSSION AND CONCLUSION

In this thesis, we investigated the effect of noise on the solutions of stochastic
evolution equations. For this purpose, several types of evolution equations have been treated,
and two different analytical methods were employed. Solutions of stochastic KdV-Burgers,
stochatic KdV, stochastic Burgers, stochastic Kuramoto-Sivashinsky and stochastic
Kawahara equation are obtained by means of Galilean transformation and tanh, extended
tanh methods. Solutions of a stochastic Wick-type extended-KdV equation are found by
Hermite transform and by means of Jacobi elliptic functions.

As soon as we are aware, the stochastic KdV-Burgers equation has not been dealed

analyticaly before. The solitary wave solution obtained for KdV-Burgers equation

3B?
us(x, t) = ~5tR (1 + tanh(—¢))(tanh(—¢§) — 3)

2

=5cR (1 —tanh¢)(3 —tanh¢), (5.1)

can also be written in the following form:
F(Y) = 3B° A-MQAQ+m+ 05" a1-m
~ 25R 25R
3B ,,  6B”
= ﬁsech &+ SER (1 —tanh$), (5.2)

2 2
where M = tanh [x— Bz(it)], and & =x— & (gt). It represents a
10R4= \25R 10R2 \25R

particular combination of a solitary wave [first term on the r.h.s. of (5.2)] with a shock-wave
(second term) due to the presence of —BUyy in Eq. (4.1.1). One can see from the graphs that
for the deterministic cases, i.e. for W(T) = 0, (for example Figure 4.1 , Figure 4.5), the
graphs are smooth which shows that the wave-form does not change. But for the stochastic
cases (i.e. when W(T) # 0, ), the impact of the noise can be seen clearly from the graphs
(for example Figure 4.2, Figure 4.3, Figure 4.6 and Figure 4.12 ) which indicates that wave-
form changes under the effect of an external noise.

We also investigated the analytical solutions of stochastic Kuramoto-Sivashinsky and
Kawahara equations by transforming them into the deterministic counterparts by using

Galilean transformation. Afterward, we used the tanh-function method for obtaining the
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soliton solutions of the deterministic counterpart of the stochastic ones. We also obtained
periodic solutions for stochastic Kawahara equation. We visualize some of their solutions
with and without noise to compare the effect of the noise. One can see from the graphs that
different noise functions changes the wave-form during the propagation of the solitons.

The analytical solutions of a Wick type stochastic extended KdV equation arising in
the modeling of the flow of blood in the arteries are studied by means of Hermite transform
and F-expansion method.

The Galilean and Hermite transformations are very useful tools in finding
deterministic equivalents of stochastic equations, and they may be used to convert some other
stochastic evolution equations arising in different fields such as physics, finance into their
deterministic counterparts.

If we add a singular perturbation to the previously studied equations in this work, we
will obtain stochastic singularly perturbed equations, so that in this case the nonlinear
analytical methods do not give solutions and therefore we need numerical methods to find
solutions to these equations, for example as the finite difference methods for more details see
(Sakar et al., 2019) .



REFERENCES

Abdel-All, N. H., Abdel-Razek, M. A.-A., Seddeek, A.-A. K. 2011. Expanding the tanh-
function method for solving nonlinear equations. Applied Mathematics: 02(09): 1096—
1104.

Abdou, M. A. 2007. The extended F-expansion method and its application for a class of
nonlinear evolution equations. Chaos, Solitons and Fractals: 31(1): 95-104.

Ablowitz, M. A., Clarkson, P. A. 1991. Solitons, nonlinear evolution equations and inverse
scattering. In Solitons, Nonlinear Evolution Equations and Inverse Scattering.
Cambridge University Press.

Adams, R. A., Fournier, J. J. 2003. Sobolev Spaces (Second edition). Academic Press.

Adem, A. R., Khalique, C. M. 2012. On the solutions and conservation laws of a coupled
KdV system. Applied Mathematics and Computation: 219(3): 959-969.

Agarwal, P., Hyder, A. A., Zakarya, M. 2020. Well-posedness of stochastic modified
Kawahara equation. Advances in Difference Equations: 18(1).

Bakartas, I., Antar, N. 2003. Evolution equations for nonlinear waves in a tapered elastic tube
filled with a viscous fluid. International Journal of Engineering Science: 41(11):
1163-1176.

Bakartas, 1., Demiray, H. 2005. Weakly non-linear waves in a tapered elastic tube filled with
an inviscid fluid. International Journal of Non-Linear Mechanics: 40(6): 785-793.

Benia, Y., Sadallah, B.-K. 2016. Existence of solutions to Burgers equations in domains that
can be transformed into rectangles. Electronic Journal of Differential Equations:
2016(157): 1-13.

Biswas, A. 2009. Solitary wave solution for the generalized Kawahara equation. Applied
Mathematics Letters: 22(2): 208-210.

Bona, J. L., Smith, R. 1975. The initial-boundary value problem for the Korteweg-de Vries
equation. Philosophical Transactions of the Royal Society of London. Series A.
Mathematical and Physical Sciences: 278(1287): 555-604.

Burgers, J. M. 1974. The Nonlinear Diffusion Equation. Springer Netherlands.

Burgers, J. M. 1995. Mathematical Examples Illustrating Relations Occurring in the
Theory of Turbulent Fluid Motion. In Selected Papers of J. M. Burgers. Springer
Netherlands.

Céceres, M. 0. 2017. Non-equilibrium Statistical Physics with Application to Disordered
Systems. Springer International Publishing.

Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Reviews of Modern
Physics: 15(1): 1-89.

Chen, B., Xie, Y. 2005. Exact solutions for generalized stochastic Wick-type KdV-mKdV
equations. Chaos, Solitons & Fractals: 23(1): 281-287.

Chen, Y., Wang, Q. 2005. Extended Jacobi elliptic function rational expansion method and
abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive
long wave equation. Chaos, Solitons & Fractals: 24(3): 745-757.

Conte, R. 2003. Exact Solutions of Nonlinear Partial Differential Equations by Singularity
Analysis.Chap.1. Direct and Inverse Methods in Nonlinear Evolution Equations.
Springer, Berlin, Heidelberg.



116

Cuerno, R., Makse, H. A., Tomassone, S., Harrington, S. T., Stanley, H. E. 1995. Stochastic
model for surface erosion via ion sputtering: Dynamical evolution from ripple
morphology to rough morphology. Physical Review Letters: 75(24): 4464—4467.

Da Prato, Giuseppe, Gatarek, D. 1995. Stochastic burgers equation with correlated noise.
Stochastics and Stochastic Reports: 52(1-2): 29-41.

Da Prato, Guiseppe, Debussche, A., Temam, R. 1994. Stochastic Burgers’ equation.
Nonlinear Differential Equations and Applications NoDEA: 1(4): 389-402.

Da Prato, Guiseppe, Zabczyk, J. 2014. Stochastic Equations in Infinite Dimension (Second
edition). Cambridge University Press.

de Bouard, A., Debussche, A. 1998. On the stochastic Korteweg—de Vries equation. Journal
of Functional Analysis: 154(1): 215-251.

de Bouard, A., Debussche, A., Tsutsumi, Y. 1999. White noise driven Korteweg—de Vries
equation. Journal of Functional Analysis: 169(2): 532-558.

Debussche, A., Printems, J. 1999. Numerical simulation of the stochastic Korteweg—de Vries
equation. Physica D: Nonlinear Phenomena: 134(2): 200-226.

Duan, J., Ervin, V. J. 2001. On the stochastic Kuramoto — Sivashinsky equation. Nonlinear
Analysis: 44: 205-216.

Fan, E. 2000. Extended tanh-function method and its applications to nonlinear equations.
Physics Letters A: 277(4-5): 212-218.

Ferrario, B. 2008. Invariant measures for a stochastic Kuramoto-Sivashinsky equation.
Stochastic Analysis and Applications: 26(2): 379-407.

Fu, Y., Liu, Z. 2011. Existence of travelling wavefronts of the KdV-Burgers equation.
Applied Mathematics Letters: 24(6): 897-900.

Gao, P., Cai, C., Liu, X. 2018. Numerical simulation of stochastic Kuramoto-Sivashinsky
equation. Journal of Applied Mathematics and Physics: 06(11): 2363-2369.

Ginibre, J., Tsutsumi, Y., Velo, G. 1990. Existence and uniqueness of solutions for the
generalized Korteweg de Vries equation. Mathematische Zeitschrift: 203(1): 9-36.

Grimmet, G. R., Stirzaker, D. R. 2020. Probability and Random Processes. Oxford
university press.

He, J.-H., Wu, X.-H. 2006. Exp-function method for nonlinear wave equations. Chaos,
Solitons & Fractals: 30(3): 700-708.

Herman, R. L. 1990. The stochastic, damped KdV equation. Journal of Physics A:
Mathematical and General: 23(7): 1063-1084.

Hirota, R. 1971. Exact solution of the Korteweg—de Vries equation for multiple collisions
of solitons. Physical Review Letters: 27(18): 1192-1194.

Holden, H., @ksendal, B., Ubge, J., Tusheng, Z. 2010. Stochastic Partial Differential
Equations_ A Modeling, White Noise Functional Approach (R. Axle & K. A. Ribet
(eds.); Second). Springer.

Holden, H., @ksendal, B., Ubge, J., Zhang, T. 1996. Stochastic Partial Differential
Equations. Birkhduser Boston.

Holden, H., @ksendal, B., Ubge, J., Zhang, T. 2010. Stochastic Partial Differential
Equations. Springer New York.

Huibin, L., Kelin, W. 1990. Exact solutions for two non-linear equations. Journal of Physics
A: Mathematical and General: 23: 3923-3928.

Hyder, A.-A., Zakarya, M. 2019. The well-posedness of stochastic Kawahara equation: fixed



117

point argument and Fourier restriction method. Journal of the Egyptian Mathematical
Society: 27(1): 1-10.

lizuka, T. 1993. Anomalous diffusion of solitons in random systems. Physics Letters A: 181:
39-42.

Kabakouala, A., Molinet, L. 2018. On the stability of the solitary waves to the (generalized)
Kawahara equation. Journal of Mathematical Analysis and Applications: 457(1): 478-
497.

Karczewska, A., Szczecinski, M. 2019. Stochastic extended Korteweg-De Vries equation.
Journal of Mathematical Sciences and Modelling: 74-81.

Karpman, V. I. 1975. Non-Linear Waves in Dispersive Media. Elsevier.

Kato, T. 1979. On the Korteweg-de Vries equation. Manuscripta Mathematica: 28(1-3):
89-99.

Kawabhara, T. 1972. Oscillatory solitary waves in dispersive media. Journal of the Physical
Society of Japan: 33(1): 260-264.

Kenig, C. E., Ponce, G., Vega, L. 1991. Well-posedness of the initial value problem for the
Korteweg-deVries equation. Journal of the American Mathematical Society: 4(2):
323.

Konotop, V. V, Vazquez, L. 1994. Nonlinear Random Waves. World Scientific.

Koralov, L. B., Sinai, Y. G. 2007. Theory of probability and random processes. Springer.

Kudryashov, N.A. 1991. On types of nonlinear nonintegrable equations with exact solutions.
Physics Letters A: 155(4-5): 269-275.

Kudryashov, N A. 1990. Exact solutions of the generalized Kuramoto-Sivashinsky equation.
Physics Letters A: 147(5-6): 287-291.

Kudryashov, Nikolay A. 2013. Quasi-exact solutions of the dissipative Kuramoto-
Sivashinsky equation. Applied Mathematics and Computation: 219(17): 9213-9218.

Kudryashov, Nikolay A. 2013. Quasi-exact solutions of the dissipative Kuramoto-
Sivashinsky equation. Applied Mathematics and Computation: 219(17): 9213-9218.

Kuramoto, Y., Tsuzuki, T. 1975. On the formation of dissipative structures in reaction-
diffusion systems. Progress of Theoretical Physics: 54(3).

Kwak, C. 2020. Well-posedness issues on the periodic modified Kawahara equation.
Annales de Institut Henri Poincare (C) Analyse Non Lineaire: 37(2): 373-416.
Lindstrgm, T., @ksendal, B., Ubge, J. 1991. Wick multiplication and 1t6-Skorohod stochastic

differential equations. Preprint Series: Pure Mathematics.

Liu, S., Fu, Z., Liu, S., Zhao, Q. 2001. Jacobi elliptic function expansion method and periodic
wave solutions of nonlinear wave equations. Physics Letters A: 289(1-2): 69-74.

Lu, B. 2012. Backlund transformation of fractional Riccati equation and its applications to
nonlinear fractional partial differential equations. Physics Letters A: 376(28-29): 2045—
2048.

Malfliet, W. 1992. Solitary wave solutions of nonlinear wave equations. American Journal
of Physics: 60(7): 650-654.

Malfliet, W. 2004. The tanh method: A tool for solving certain classes of nonlinear evolution
and wave equations. Journal of Computational and Applied Mathematics: 164-165:
529-541.

Mancas, S. C. 2019. Traveling wave solutions to Kawahara and related equations.
Differential Equations and Dynamical Systems: 27(1-3): 19-37.



118

Mao, X. 2007. Stochastic Differential Equations and Applications. Elsevier.

Mohyud-Din, S. T., Noor, M. A., Noor, K. I. 2010. Exp-function method for traveling wave
solutions of modified Zakharov—Kuznetsov equation. Journal of King Saud University
- Science: 22(4): 213-216.

Naher, H., Abdullah, F. A., Akbar, M. A. 2011. The Exp-function method for new exact
solutions of the nonlinear partial differential equations. International Journal of
Physical Sciences: 6(29): 6706-6716.

Naher, H., Abdullah, F. A., Akbar, M. A. 2012. New traveling wave solutions of the higher
dimensional nonlinear partial differential equation by the exp-function method. Journal
of Applied Mathematics: 2012: 1-14.

@ksendal, B. 2003. Stochastic Differential Equations. Springer Berlin Heidelberg.

Printems, J. 1999. The Stochastic Korteweg—de Vries equation in L2(R). Journal of
Differential Equations: 153(2): 338-373.

Richards, G. 2014. Well-posedness of the stochastic KdV-Burgers equation. Stochastic
Processes and Their Applications: 124(4): 1627-1647.

Sajjadian, M. 2014. The shock profile wave propagation of Kuramoto-Sivashinsky equation
and solitonic solutions of generalized Kuramoto-Sivashinsky equation. Acta
Universitatis Apulensis: 38: 163-176.

Sakar, M. G., Saldir, O., Erdogan, F. 2019. A hybrid method for singularly perturbed
convection—diffusion equation. International Journal of Applied and Computational
Mathematics: 5(5): 135.

Salas, A. H., Gémez S., C. A. 2010. Application of the cole-hopf transformation for finding
exact solutions to several forms of the seventh-order KdV equation. Mathematical
Problems in Engineering: 2010: 1-14.

Sarkka, S. 2012. Applied Stochastic Differential Equations. In Lce.Hut.Fi.

Shi, Y., Dai, Z., Han, S., Huang, L. 2010. The multi-wave method for nonlinear evolution
equations. Mathematical and Computational Applications: 15(5): 776-783.

Singh, M., Gupta, R. K. 2016. Backlund transformations, Lax system, conservation laws and
multisoliton  solutions for Jimbo-Miwa equation with  Bell-polynomials.
Communications in Nonlinear Science and Numerical Simulation: 37: 362—373.

Sivashinsky, G. I. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames—
I. derivation of basic equations. Acta Astronautica: 4(11-12): 1177-1206.

Soliman, A. A., Abdo, H. A. 2012. New exact solutions of nonlinear variants of the RLW,
the PHI-four and Boussinesq equations based on modified extended direct algebraic
method. International Journal of Nonlinear Science: 7(3): 274-282.

Steele, J. M. 2001. Stochastic Calculus and Financial Applications. Springer New York.

Wadati, M. 1983. Stochastic Korteweg-de Vries Equation. Journal of the Physical Society
of Japan: 52(8): 2642-2648.

Wadati, M., Akutsu, Y. 1984. Stochastic KdV equation with and without damping. Journal
of the Physical Society of Japan: 53(10): 3342—-3350.

Wang, M., Li, X. 2005. Applications of F-expansion to periodic wave solutions for a new
Hamiltonian amplitude equation. Chaos, Solitons & Fractals: 24(5): 1257-1268.
Wang, M., Li, X., Zhang, J. 2008. The ()-expansion method and travelling wave solutions of
nonlinear evolution equations in mathematical physics. Physics Letters A: 372(4): 417—

423.



119

Wang, M., Zhou, Y., Li, Z. 1996. Application of a homogeneous balance method to exact
solutions of nonlinear equations in mathematical physics. Physics Letters A: 216(1-5):
67-75.

Wazwaz, A.-M. 2003. Compacton solutions of the Kawahara-type nonlinear dispersive
equation. Applied Mathematics and Computation: 145(1): 133-150.

Wazwaz, A.-M. 2007. The tanh—coth method for solitons and kink solutions for nonlinear
parabolic equations. Applied Mathematics and Computation: 188(2): 1467-1475.
Wei, C.-M., Xia, Z.-Q., Tian, N.-S. 2005. Jacobian elliptic function expansion solutions of

nonlinear stochastic equations. Chaos, Solitons & Fractals: 26(2): 551-558.

Weiss, J., Tabor, M., Carnevale, G. 1983. The Painlevé property for partial differential
equations. Journal of Mathematical Physics: 24(3): 522-526.

Wick, G. C. 1950. The Evaluation of the Collision Matrix. Physical Review: 80(2): 268-272.

Wu, W., Cui, S. bin, Duan, J. giao. 2018. Global well-posedness of the stochastic generalized
kuramoto-sivashinsky equation with multiplicative noise. Acta Mathematicae
Applicatae Sinica: 34(3): 566-584.

Xie, Y. 2003. Exact solutions for stochastic KdV equations. Physics Letters A: 310(2-3):
161-167.

Yan, J. 2011. Soliton resonances of the nonisospectral modified kadomtsev-petviashvili
equation. Applied Mathematics: 02(06): 685—693.

Yan, Z. 2003. Abundant families of Jacobi elliptic function solutions of the (2+1)-
dimensional integrable Davey—Stewartson-type equation via a new method. Chaos,
Solitons & Fractals: 18(2): 299-309.

Yan, Z., Zhang, H. 2001. New explicit solitary wave solutions and periodic wave solutions
for Whitham—Broer—Kaup equation in shallow water. Physics Letters A: 285(5-6):
355-362.

Yang, D. 2006. Random attractors for the stochastic Kuramoto-Sivashinsky equation.
Stochastic Analysis and Applications: 24: 1285-1303.

Yokus, A., Durur, H. 2019. Complex hyperbolic traveling wave solutions of Kuramoto-
Sivashinsky equation using (1/G”) expansion method for nonlinear dynamic theory.
Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi: 21(2): 590-599.

Yokus, A., Kaya, D. 2017. Numerical and exact solutions for time fractional Burgers’
equation. The Journal of Nonlinear Sciences and Applications: 10(07): 3419-3428.

Zabusky, N. J., Kruskal, M. D. 1965. Interaction of “solitons” in a collisionless plasma and
the recurrence of initial states. Physical Review Letters: 15(6): 240-243.

Zhang, S. L., Wu, B., Lou, S. Y. 2002. Painlevé analysis and special solutions of generalized
Broer—Kaup equations. Physics Letters A: 300(1): 40-48.

Zhang, S., Tong, J. L., Wang, W. 2008. A generalized (frac(G’, G))-expansion method for
the mKdV equation with variable coefficients. Physics Letters, Section A: General,
Atomic and Solid State Physics: 372(13): 2254-2257.

Zhou, Y., Wang, M., Wang, Y. 2003. Periodic wave solutions to a coupled KdV equations
with variable coefficients. Physics Letters A: 308(1): 31-36.



120



EXTENDED TURKISH SUMMARY

0z

Dogrusal olmayan evoliisyon denklemler, t zaman degiskenini bir bagimsiz degisken
olarak iceren ve sadece matematigin birgok alaninda degil fizik, mekanik ve materyal bilimi
gibi diger bilim dallarinda da ortaya ¢ikan kismi diferansiyel denklemlerdir. Navier-Stokes
ve Euler denklemleri akiskanlar mekaniginde, reaksiyon-difiizyon denklemleri 1s1
transferlerinde ve biyolojik bilimlerde, Klein-Gordon ve Schrodinger denklemleri kuantum
mekaniginde, Cahn-Hilliard denklemi ise materyal biliminde ortaya ¢ikan lineer olmayan
evolisyon denklemlerinden sadece birkagidir. Deterministik modeller genellikle birgok
kiigiik pertiirbasyonun etkisini ihmal ettiginden stokastik denklemler olaylara daha iyi uyum
saglamaktadir. Ornegin, s1g sularin yiizeyindeki dalgalar modellenirken, sivi yiizeyini
etkileyen sabit olmayan bir basing veya tabakanin tabaninin diiz olmadigi durumda gergekei
bir model olusturulabilmesi i¢in bu etkileri i¢eren stokastik bir terimin denkleme eklenmesi
denklemi daha anlamli kilacaktir. Bu tezde bu terimlerin, yani gurltunin bazi evoliisyon
denklemlerinin ¢oziimleri izerindeki etkisi arastirildi. Dogrusal olmayan stokastik evoliisyon
denklemler fizik, kimya, biyoloji, ekonomi ve finans alanlarinda cesitli acilardan genis bir
uygulama alanina sahiptir. Dogrusal olmayan evoliisyon denklemlerin tam ¢6ztimlerinin
bulunmasi, denklemlerin modelledigi fiziksel veya mekaniksel problemler agisindan oldugu
kadar, kullanilan niimerik yontemlerin dogrulugunun test edilmesi agisindan da oldukga

onemlidir. Bu 0nem stokastik evolusyon denklemler icin de gegerlidir.

Anahtar kelimeler: Stochastic evoliisyon denklemler, KdV-Tipli denklemler,

Hermite doniistimii, Galilean doniistimii, Jacobi eliptik fonksiyonlar.
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1. MATERYAL VE YONTEM

Tam ¢6ziimlerin bulunmas igin birgok yontem gelistirilmistir. Bu ¢alismada, bu
yontemlerden tanh, extended tanh ve F-a¢ilim metotlar1 kullanilmistir. Bu ydntemlerin
kullanilabilmesi i¢in, ¢alisilan stokastik denklemlerin deterministik karsiliklarini elde etmek
amactyla Hermite doniisiimii ve Galilean doniisiimii kullanildi ve daha sonra yukarida
bahsedilen yontemlerle ¢coziimler elde edildi. Bu tez yedi béliimden olusmaktadir. Ilk béliim
giris niteliginde olup, stokastik diferansiyel denklemlere neden ihtiya¢ duyuldugu bir 6rnekle
anlatilmistir. Tkinci béliim ¢alisilan denklemlerle ilgili literatiirde yapilmis ¢alismalar1 ve
elde edilen sonuglardan bazilarimi igermektedir. Ugiincii béliim, tezi daha anlagilir olmasi i¢in
gerekli tanim, teorem ve kavramlari icermekte, dordiincii boliim ise kullanilan yontem-leri
detayli olarak anlatmaktadir. Tezin besinci bolimiinde, Galilean doniisiimii ve tanh,
genisletilmis tanh yontemleri kullanilarak stokastik KdV-Burgers, stokastik KdV, stokastik
Burgers, stokastik Kuramoto- Sivashinsky ve stokastik Kawahara denklemlerinin analitik
coziimleri elde edilmistir. Tezin altinci bolimiinde, stokastik Wick-tipi genisletilmis KdV
denkleminin ¢oziimleri Hermite doniisiimii ve Jacobi eliptik fonksi-yonlar1 kullanilarak
bulunmustur. Tezin yedinci ve son boliimiinde ise elde edilen sonuglar 6zetlenmis ve
gelecekte yapilabilecek ¢alismalar anlatilmistir. GUrdltiinin etkisinin daha iyi gortlebilmesi

icin baz1 ¢oziimlerin grafiklerine yer verilmistir.

2. BULGULAR VE TARTISMA

Besinci boliimiin ilk problemi stochastic KdV-Burgers denklemi
U; + UUy — BUyxx + RUxxx = n(T), (7.1)
¢oziimlerinin bulunmasidir. Burada n(T) terimi dis giriltiyii temsil etmektedir. Bu
denklemin deterministik karsiligin1 bulmak icin asagidaki Galilean doniistimii kullanilmistir:

UX, T) =ulx,t) + W(T),x=X+m(t),t =T, (7.2)

T T
m(T):—f W(TdT’, wm:f n(TdT'. (7.3)
0 0

Bu doniisiim sonrasinda (7.3) denklemi

Up + Uy — Buyy + Ry, = 0, (7.4)
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denklemine doniisiir. Bu denklem igin iki farkli durum incelenmistir:
1. Denklem
d™"V(z)
%

+ ik vV 0, ,
z—> to iken V(z)- I

(n=12..), (7.5)

siir kosullartyla beraber ¢aligilmis,

2. Denklem herhangi bir sinir kosulu olmadan ¢alisilmistir.

Birinci durum igin elde edilen ¢oztimlerden biri

U,(X,T) = _:ZSSLR (1 + tanh[¢, (X, T)])? + W(T), (7.6)
digeri ise,
3B?
Us;(X,T) = ~5tR (1 + tanh[¢, (X, T)])(tanh[¢, (X, T)] — 3) + W(T), (7.7)

B (6B? T , ,
formundadir. Burada ¢,(X,T) = w_R(ﬁT +X - fo w(T"HdT )] ve ¢, (X, T) =

[ B (ﬁ'r —X+ fOTW(T’)d T’)] dir. (7.7) ¢6ziimii ayn1 zamanda

10R? \25R
332 6BZ
F(Y) = o2z (1= M)A+ M) + o= (1= M) + W(T)
332 2 632
= S 5ech? [, (X, T)] + - (1 — tanh[¢, (X, T)]) + W (T), (7.8)

formunda da yazilabilir. Burada M = tanh[¢, (X, T)] dir. (7.8) denklemine bakildiginda, sag
taraftaki ilk terim soliter dalgay, ikinci terim sok dalgasini, iglincii terim ise, dis gliriiltiiyii
temsil eder. Gurtiltii teriminin etkisinin daha 1yi goriilebilmesi i¢in ¢6ziim farkli fonksiyonlar

aliarak gorsellestirilmistir.

Figure 0.1. (7.6) ¢ozUmiuniin B = R = 1 ve W(T) = 0 alinarak elde edilen 3D, 2D ve kontur grafikleri.
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Figure 0.2. (7.6) ¢ozuminin B = R = 1 ve W(T) = sin[noise * T] alinarak elde edilen 3D, 2D ve kontur
grafikleri.

Yukaridaki grafiklerden goriildiigii gibi W(T) = 0 olmast durumunda dalga formu
diizgiin bir yapiya sahip, ancak W (T) = sin[noise * T] durumunda bu dizglnlik yerini
zigzagli, diizensiz bir yapiya birakmustir. ikinci durumda yani, herhangi bir smir kosulu

alinmadan elde edilen ¢6ziim
2

3B
UX,T)=a,— >R (1 — sech?[¢3(X,T)] — 2 tanh[¢p3(X, T)]) + W(T), (7.9)

10R 25R

formundadir. Burada 5 (X, T) = |—— <(£ - ao) T+X— [, W(Td T)l dir.

Extended tanh metodu ve sinir kosullar1 kullanilarak

2
UL (8, T) = 2 coth? [, (X, )] (tanh[g, (X, T)] + D@ tanhl (X, D] = D + WD), (7.10)
3B?
Uo(X,T) = = 50 coth®[¢5 (X, T)] (tanh[¢s (X, T)] + 1)* + W(T) (7.11)

- . - B (6B? T ' ,
cozlmleri elde edilir. Burada ¢, (X, T) = E(ET —-X+ fo w(T"HdT )] ve

¢5(X,T) = i

(£T+X— Jyw(T)dT")] dir. Bu giziimler dismda iki ayn
10R 0 . ¢ S y

25R

¢0ziim daha bulunmustur. Sinir kosullar1 kullanilmazsa

_ 6B% ) 1
UCKT) = g+ ooz (coth [be(X, T)] + 2 coth[¢e (X, T)] — E) +WT)  (712)

¢oztimi elde edilir. Burada ¢ (X, T) = l% <(a0 - %) T—X+ fOTW(T’)d T’)I dir.

Stokastik KdV denklemi
UX,T)=ulx,t)+ W), x=X+m(t),t=T, (7.13)
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m(T) = —f w(THdT', W(T) =J n(T")dT’ (7.14)
0 0

formundaki Galilean doniisiimii ile deterministik

U + UUy + RUyyry =0 (7.15)
denklemine doniisiir. Bu denklem i¢in sinir kosullar1 kullanilarak bir ¢dziim, sinir kosullari
kullanilmadan da bir ¢6ziim bulunmustur. Extended tanh metodu kullanilarak sinir kosullart
ile iki ¢6ziim, sinir kosullar1 olmadan bir ¢6ziim bulunmustur.

Burgers denklemi icin

UX,T)=ul,t)+ W(T),x=X+m(t),t=T, (7.16)

T T
m(T) = —f w(THdT', W(T) =f n(THdT, (7.17)
0 0

dontisiimii kullanilarak deterministik denklem elde edildikten sonra, sinir kosullariyla bir,
sinir kosulu olmadan bir ¢6ziim bulunmustur.

Besinci bolimdeki diger bir denklem Kuramoto-Sivashinsky denklemi

Ut+AUUX+BUXX+RUXXXX =n(T), (718)

dir. Bu denklem
UX,T)=ul,t)+ W(T),x=X+m(t),t=T, (7.19)
m(T) = —A [, W(T)dT', W(T)= [ n(T)dT’, (7.20)

dontigiimiiyle deterministik forma doniistliriilmiis ve sinir kosullar1 kullanilarak tanh
metoduyla 2 ¢dziim, extended tanh metoduyla da kullanilarak da 2 ¢6ziim elde edilmistir.
Kawahara denklemi i¢in sinir kosullar1 kullanilarak tanh metoduyla 8 ¢6ziim, extended tanh
igin ise 4 ¢dziim bulunmustur. Son boliim olan altinci boliimde Wick-tipli
Us+H(t) oUy + Hy(t) o U o Uy + H3(t) 0 Uy = 0, (7.21)
denklemi incelenmistir. Bu denkleme Hermite doniisiimii uygulanarak
U; + H(t,2)Uy + Hy(t, 2)UU, + H5(t, 2)Uprx = 0, (7.22)
denklemi elde edilir. F-a¢ilim metodu kullanilarak bu denklem igin
U(t,x) = co — 12A3f5yF*°({), (7.23)

¢6zima elde edilir.
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3. SONUC

Galilean ve Hermite doniisiimleri, stokastik denklemlerin deterministik esdegerlerini
bulmada ¢ok yararli araglardir ve fizik, finans gibi farkli alanlarda ortaya ¢ikan diger bazi
stokastik evolisyon denklemlerini deterministik esdegerlerine doniistirmek igin
kullanilabilirler. Bu tezde calisilan denklemlere singiiler bir pertiirbasyon eklenerek,
stokastik singler pertiirbe denklemler incelenebilir. Bu tlr denklemler icin ¢oziimlerin

incelenmesi sonlu farklar gibi sayisal yontemlerin kullanilmasini gerektirir.
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