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ABSTRACT 

 

ANALYSIS OF SOLUTIONS OF STOCHASTIC EVOLUTION EQUATIONS 

 

 

ALALOUSH, Mohanad 

Ph.D. Thesis Department of Statistics 

Supervisor: Assist. Prof. Hatice TAŞKESEN 

January 2021, 128 pages 

 

Nonlinear evolution equations are equations that contain the time variable t as an 

argument, appearing not only in many fields of mathematics but also in other branches of 

science such as physics, mechanics, and materials science. Since the deterministic evolution 

equations are insufficient in the modeling of physical phenomena, a term including the effect 

of uncertainty is usually added to the deterministic evolution equations. In this thesis, we 

investigate the effect of these terms, i.e. noise, on the solutions of some evolution equations. 

For this purpose, we use the Hermite transform and Galilean transform to obtain the 

stochastic equations deterministic counterparts and then use some analytical methods to 

obtain the solutions. The first chapter of the thesis includes a motivating example explaining 

why stochastic differential equations are needed. The second chapter summarizes the 

literature review. The third chapter contains the basic concepts, definitions, and preliminaries 

of the methods that are used in the thesis. In the fourth chapter, analytical solutions of 

stochastic KdV-Burgers, stochastic KdV, stochastic Burgers, stochastic Kuramoto-

Sivashinsky and stochastic Kawahara equations are obtained by using Galilean transform and 

tanh, extended tanh methods. Moreover, the solutions of a stochastic Wick-type extended 

KdV equation are found by using Hermite transform and Jacobi elliptic functions. The 

illustrations of some solutions are given to see the effect of noise apparently. 

 

Keywords: Galilean transform, Hermite transform, Jacobi elliptic functions, KdV-

Type equations, Stochastic evolution equations. 
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ÖZET 

 

STOKASTİK EVOLÜSYON DENKLEMLERİNİN ÇÖZÜMLERİNİN ANALİZİ 

 

 

ALALOUSH, Mohanad 

Doktora Tezi İstatistik Anabilim Dalı 

Tez Danışmanı: Assist. Prof. Hatice TAŞKESEN 

Ocak 2021, 128 pages 

 

Doğrusal olmayan evolüsyon denklemleri, sadece matematiğin birçok alanında değil, 

aynı zamanda fizik, mekanik ve malzeme bilimi gibi diğer bilim dallarında da ortaya çıkan, 

argüman olarak t zaman değişkenini içeren denklemlerdir. Fiziksel olayların 

modellenmesinde deterministik evolüsyon denklemleri yetersiz olduğundan, deterministik 

evolüsyon  denklemlerine genellikle belirsizliğin etkisini içeren bir terim eklenir.Bu tezde bu 

terimlerin, yani gürültünün bazı evolüsyon  denklemlerinin çözümleri üzerindeki etkisini 

araştırıldı. Bu amaçla, çalışılan stokastik denklemlerin deterministik karşılıklarını elde etmek 

için Hermite dönüşümü ve Galilean dönüşümü kullanıldı ve daha sonra bazı analitik 

yöntemlerle çözümler elde edildi. Tezin ilk bölümü, stokastik diferansiyel denklemlere neden 

ihtiyaç duyulduğunu açıklayan motive edici bir örnek içermektedir. İkinci bölüm literatür 

taramasını özetlemektedir. Üçüncü bölümü, tezde kullanılan kavramlar, tanımlar ve 

kullanılan yöntemlerle ilgili ön bilgileri, dördüncü bölümü ise, Galilean dönüşümü ve tanh, 

genişletilmiş tanh yöntemleri kullanılarak stokastik KdV-Burgers, stokastik KdV, stokastik 

Burgers, stokastik Kuramoto-Sivashinsky ve stokastik Kawahara denklemleri için elde 

edilmiş analitik çözümleri içermektedir. Ayrıca, stokastik Wick tipi bir genişletilmiş KdV 

denkleminin çözümleri Hermite dönüşümü ve Jacobi eliptik fonksiyonları kullanılarak 

bulunmuştur. Gürültünün etkisinin görülebilmesi için bazı çözümlerin grafiklerine de yer 

verilmiştir. 

 

Anahtar kelimeler: Stochastic evolüsyon denklemler, KdV-Tipli denklemler, 

Hermite dönüşümü, Galilean dönüşümü, Jacobi eliptik fonksiyonlar. 
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1. INTRODUCTION 

Nonlinear evolution equations are partial differential equations that contain the time 

variable 𝑡 as an independent variable and arise not only in many fields of mathematics but 

also in other disciplines such as physics, mechanics, and materials science. The Navier-

Stokes and Euler equations are just a few of the nonlinear evolution equations that arise in 

fluid mechanics, reaction-diffusion equations in heat transfer and biological sciences, Klein-

Gordon and Schrödinger equations in quantum mechanics, and Cahn-Hilliard equations in 

material science. Since the deterministic models ignore the effects of many small 

perturbations, stochastic equations adapt better to events. For example, in the modeling of 

waves on the surface of shallow water, an unstable pressure may affect the surface of fluid 

or the layer's bottom may not be flat, so, adding a stochastic term containing these effects 

creates a more realistic and meaningful model. One way to make these unrealistic 

deterministic models more meaningful is to take the average of some parameters, but this is 

not a satisfactory way. The following example given in (Holden, Øksendal, Ubøe, and Zhang, 

2010) may explain this situation very well. Assume that a porous and dry (heterogeneous and 

isotropic) rock is injected a fluid with the rate of injection 𝑓(𝑡, 𝑥) (at the point 𝑥 ∈ 𝑅𝟛 and at 

time 𝑡). Fluid flow on the surface of the rock can be defined mathematically as in the 

following way: 

Let us denote the saturation and pressure of the fluid by φ(𝑡, 𝑥) and 𝑝𝑡(𝑥), 

respectively, at (𝑡, 𝑥). Suppose that either we have full saturation φ0(𝑥) > 0 at time 𝑡, or the 

point 𝑥 is dry at time 𝑡, that is, φ(𝑡, 𝑥) = 0. Let the wet region at time 𝑡 be defined by Ω𝑡 

Ω𝑡 = {𝑥;  φ(𝑡, 𝑥) = φ0(𝑥)}. 

Then by combining the continuity equation and Darcy's law, which is describing the 

flow of a fluid on a porous medium, we conclude a moving boundary problem for the 

unknowns Ω𝑡 and 𝑝𝑡(𝑥)  

di v(𝑘(𝑥)∇𝑝𝑡(𝑥)) = −𝑓𝑡(𝑥); 𝑥 ∈ Ω𝑡

𝑝𝑡(𝑥) = 0; 𝑥 ∈ ∂Ω𝑡

𝜑0(𝑥) ⋅
𝑑

𝑑𝑡
(∂Ω𝑡) = −𝑘(𝑥)𝑁𝑇(𝑥)∇𝑝𝑡; 𝑥 ∈ ∂Ω𝑡,

(1.0.1)

where the gradients and divergence are taken with respect to 𝑥, the density and viscosity are 
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taken as 1, and 𝑁(𝑥) is the outer unit normal of ∂Ω𝑡 at 𝑥. We assume that the initial wet 

region Ω0 is known and that 𝑠𝑢𝑝𝑝𝑓𝑡 ⊂ Ω𝑡 for all 𝑡. In the third equation of (1.0.1), 𝑘(𝑥) ≥ 0 

denotes the permeability, i.e., the ability to allow fluids to pass through the rock at point 𝑥 

which is defined as the proportionality constant in Darcy's law 

𝑞𝑡(𝑥) = −𝑘(𝑥)∇𝑝𝑡(𝑥), 

where 𝑞𝑡(𝑥) is the flow velocity of the fluid. In a typical porous rock, 𝑘(𝑥) is 

fluctuating in an irregular, unpredictable way. Considering the difficulty of solving (1.0.1) 

for such a permeability function 𝑘(𝑥), one may be tempted to replace 𝑘(𝑥) by its 𝑥 -average 

�̅� (constant) and solve this system instead. This, however, turns out to give a solution that 

does not describe what actually happens! For example, if we let 𝑓𝑡(𝑥) = 𝛿0(𝑥) be a point 

source at the origin and choose Ω0 to be an open unit ball centered at 0, then it is easy to see 

(by symmetry) that the system (1.0.1) with 𝑘(𝑥) ≡ �̅� will give the solution {Ω𝑡}𝑡≥0 consisting 

of an increasing family of open balls centered at 0. 

Actual experiments with fluid flow in porous rocks show that such a solution is, in 

fact, a fractal. The following figures illustrates the averaged permeability constant, and the 

fractal nature of the fluid diffusion through a rock. 

 

Figure 1.1. A constant permeability �̅� leads to 

solutions consisting of expanding balls centered at 

the injection hole. 

 

Figure 1.2. A physical experiment showing the 

fractal nature of the wet region (dark area). 

 

We conclude from the above that it is necessary to take into account the fluctuations 

of 𝑘(𝑥) in order to get a good mathematical description of the flow. But how can we take 

these fluctuations into account when we do not know exactly what they are? 



3 

 

 

 

We propose the following: The lack of information about 𝑘(𝑥) makes it natural to 

represent 𝑘(𝑥) as a stochastic quantity. From a mathematical point of view, it is irrelevant if 

the uncertainty about 𝑘(𝑥) (or some other parameter) comes from "real" randomness 

(whatever that is) or just from our lack of information about a non-random, but complicated, 

quantity. If we accept this, then the right mathematical model for such situations would be 

partial differential equations involving stochastic or "noisy" parameters - stochastic partial 

differential equations (SPDEs) for short. The fundamental concepts of stochastic differential 

equations theory are 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑊𝑡(𝑡), the Ito integral ∫ 𝜙(𝑠, 𝜔)𝑑𝐵𝑠(𝜔)
𝑡

0
 and the 

Stratonovich integral ∫ 𝑓(𝑠, 𝜔)
𝑡

0
∘ 𝑑𝐵𝑠, where 𝐵𝑠 = 𝐵𝑠(𝜔),  𝑠 ≥ 0 is 𝑛 dimensional 

Brownian motion. Brownian motion was first noticed by Robert Brown in 1827, when he 

observed the presence of minute particles while examining the pollen grains of Clarkia 

pulchella suspended in water under a microscope. Since Brownian motion is not 

differentiable by definition, the integral state of SDE has been studied. The analytical solution 

of the SDE could not be found with normal analysis methods. Japanese mathematician 

Kiyoshi Itô made a great contribution to stochastic analysis by describing the "Itô lemma" in 

1951. Analytical solutions of many SDEs can be found with this lemma. Nonlinear stochastic 

equations of evolution contribute a wide area in applications from chemistry to biology, 

physics, economics, and finance. So, finding exact solutions to the equations of nonlinear 

evolution is very significant for testing the accuracy of the numerical methods used, as well 

as the physical or mechanical problems that the equation models represent. 
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2. LITERATURE REVIEW 

The lack of a specific method that can be used to reach exact solutions for all 

nonlinear equations has prompted researchers to develop many methods to find exact 

solutions to nonlinear equations of evolution, in which the search for solutions to study 

nonlinear physical phenomena plays a significant role.  

In recent years, researchers have developed many powerful methods and used in 

solving nonlinear evolution equations to obtain wave solutions. In the following we review 

some of these methods, to name but a few; Hirota’s bilinear transformation (Hirota, 1971; J. 

Yan, 2011), inverse scattering (Ablowitz and Clarkson, 1991), Weierstrass elliptic function 

(Chen and Wang, 2005; Kudryashov, 1990), Cole-Hopf transformation (Salas and Gómez S., 

2010), (G’/G)-expansion (Wang et al., 2008), (1/G’)-expansion (Yokucs and Durur, 2019; 

Yokus and Kaya, 2017), generalized Riccati equation  (Z. Yan and Zhang, 2001), truncated 

Painleve expansion (Weiss et al., 1983; S.-L. Zhang et al., 2002), Backlund transformation 

(Lu, 2012; Singh and Gupta, 2016), F-expansion (Abdou, 2007; Wang and Li, 2005), 

homogeneous balance (Wang et al., 1996), Jacobi elliptic function expansion (Liu et al., 

2001; Z. Yan, 2003), tanh-coth (Abdel-All et al., 2011; Fan, 2000; Malfliet, 1992; Wazwaz, 

2007), direct algebraic (Soliman and Abdo, 2012), exp-function (He and Wu, 2006; Mohyud-

Din et al., 2010; Naher et al., 2011, 2012), multi-wave (Shi et al., 2010) methods and so on. 

Different exact solutions (such as periodic wave, shock wave, solitary wave solutions etc.) 

are obtained using the above-mentioned methods. Due to the stochastic terms, it contains, the 

stochastic equations of evolution are more difficult to analyze than the deterministic 

equations of evolution, and there are not many studies on this topic. In modeling of turbulence 

of dispersive shallow water wave and in nonlinear wave propagation in noisy plasmas, the 

stochastic KdV equation come to light (Conte, 2003; Herman, 1990). In the scope of this 

thesis, some KdV-type equations are treated. The applicability of the above methods will be 

tested to search for exact solutions to the stochastic evolution of nonlinear equations given 

below. 

1. The stochastic Korteweg–de Vries –Burgers (KdV-B) equation 
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The KdV-B equation can be written as 

𝑢𝑡 + 𝑢𝑢𝑥 − 𝑣𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 0, (2.0.1) 

where 𝜇 ∈ 𝑅 is the dispersion and 𝑣 ≥ 0  is the dissipation coefficient. The equation 

(2.0.1) is used in physics and other fields in modeling wave processes in dissipative-

dispersive systems (N.A. Kudryashov, 1991). Fu and Liu (2011) studeid the existence 

of travelling wavefronts of the KdV–Burgers equation from a monotone dynamical 

systems point of view and obtained a sufficient condition for the existence. The 

stochastic form of Equation (2.0.1) can be written as  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝑣𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 휂(𝑡), (2.0.2) 

by adding the 휂(𝑡) noise term. Richards (2014) has investigated local well posedness 

of stochastic KdV-Burgers equation with cylindrical white noise. The results obtained 

in (Richards, 2014) are given in the following theorems. 

Theorem 2.1 (Local Well-posedness). Given 0 < 휀 <
1

16
 , let 𝑠 ≥ −

1

2
− 휀. Suppose 

𝜙 ∈ 𝐻𝑆(𝐿2; 𝐻𝑠+1−2𝜀) is a Hilbert–Schmidt operator from  𝐿2(𝕋) to 𝐻𝑠(𝕋) in the 

form 

(𝜙𝑓)̂(𝑛) = 𝜙𝑛𝑓(𝑛). (2.0.3) 

  Then the following stochastic Korteweg–de Vries (KdV)–Burgers equation  

{
𝑑𝑢 = (𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥 − (𝑢2)𝑥)𝑑𝑡 + 𝜙𝜕𝑥𝑑𝑊, 𝑡 ≥ 0, 𝑥 ∈ 𝕋

𝑢|𝑡=0 = 𝑢0,
(2.0.4) 

is locally well posed in 𝐻𝑠(𝑇) for mean zero data. That is, if 𝑢0 ∈ 𝐻𝑠(𝑇) has mean 

zero, there exists a stopping time 𝑇𝜔 > 0 and a unique process 𝑢 ∈

𝐶([0, 𝑇𝜔]; 𝐻𝑠(𝑇)) satisfying (2.0.4) on [0, 𝑇𝜔] a.s. 

Theorem 2.2 (Global Well-posedness). Let 𝜙 ∈ 𝐻𝑆(𝐿2; 𝐻1). Then (2.0.4) is 

𝐺𝑊 𝑖𝑛 𝐿2(𝑇) for mean zero data. That is, if 𝑢0 ∈ 𝐿2(𝑇) has mean zero, then for any 

𝑇 > 0 there is a unique process 𝑢 ∈ 𝐶([0, 𝑇]; 𝐿2(𝑇)) satisfying (2.0.4) on [0, 𝑇] a.s. 

2. The stochastic Korteweg–de Vries (KdV) equation 

The celebrated KdV equation known as a simple nonlinear dispersive wave 

equation appearing in the literature is one of the simplest and most useful nonlinear 
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model equations for solitary waves, and it represents the longtime evolution of wave 

phenomena. If the shape of the wave changes over time due to the wavelength or 

frequency of the wave speed, such waves are called dispersive waves (Zabusky and 

Kruskal, 1965). KdV equation is in the form; 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (2.0.5) 

The waves that are the solution of the KdV equation are called solitons. 

Existence, uniqueness, and continuous dependence on the initial data are proved for 

the local  solution of the (generalized) Korteweg-de Vries equation was studied in 

(Ginibre et al., 1990; Kato, 1979). The stochastic form of equation (2.0.5) can be 

written as; 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = η(𝑡). (2.0.6) 

Wadati in (Wadati, 1983; Wadati and Akutsu, 1984) first analyzed the 

equation of stochastic KdV using analytic way and then he set the long -time behavior 

under Gaussian noise for  single soliton solutions. In addition, several authors have 

studied stochastic KdV equation, for example (de Bouard et al., 1999; de Bouard and 

Debussche, 1998; Debussche and Printems, 1999; Konotop and Vázquez, 1994; 

Printems, 1999), and so on. 

Theorem 2.3. (de Bouard and Debussche, 1998) Assume that 𝑢0 ∈ 𝐿2(𝛺; 𝐻1(𝑅)) ∩

𝐿4(𝛺; 𝐿2(𝑅)) and is 𝒢0 -measurable, and 𝛷 ∈ 𝐿2
0 (𝐿2(ℝ); 𝐻1(ℝ)); then there exists 

a unique solution of  

𝑢(𝑡) = 𝑆(𝑡)𝑢0 + ∫ 𝑆(𝑡 − 𝑠) (𝑢
𝜕𝑢

𝜕𝑥
) 𝑑

𝑡

0

𝑠 + ∫ 𝑆(𝑡 − 𝑠)𝛷𝑑
𝑡

0

𝑊(𝑠), (2.0.7) 

in 𝑋𝜎(𝑇0) almost surely, for any 𝑇0 > 0 and for any 𝜎 with 3 / 4 < 𝜎 < 1 .Moreover, 

𝑢 ∈ 𝐿2 (𝛺; 𝐿∞(0, 𝑇0; 𝐻1(𝑅))). 

Theorem 2.4. (de Bouard and Debussche, 1998) Assume that 𝛷 ∈ 𝐿2
0 (𝐿2(𝑅), 𝐻�̃�(𝑅)) 

for some �̃� > 3/4. 

Then �̅� is almost surely in 𝑋𝜎(𝑇) for any 𝑇 > 0 and any 𝜎 such that 3/4 < 𝜎 < �̃�. 

Moreover 



8 

 

 

 

𝐸(|�̅�|𝑋𝜎(𝑇)
2 ) ≤ 𝐶(𝜎, �̃�, 𝑇)|𝛷|

𝐿2
0,�̃�

2 . 

3. The stochastic Burgers’ equation 

Expressed as  

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥 = 0, (2.0.8) 

Burgers equation is one of the most important nonlinear propagation equations. This 

equation is the simplest nonlinear equation model for propagating waves in fluid 

dynamics. It was first used by Burger to describe one-dimensional turbulence 

(Burgers, 1995).  Benia and Sadallah (2016) established the existence, uniqueness 

and the optimal regularity of the solution in the anisotropic Sobolev space for  Burgers 

equation. The stochastic form of equation (2.0.8) can be written as  

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥 = 휂(𝑡). (2.0.9) 

Here the term 휂(𝑡) refers to external noise. There are several existence and 

uniqueness results in the literature for mild solutions of stochastic Burgers equations 

driven by colored noise (Giuseppe Da Prato and Gatarek, 1995).  

Theorem 2.5. (Giuseppe Da Prato and Gatarek, 1995) Let 𝑢0 be given which is ℱ0 -

measurable and such that 𝑢0 ∈ 𝐿2(0,1) 

a.s. and let 𝑇 > 0 . Then there exists a unique mild solution of equation  

{
𝑑𝑢 = (𝐴𝑢 +

1

2

𝜕

𝜕𝑥
(𝑢2)) 𝑑𝑡 + 𝑔(𝑢)𝑑𝑊

𝑢(0) = 𝑢0.

(2.0.10) 

Theorem 2.6. (Giuseppe Da Prato and Gatarek, 1995) There exists a unique invariant 

measure for the equation  

{
𝑑𝑢 = (𝐴𝑢 +

1

2

𝜕

𝜕𝑥
(𝑢2)) 𝑑𝑡 + 𝑔(𝑢)𝑑𝑊

𝑢(0) = 𝑢0.

(2.0.11) 

and by space-time white noise (Guiseppe Da Prato et al., 1994) in the case of 

cylindrical Wiener process.   

4. The stochastic Kuramoto - Sivashinsky (KS) equation 
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Kuramoto-Sivashinsky equation  

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥 − 𝜈𝑢𝑥𝑥𝑥𝑥 = 0, (2.0.13) 

arises in a wide variety of phenomena such as reaction-diffusion systems, two-phase 

flows in cylindrical geometries, flame propagation and viscous film flow. Eq. (2.0.1) 

was introduced independently by Kuramoto's study (Kuramoto and Tsuzuki, 1975) 

on the analysis of reaction-diffusion systems and by Sivashinsky's study 

(Sivashinsky, 1977) on instability in laminar flame and fluid dynamics. Although Eq. 

(2.0.1) is one of the simplest equations, it models chaotic behavior of complicated 

dynamics. As the parameter 𝜈 decreases, the large time behavior of the system 

changes from steady-state solutions to chaotic solutions. Kudryashov (2013) studied 

dissipative KS equation. He showed that the dissipative KS equation does not possess 

solitary wave solutions and has only rational solutions (quasi-exact solutions). 

Stochastic nonlinear Kuramoto-Sivashinsky equation can be given as 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥 = η(𝑡). (2.0.14) 

Stochastic KS equation was studied in many papers from different perspectives. 

Duan and Ervin (2001) studied the existence and uniqueness of solutions of the 

stochastic KS equation, the results of which are given below. 

Theorem 2.9. (Local Existence and Uniqueness) For 𝑢0 in 𝐻 there exists a random 

variable 𝜏 taking values 𝑃 − a.s. in (0, 𝑇] such that problem  

𝑑𝑢 + (𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑥𝑥 + 𝑢𝑢𝑥)𝑑𝑡 − 𝑑𝑤 = 0
𝑢(0, 𝑥) = 𝑢0(𝑥), −𝑙 < 𝑥 < 𝑙, and 𝑢(𝑡, −𝑙) = 𝑢(𝑡, 𝑙) = 0 for 𝑡 > 0,

(2.0.15) 

has a unique solution u on the interval [0, 𝜏]. 

Theorem 2.10. (Global Existence) For 𝑢0 ∈ 𝐻 = 𝐿2(𝐼), there exists 𝑃 a.s. a unique 

solution 𝑢(⋅, 𝑥) ∈ 𝐸 of equations (2.0.1). 

Yang (2006) obtained a pull-back random attractor for the initial-boundary 

value problem of the stochastic KS equation. Existence and uniqueness of invariant 

measures for the stochastic KS equation was investigated in (Ferrario, 2008). (Wu et 

al.(2018) provided sufficient conditions guaranteeing global well-posedness of the 

stochastic generalized KS equation with a multiplicative noise. Gao et al.(2018) 
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simulated the effect of different noises on the solitary wave solutions of the stochastic 

KS equation by using finite difference method. 

5. The stochastic Kawahara equation (KH) equation 

The Kawahara equation has formed as following: 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (2.0.16) 

is a dispersive fifth-order equation arising in the modeling of magneto-acoustic waves 

in a plasma and small-amplitude water waves with surface tension and was introduced 

by Kawahara (Kawahara, 1972). The equation is also known as a special case of the 

Benney-Lin equation, singularly perturbed KdV equation or fifth-order KdV 

equation. Many studies have been carried out for solutions to the deterministic 

Kawahara equation. Kabakouala and Molinet (2018) studied orbital stability of 

solitary waves of a generalized Kawahara equation in 𝐻2(𝑅) by using spectral 

method.  Kwak (2020) is concerned with global well posedness of a periodic modified 

Kawahara equation in 𝐿2(𝑇).  Mancas (2019) obtained travelling wave solutions of 

Kawahara equation by using elliptic function method. Biswas (2009) found travelling 

wave solutions of a generalized Kawahara equation. The existence of compaction 

solutions and solitary patterns solutions for Kawahara type equation is demonstrated 

in (Wazwaz, 2003). By adding the external noise term 휂(𝑡), the nonlinear stochastic 

evolution equation can be given as: 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 휂(𝑡). (2.0.17) 

Some studies were performed on stochastic Kawahara equation.  (Hyder and 

Zakarya (2019) studied local well-posedness of solutions of a modified Kawahara 

equation in 𝐻𝑠(𝑅), 𝑠 >
−7

4
 and global well-posedness in 𝐿2(𝑅) by using the fixed-

point argument and the Fourier restriction method. 

Theorem 2.11. Assume that 𝑠 ≻
7

4
, 𝛷 ∈ 𝐿2

0,𝑠, 𝑏 ∈ (0,
1

2
) and 𝑏 is close enough to 

1

2
. If 

𝑢0 ∈ 𝐻𝑠(𝑅) for almost surely 𝜔 ∈ 𝛺 and 𝑢0 𝑖𝑠 ℱ0 −measurable. Then for almost 

surely 𝜔 ∈ 𝛺, there exists a constant 𝑇𝜔 > 0 and a unique solution 𝑢 of the Cauchy 

problem 
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{
𝑑𝑢 + (𝛼𝑢5𝑥 + 𝛽𝑢3𝑥 + 𝛾𝑢𝑥 + 𝜇𝑢𝑢𝑥)𝑑𝑡 = 𝛷𝑑𝑊(𝑡)
𝑢(𝑥, 0) = 𝑢0(𝑥),

(2.0.18) 

on [0, 𝑇𝜔] which satisfies: 

𝑢 ∈ 𝐿2 (𝛺; 𝐶([0, 𝑇0]; 𝐻𝑠(𝑅))) ,   for any 𝑇0 > 0 

Therefore, in the case of 𝑠 = 0, we can obtain a global existence result for 

𝑢𝑡 + 𝛼𝑢5𝑥 + 𝛽𝑢3𝑥 + 𝛾𝑢𝑥 + 𝜇𝑢𝑢𝑥 = 𝛷
𝜕2𝐵

𝜕𝑡𝜕𝑥
(2.0.19) 

where 𝛼 ≠ 0, 𝛽, and 𝛾 are real numbers; 𝜇 is a complex number; 𝑢 is a stochastic 

process defined on (𝑥, 𝑡) ∈ 𝑅 × 𝑅+; is a linear operator; and 𝐵 is a two-parameter 

Brownian motion on 𝑅 × 𝑅+. 

Precisely, the following theorem was stated for global existence: 

Theorem 2.12. Let 𝑢0 ∈ 𝐿2(𝛺, 𝐿2(𝑅)) be an ℱ0 − measurable initial data, and let 

𝛷 ∈ 𝐿2
0,0

 Then, the solution u given by Theorem 2.1 is global and satisfies: 

𝑢 ∈ 𝐿2 (𝛺; 𝐶([0, 𝑇0]; 𝐻𝑠(𝑅))) ,   for any  𝑇0 > 0. 

Agarwal et al.(2020) constructed local and global well-posedness of a modified 

stochastic Kawahara equation by using the same arguments of (Hyder and Zakarya, 

2019). 

6. The Wick-type stochastic extended KdV equation 

The name extended KdV equation was given by Bakırtaş and Antar in 

(Bakırtaş and Antar, 2003), and Bakırtaş and Demiray ( Bakırtaş and Demiray, 2005) 

to the following equation  

𝑢𝑡 + 𝜈1𝑢𝑢𝑥 + 𝜈2𝑢𝑥𝑥𝑥 + 𝜇(𝑡)𝑢𝑥 = 0, (2.0.20) 

where ν1 and ν2 are constants due to the initial deformation of the tube material, and 

μ(𝑡)𝑢𝑥 represents the contribution of the tapering of tube. They studied the weakly 

nonlinear propagation of waves in elastic tubes filled with non-compressible viscous 

fluid by using the method of reductive perturbation. They obtained the equation by 

treating blood as a non-compressible viscous fluid and the arteries as tapered, flexible, 

thin-walled, long circular conical tube. Also (Karczewska and Szczecinski (2019) 
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studied the existence and uniqueness of the mild solution of the stochastic extended 

KdV equation in the following form     

𝑑𝑢 + (
∂3𝑢

∂𝑥3
+ 𝑢

∂𝑢

∂𝑥
+ 𝑢

∂3𝑢

∂𝑥3
+

∂𝑢

∂𝑥

∂2𝑢

∂𝑥2
) 𝑑𝑡 = Φ𝑑𝑊, (2.0.21) 

where 𝑊 is a cylindrical Wiener process. They obtained sufficient conditions 

for the existence and uniqueness of a local mild solution using a fixed point argument 

as follows.  

Theorem 2.13. Assume that 𝑢0 ∈2 𝐿2(𝛺; 𝐻1(𝑅)) ∩2 𝐿4(𝛺; 𝐿2(𝑅)) and it is ℱ0 -

measurable and 𝛷 ∈ 𝐿2
0 (𝐿2(𝑅); 𝐻1(𝑅)). If 

𝜕2

𝜕𝑥2 [∫ 𝑉(𝑡 − 𝑠)𝛷d
𝑡

0
𝑊(𝑠)] ∈

𝐿2(𝛺; 𝐿𝑥
2 (𝐿𝑡

∞)) holds then there exists a unique mild solution to the equation (2.0.2) 

with initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥),  𝑥 ∈ 𝑅,  𝑡 ≥ 0, such that 𝑢 ∈2 𝑋𝜎(𝑇) 

almost surely for some 𝑇 > 0 and for any 𝜎 ∈ (
3

4
, 1). 

 The Wick-type stochastic extended KdV-equation for equation (2.0.2) is 

given in the following form 

𝑈𝑡 + 𝐻1(𝑡) ⋄ 𝑈𝑥 + 𝐻2(𝑡) ⋄ 𝑈 ⋄ 𝑈𝑥 + 𝐻3(𝑡) ⋄ 𝑈𝑥𝑥𝑥 = 0, (2.0.22) 

where  ⋄ is the Wick product on the Hida distribution space(𝑆(𝑅𝑑))
∗

 and 

𝐻𝑖(𝑖 = 1,2,3) are the white noise functions. More recently, the white noise function 

approach has been applied to the stochastic partial differential equations by several 

authors and obtained many new solutions to the stochastic partial differential 

equation. Xie et al in (Xie, 2003) found stochastic soliton solution using Hermit 

transformation and homogeneous balance method for Wick-type stochastic KdV 

equation. In (Chen and Xie, 2005), Chen et al obtained a series of soliton-like 

solutions to the Wick-type stochastic KdV equation with the help of Hermit 

transformation and an algebraic method. In addition, some solutions of the Jacobian 

elliptic function for two types of stochastic KdV equation were derived by Wei et al 

in (Wei et al., 2005) by Hermit transformation and the method of Jacobi elliptic 

function expansion. 
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In this thesis study, some analytical solution methods will be employed to obtain exact 

solutions of nonlinear stochastic differential equations. Analytical solutions of nonlinear 

stochastic differential equation are obtained using the combination of Galilean 

transformation and nonlinear methods. Moreover, a Wick-type stochastic extended KdV 

equation is investigated, and the solutions will be interpreted with graphs. More clearly, the 

answer to the following questions  

• How are solutions of nonlinear evolution equations influenced by external noise? 

• Can tanh and extended tanh be used in order to find exact solutions to stochastic 

evolution equations? 

• Can F-expansion method and Hermit transform be used for the nonlinear Wick-type 

stochastic extended KdV with Gaussian white noise   to obtain exact elliptic function 

solutions? 

will be investigated.  
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3. MATERIALS AND METHODS 

3.1. Preliminaries 

In this section, we provide some basic definitions, theorems, and the outlines of the 

methods we used throughout the thesis. Since the solutions of stochastic differential 

equations are stochastic processes defined in a probability space, we should firstly give basic 

definitions on probability theory for a better understanding of the thesis. 

3.1.1. Probability theory 

Probability theory deals with mathematical models, the results of which are linked to 

chance. The probability function, which is given in the following form:  

𝑃: {Set of Events} → [0,1], 

has a history that goes back to the 17th century (Cáceres, 2017). The above definition may 

be interpreted as probability function is ascribing real numbers in [0,1] to subsets of 𝐴 ⊆ Ω, 

where Ω is the possible outcomes of an event, which is called sample space.  The structure 

of the probability function was shaped by the axioms put forward by the Russian 

mathematician A. N. Kolmogorov in 1933. 

Definition 3.1. 𝜎-Algebra (Grimmet and Stirzaker, 2020). A collection of subsets 𝐹 of Ω is 

called a σ-algebra if the following properties are satisfied: 

1.  ϕ ∈ 𝐹 and  Ω ∈ 𝐹; 

2.  𝐴 ∈ 𝐹 ⇒ 𝐴𝑐 ∈ 𝐹 (𝐹 is closed under complements);  

3.  𝐴𝑖 ∈ 𝐹 for 𝑖 = 1,2,3, … ⇒ ⋃ 𝐴𝑖
∞
𝑖=1 ∈ 𝐹 (𝐹 is closed under countable unions). 

The elements of 𝐹 are named measurable sets, and the pair (Ω, 𝐹) is named a measurable 

space. 

Definition 3.2. Probability Measure (Grimmet and Stirzaker, 2020). A measure μ on (Ω, 𝐹) 

is a probability measure, if it fulfills the following conditions: 

1.  0 ≤ μ(𝐴) ≤ 1 for 𝐴 ∈ 𝐹. 

2. μ(ϕ) = 0 and μ(𝐴) = 1. 

3. If {ω𝑖}𝑖=1
∞ ⊆ 𝐹 , then  μ(⋃ 𝐴𝑖

∞
𝑖=1 ) = ∑ μ(𝐴𝑖)

∞
𝑖=1 . 
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Definition 3.3. Probability Space (Koralov and Sinai, 2007).The triplet (Ω, 𝐹, μ) is called a 

probability space, if the measure of entire sample space is equal to one: μ(Ω) = 1, where 

(Ω, 𝐹) is a measurable space. Hereafter, for a probability space, the measure μ will be denoted 

by 𝑃 for convenience.  

Definition 3.4. Filtration (Koralov and Sinai, 2007). Let (Ω, 𝐹, μ) be a probability space. A 

collection of increasing sub-sigma algebras of 𝐹 is called a filtration. In other words, if 𝐹𝑡 ⊆

𝐹, 𝑡 ∈ 𝑇 then for all 𝑠 ≤  𝑡, 𝐹𝑠 ⊆ 𝐹𝑡, where 𝑇 is a parameter set. 

Definition 3.5. Stochastic Process (Guiseppe Da Prato and Zabczyk, 2014). A family of 

random variables {𝑋(𝑡)}𝑡 ∈ 𝐼 defined on some probability space (Ω, 𝐹, 𝑃) is called a 

stochastic process, where 𝐼 is an interval of 𝑅1. 

3.1.2. Stochastic calculus 

The foundations of stochastic processes were laid when Robert Brown noticed the 

erratic movements of pollen particles floating on the water. The physical interpretation of the 

movement is explained by Einstein in 1905, by random collisions with water molecules. The 

complete mathematical treatment is provided by Wiener in 1923. This mathematical 

treatment by Wiener still plays an important role in the theory of stochastic processes. The 

Wiener integral constructed by Wiener was later developed by Ito in 1942 which is known 

as the Ito integral. In this subsection, we mention some basic concepts such as Brownian 

motion, white noise, stochastic integrals, Ito's formula which are basis for the other sections. 

Definition 3.6. Brownian Motion. In 1827, the botanist Robert Brown detected the 

chaotic motion of pollen particles suspending in water but until the studies of Einstein, Perrin, 

and some other physicists a mathematical model was not provided. In 1905, Albert Einstein 

established a relation between the microscopic random motion of particles and the 

macroscopic diffusion equation confirming the existence of atoms. In the following, we will 

summarize this connection (Sarkka, 2012). 

 Take 𝑛 particles floating in a liquid and suppose that Δ𝑡 is a small-time interval. Let 

us denote the displacement in 𝑥 −coordinates of particles by Δ over the time interval Δ𝑡. The 

number of particles displacing between Δ and Δ + dΔ is given by 

d𝑛 = 𝑛𝜓(Δ)dΔ, 
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where 𝜓(. ) is a symmetric probability density satisfying  𝜓(𝑥) = 𝜓(−𝑥) and is 

nonzero only for very small values of Δ. Denoting the number of particles per unit volume 

by 𝑤(𝑥, 𝑡), the number of particles located at 𝑥 + d𝑥 in time 𝑡 + Δ𝑡 may be derived from 

𝑤(𝑥, 𝑡) as 

𝑤(𝑥, 𝑡 + Δ𝑡) = ∫ 𝑤(𝑥 + Δ, 𝑡)𝜓(Δ)d
∞

−∞

Δ. (3.1.1) 

Since Δ𝑡 assumed to take very small values, one can write 

𝑤(𝑥, 𝑡 + Δ𝑡) = 𝑤(𝑥, 𝑡) + Δ𝑡
𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
, (3.1.2) 

and 𝑤(𝑥 + Δ, 𝑡) may be expressed in terms of Δ as a Taylor series as follows 

𝑤(𝑥 + Δ, 𝑡) = 𝑤(𝑥, 𝑡) + Δ
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
+

Δ2

2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ ⋯ (3.1.3) 

Using (3.1.2) and (3.1.3) in (3.1.1) yields 

𝑤(𝑥, 𝑡) + Δ𝑡
𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
= 𝑤(𝑥, 𝑡) ∫ 𝜓(Δ)d

∞

−∞

Δ +
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
∫ Δ𝜓(Δ)d

∞

−∞

Δ +
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
∫

Δ2

2

∞

−∞

𝜓(Δ)dΔ + ⋯ 

In the above all the odd order terms vanish. Consideration of ∫ 𝜓(Δ)d
∞

−∞
Δ = 1, and 

setting 

∫
Δ2

2

∞

−∞

𝜓(Δ)dΔ = 𝐷, 

yields the diffusion equation 

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
. 

A relation was derived by Einstein for $D$ in terms of atomic properties of the matter  

𝐷 =
𝑅𝑇

𝑁6𝜋휂𝑟
, 

where 휂 is the viscosity of liquid, 𝑇 is the temperature, 𝑟 is the radius of the Brownian 

particles, 𝑁 is the Avogadro's number, and 𝑅 is the gas constant. Using the above diffusion 

constant, mean squared displacement of the particles were predicted by Einstein as 

𝑧(𝑡) =
𝑅𝑇

3𝑁𝜋휂𝑎
𝑡, 

where 𝑎 is the diameter of the particles. 
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Although Einstein presented a consistent explanation to the Brownian motion, 

Langevin's equation  

𝑑𝒖/𝑑𝑡 = −𝛽𝒖 + 𝑨(𝑡), 

containing random and frictional force terms is a milestone in the modern theory of the 

Brownian motion of a free particle. Here 𝒖 is the velocity of the particle. With respect to the 

above equation, the effect of the external environment on the motion of the particle can be 

divided into two parts: first, the effect of dynamical friction experienced by the particle, −𝛽𝒖, 

and second, the main characteristic of the Brownian motion, 𝑨(𝑡), the fluctuating part 

(Chandrasekhar, 1943). The illustrations of Einstein's and Langevin's model are given in the 

following figure. 

 

Figure 3.1. Illustration of Langevin’s model of 

Brownian motion. 

 

Figure 3.2. Illustration of Einstein’s model of 

Brownian motion. 

 

Now, we shall define one-dimensional Brownian motion on a probability space. 

Definition 3.7. Standard Brownian Motion (Koralov and Sinai, 2007). A system of random 

processes {𝐵(𝑡), 𝑡 ∈ [0, ∞)} on a probability space (Ω, 𝐹, 𝑃) is called a Brownian motion if 

1. 𝐵(0) = 0. 

2. For all 0 ≤ 𝑡1 < 𝑡2, 𝐵(𝑡2) − 𝐵(𝑡1) ∼ 𝑁(0, 𝑡2 − 𝑡1). 

3. 𝐸 [(𝐵(𝑡) − 𝐵(𝑠))
2

] = |𝑡 − 𝑠|. 

4. 𝐵(𝑡) has continuous sample paths. 

The covariance function is defined by Γ(𝑠, 𝑡) = 𝐸[𝐵(𝑠)𝐵(𝑡)] =
1

2
(|𝑠| + |𝑡| − |𝑠 − 𝑡|). 

Definition 3.8. White Noise. (Sarkka, 2012).  A real-valued Gaussian process 𝑊(𝑡) with 

the following properties is called a white noise: 
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1. If 𝑡1 ≠ 𝑡2 , then 𝑊(𝑡1) and 𝑊(𝑡2) are independent. 

2. For the map 𝑡 ⟼ 𝑊(𝑡),   

                                        𝑚𝜔(𝑡) = 𝐸[𝑊(𝑡)] = 0, 

𝐶ω(𝑡, 𝑠) = 𝐸[𝑊(𝑡)𝑊𝑇(𝑡)] = δ(𝑡 − 𝑠)𝑄, 

where δ is the Dirac-delta and 𝑄 is the spectral density of the process. 

From the properties of the white noise, one can also conclude that the sample path of 

𝑡 ↦ 𝑊(𝑡) is discontinuous a.e. The following figure illustrates a scalar white noise process. 

Figure 3.3. White noise. 

 

For most of the applications, the noise function does not satisfy the first property, i.e., 

when 𝑡1 and 𝑡2 are close enough 𝑊(𝑡1) and 𝑊(𝑡2) are not independent. The notion of 

smoothed white noise is adapted for this case as given in the following way:  

𝑊𝜙 ≔ 𝑊𝜙(𝑡, 𝜔) ≔ ⟨𝜔, 𝜙𝑡⟩ = ∫ 𝜙𝑡(𝑠)𝑑 𝐵𝑠(𝜔), 

where 𝑡 is the time, 𝜔 is a random element, the integral is Ito integral which will be defined 

below, 𝜙 is a test function, and 𝜙𝑡 is the 𝑡-shift of 𝜙 given as 𝜙𝑡(𝑠) = 𝜙(𝑠 − 𝑡), 𝑠, 𝑡 ∈ 𝑅. 

 

There is a connection between white noise and Brownian motion. We can roughly 

say that white noise is formal derivative of Brownian motion. Integration by parts for Wiener-

Itô integrals yields 
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∫ 𝜙(𝑥)𝑑
𝑹𝒅

𝐵(𝑥) = (−1)𝑑 ∫
𝜕𝑑𝜙

𝜕𝑥1 … 𝜕𝑥𝑑

(𝑥)𝐵(𝑥)𝑑
𝑹𝒅

𝑥. 

Accordingly 

𝑊(𝜙) = ∫ 𝜙(𝑥)𝑑
𝑅𝟜

𝐵(𝑥) = ((−1)𝑑
𝜕𝑖𝜙

𝜕𝑥1 … 𝜕𝑥𝑑
, 𝐵) = (𝜙,

𝜕4𝐵

𝜕𝑥1 … 𝜕𝑥𝑑
), 

where (. , . ) is the usual inner product in the space 𝐿2(𝑅𝑑). Namely, in the sense of 

distributions we have 

𝑊 =
𝜕𝑑𝐵

𝜕𝑥1 … 𝜕𝑥𝑑
. 

 Theorem 3.1. (Ito’s formula). For any function 𝑓(𝑡, 𝑥); 𝑓 ∈ 𝐶𝟙,𝟚 that has two continuous 

derivatives with respect to 𝑥 and continuous derivative with respect to 𝑡. Then, the process 

𝑓(𝑡, 𝑋(𝑡)) satisfies 

𝑑𝑓(𝑡, 𝑋(𝑡)) = [𝑓𝑡 +
1

2
𝜎2𝑓𝑥𝑥] (𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑓𝑥(𝑡, 𝑋(𝑡))𝑑𝑋(𝑡), (3.1.5) 

where 

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡), (3.1.6) 

is a diffusion process. Now by substituting (3.1.6) in (Error! Reference source not found.) w

e can obtain the useful form of the following Ito rule: 

𝑑𝑓(𝑡, 𝑋(𝑡)) = [𝑓𝑡 + 𝜇𝑓𝑥 +
1

2
𝜎2𝑓𝑥𝑥] (𝑡, 𝑋(𝑡))𝑑𝑡 + (𝜎𝑓𝑥)(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡). (3.1.7) 

Definition 3.9. Box Algebra (Steele, 2001). This is an algebra for linear combination of the 

formal symbols 𝑑𝑡 and 𝑑𝐵𝑡 In this algebra, the addition operation is usual algebraic addition, 

and their products are found by traditional rules of transitivity and associativity Please (see 

Table 3.1, Table 3.2). 

Table 3.1. Box Algebra Multiplication Table 

⋅ 𝑑 𝑡 𝑑𝐵𝑡 

𝑑 𝑡 0 0 

𝑑𝐵𝑡 0 𝑑 𝑡 
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Table 3.2. Extended Box Algebra 

⋅ 𝑑 𝑡 𝑑𝐵𝑡
1 𝑑𝐵𝑡

2 

𝑑 𝑡 0 0 0 

𝑑𝐵𝑡
1 0 𝑑 𝑡 0 

𝑑𝐵𝑡
2 0 0 𝑑 𝑡 

 

The experience with Itô's formula as a tool for understanding the 𝑑𝐵𝑡 integrals now 

leaves one with a natural question: Is there an appropriate analog of Itô's formula for 𝑑𝑋𝑡 

integrals? That is, if the process 𝑋𝑡 can be written as a stochastic integral of the form 

∫ 𝑓(𝜔, 𝑠)𝑑
𝑡

0

𝑋𝑠 ≝ ∫ 𝑓(𝜔, 𝑠)𝑎(𝜔, 𝑠)𝑑
𝑡

0

𝑠 + ∫ 𝑓(𝜔, 𝑠)𝑏(𝜔, 𝑠)𝑑
𝑡

0

𝐵𝑠, (3.1.8) 

and if 𝑔(𝑡, 𝑦) is a smooth function, can we then write the process 𝑌𝑡 = 𝑔(𝑡, 𝑋𝑡) as a sum of 

terms which includes a 𝑑𝑋𝑡 integral? 

Of course, there is a positive answer to these questions, and it turns out that it is well 

expressed with a simple formal aid usually called the box calculus, though the term box 

algebra would be more precise. This is an algebra for the set 𝒜 of linear combinations of the 

formal symbols 𝑑 𝑡 and 𝑑𝐵𝑡 where adapted functions are regarded as the scalars. In this 

algebra, the addition operation is just the usual algebraic addition, and products are then 

computed by the traditional rules of associativity and transitivity together with a 

multiplication table for the special symbols 𝑑 𝑡 and 𝑑𝐵𝑡. The new rules one uses are simply 

𝑑𝑡 ⋅ 𝑑𝑡 = 0,  𝑑𝑡 ⋅ 𝑑𝐵𝑡 = 0,   and  𝑑𝐵𝑡 ⋅ 𝑑𝐵𝑡 = 𝑑𝑡. 

As example for the application these rules were apply, it can be checked the product 

(𝑎𝑑𝑡 + 𝑏𝑑𝐵𝑡) ⋅ (𝛼𝑑𝑡 + 𝛽𝑑𝐵𝑡), 

can be simplified by associativity and commutativity to give 

𝑎𝛼𝑑𝑡 ⋅ 𝑑𝑡 + 𝑎𝛽𝑑𝑡 ⋅ 𝑑𝐵𝑡 + 𝑏𝛼𝑑𝐵𝑡 ⋅ 𝑑𝑡 + 𝑏𝛽𝑑𝐵𝑡 ⋅ 𝑑𝐵𝑡 = 𝑏𝛽𝑑𝑡. 

If one uses this formal algebra for the process 𝑋𝑡 which we specified in longhand by 

using  

𝑋𝑡 = ∫ 𝑎(𝜔, 𝑠)𝑑
𝑡

0

𝑠 + ∫ 𝑏(𝜔, 𝑠)𝑑
𝑡

0

𝐵𝑠, (3.1.9) 
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or in shorthand by using  

𝑑𝑋𝑡 = 𝑎(𝜔, 𝑡)𝑑𝑡 + 𝑏(𝜔, 𝑡)𝑑𝐵𝑡,  𝑋0 = 0. (3.1.10) 

Hence one can arrive at the following version of general formula Itô: 

𝑑𝑓(𝑡, 𝑋𝑡) = 𝑓𝑡(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑓𝑥(𝑡, 𝑋𝑡)𝑑𝑋𝑡 +
1

2
𝑓𝑥𝑥(𝑡, 𝑋𝑡)𝑑𝑋𝑡 ⋅ 𝑑𝑋𝑡. (3.1.11) 

This simple formula sums up an enormously useful amount of valuable information 

as well as being exceptionally productive. 

The proof of 𝑑𝑊𝑡. 𝑑𝑡 = 0. Someone always ask why 𝑑𝑤 times 𝑑𝑡 is zero or why 𝑑𝑡 squared 

is zero. 

𝑑𝑊𝑡𝑑𝑡 = 0, (3.1.12) 

the answer may vary but it can be as simple as saying if 𝑑𝑡 is 0.1 then 𝑑𝑡 squared it will be 

0.01. We will provide more convincing proof of this below. First, let's write the equation 

(3.1.12) in the following integral form 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠, (3.1.13) 

now, applying what we have learned in deterministic calculus, we know that the integral is 

the limit of discrete sum within the interval form 0 to 𝑡. Let's now take the interval from 0 to 

𝑡 and divide it into 𝑛 of length Δ𝑡 as in (Figure 3.4). 

 

Figure 3.4. Split interval from 0 to 𝑡 

  

Now we split the interval and let us represent the endpoints of the intervals by 𝑡𝑖 with 𝑖 going 

from 0 to 𝑛 the number of sub intervals and one can then approximate the integral via sum 
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of Δ𝑊 times Δ𝑡 over these sub intervals hoping that as we increase the number of sub 

intervals the approximation will give the value of the integral. 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

∑ Δ𝑊𝑡𝑘
Δ𝑡𝑘

𝑛

𝑘=1

= lim
𝑛→∞

∑(𝑊𝑡𝑘
− 𝑊𝑡𝑘−1

)(𝑡𝑘 − 𝑡𝑘−1)

𝑛

𝑘=1

, (3.1.14) 

By the way Δ𝑊 and Δ𝑡  are just the changes in the value of 𝑊 and 𝑡 over the sub intervals 

so easy to calculate once one has a Brownian path over time. Let's now substitute Δ𝑊 times 

Δ𝑡  by 𝑥𝑘 = Δ𝑊𝑡𝑘
Δ𝑡𝑘 to convert the thing into something familiar and let us represent the 

sequence by  𝑋𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1 . Now in the calculation, we are quite accustomed to limiting 

subsequent iterations and let's say the limiting value is X nice and easy. 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

𝑋𝑛 = 𝑋, (3.1.15) 

but this limit won`t do here reason being our axes are random variables. So, this some 

probability associated with them but the limit we have doesn't contain any probability and 

stochastic calculus. One talks about convergence and there are several modes of such 

conversions some easier to prove than others. The most common one used in the stochastic 

integration problem we have here is mean square conversion. So, mean square convergence 

is what we're going to use we say the sequence 𝑋𝑛 converges to 𝑋 in the mean square if the 

expected value of the squared deviation from 𝑋 goes to zero as 𝑛 become very large 

lim
𝑛→∞

𝐸 [|𝑋𝑛 − 𝑋|2] = 0. we are claiming that our sequence converges to zero. So, we replace 

𝑋 by zero so lim
𝑛→∞

𝐸 [|𝑋𝑛 − 0|2] = 0 and now we can replace 𝑋𝑛 by the sum then we get  

lim
𝑛→∞

𝐸 [(∑ 𝑥𝑘
𝑛
𝑘=1 )2] = 0  and we are done with the capital 𝑋. We only introduce this symbol 

so that we can see all we are doing is taking the limit of the sequence in some sense 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

𝐸 [(∑ 𝑥𝑘

𝑛

𝑘=1

)

2

] = 0. (3.1.16) 
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Now we can split the square of the sum and square in class terms so this is just a multivariate 

version of (𝑎 + 𝑏)2 = 𝑎2 + 𝑏2 + 2𝑎𝑏 , so we get  (∑ 𝑥𝑘
𝑛
𝑘=1 )2 = ∑ 𝑥𝑘

2𝑛
𝑘=1 +

2 ∑ ∑ 𝑥𝑘𝑥𝑗
𝑘−1
𝑗=1

𝑛
𝑘=1 . Now let's make the substitution  

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

𝐸 [∑ 𝑥𝑘
2

𝑛

𝑘=1

+ 2 ∑ ∑ 𝑥𝑘𝑥𝑗

𝑘−1

𝑗=1

𝑛

𝑘=1

] , (3.1.17) 

we can replace 𝑥𝑘 = Δ𝑊𝑡𝑘
Δ𝑡𝑘  

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

𝐸 [∑ Δ𝑊𝑡𝑘

2 Δ𝑡𝑘
2

𝑛

𝑘=1

+ 2 ∑ ∑ Δ𝑊𝑡𝑘
Δ𝑡𝑘Δ𝑊𝑡𝑗

Δ𝑡𝑗

𝑘−1

𝑗=1

𝑛

𝑘=1

] , (3.1.18) 

Expectation of the sum is the sum of expectations and we took $\Delta t$ out of the 

expectation because it's deterministic 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

(∑ 𝐸[Δ𝑊𝑡𝑘

2 ]Δ𝑡𝑘
2

𝑛

𝑘=1

+ 2 ∑ ∑ 𝐸 [Δ𝑊𝑡𝑘
Δ𝑊𝑡𝑗

] Δ𝑡𝑘Δ𝑡𝑗

𝑘−1

𝑗=1

𝑛

𝑘=1

) , (3.1.19) 

now we just need the properties of the Brownian increments. Brownian increments and non-

overlapping intervals are independent so the second term 𝐸 [Δ𝑊𝑡𝑘
Δ𝑊𝑡𝑗

]  is 0. 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

∑ 𝐸[Δ𝑊𝑡𝑘

2 ]Δ𝑡𝑘
2

𝑛

𝑘=1

, (3.1.20) 

then expected value of Δ𝑊 squared is equal to the length of the sub interval 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

∑ Δ𝑡𝑘Δ𝑡𝑘
2

𝑛

𝑘=1

, (3.1.21) 

 and we can combine the Δ𝑡 term so we get Δ𝑡 cube 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

∑ Δ𝑡𝑘
3

𝑛

𝑘=1

, (3.1.22) 
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 now as 𝑛 become very large this limit goes to 0 to see that let's consider the time interval 

from 0 to 1. Let us say we start with 𝑛 equal to 1 as there is only one interval the length of 

the interval from 0 to 1 is obviously 1. Then we take Δ𝑡 to the power 3 means we take the 

cube 1 which gives 1. Now let us increase 𝑛 to 2 so the length of each sub interval is now 0.5 

and we have two of them if we calculate the cube of Δ𝑡 and sum across the intervals we get 

0.25 so the sum of Δ𝑡 to the power 3 has declined from 1 to 0.25 as we doubled end from 1 

to 2. Now let's double and again to 4 so 4 sub intervals each are planned 0.25 and if we 

calculate the cube of Δ𝑡 and each sub interval and sum across intervals we see it has declined 

again and now if we double the number of sub intervals to 8 so the sub interval is now upland 

0.125 and if we calculate the cube of Δ𝑡 and sum it we see the sum has declined if we continue 

increasing 𝑛 we will see the sum of  Δ𝑡 to the power 3 will go to 0 and we just conclude that 

the integral of 𝑑𝑊 times 𝑑𝑡 goes to 0 mean square 

∫ 𝑑
𝑡

0

𝑊𝑠𝑑𝑠 = lim
𝑛→∞

∑ Δ𝑡𝑘
3

𝑛

𝑘=1

= 0 ⇒ 𝑑𝑊𝑡𝑑𝑡 = 0, (3.1.23) 

and this is what they mean when they say 𝑑𝑊 times 𝑑𝑡 is equal to zero (see Figure 3.5). 

 

Figure 3.5. Calculating of the sum cube Δ𝑡 

 

Now we can go and apply the same logic to 𝑑𝑡 squared which should be slightly simpler and 

𝑑𝑊 squared which is slightly complicated. 

The proof of 𝑑𝑡2 = 0. In the previous paragraph we explained why the term 𝑑𝑊 times 𝑑𝑡 is 

zero and now we use the same logic to find out why 𝑑𝑡 squared is equal to zero. It is going 
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to be a bit easier because we do not have any stochastic term in 𝑑𝑡 squared. First as in the 

previous paragraph we can write 𝑑𝑡2 in the following form: 

∫ 𝑑
𝑡

0

𝑠2, (3.1.24) 

let us divide the interval from zero to t into 𝑛 sub intervals, each of which is essentially Δ𝑡, 

we split the intervals into sub intervals along Δ𝑡 and let us represent the endpoints of some 

periods on 𝑡𝑖 with 𝑖 going from 0 to 𝑛 the number of sub intervals; (see Figure 3.4), so  from  

(3.1.24) we obtain ; 

∫ 𝑑
𝑡

0

𝑠2 = lim
𝑛→∞

∑ Δ𝑡𝑘
2

𝑛

𝑘=1

, (3.1.25) 

 as we mentioned in the previous paragraph the most convergence used in the stochastic 

integration problem is mean square conversion, so let us see if the mean square convergence 

produces 0 for 𝑑𝑡 squared. We say the sequence 𝑋𝑛 converges to 𝑋 in the mean square if the 

expected value of the squared deviation from 𝑋 goes to 0 as 𝑛 become very large. 

lim
𝑛→∞

𝐸 [|𝑋𝑛 − 𝑋|2] = 0, (3.1.26) 

now, in order to achieve our goal, we replace in the (3.1.26), 𝑋𝑛 by the partial sum and 𝑋 

with zero  

lim
𝑛→∞

𝐸 [|∑ Δ𝑡𝑘
2

𝑛

𝑘=1

− 0|

2

] = 0, (3.1.27) 

and we are claiming that the limit (3.1.27)  goes to zero. Now in place of the point-wise limit 

(3.1.25) we write the probabilistic limit (3.1.27) to be consistent with the approach used for 

the other rules. So, we obtain. 

∫ 𝑑
𝑡

0

𝑠2 = lim
𝑛→∞

𝐸 [(∑ Δ𝑡𝑘
2

𝑛

𝑘=1

)

2

] , (3.1.28) 
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but the expected value upper deterministic term is the deterministic term and Δ𝑡 =
𝑡

𝑛
, so we 

get; 

∫  
𝑡

0

𝑑𝑠2 = 𝑙𝑖𝑚
𝑛→∞

 (∑  

𝑛

𝑘=1

Δ𝑡𝑘
2)

2

= 𝑙𝑖𝑚
𝑛→∞

 (∑  

𝑛

𝑘=1

(
𝑡

𝑛
)

2

)

2

= 𝑙𝑖𝑚
𝑛→∞

 (𝑛 (
𝑡

𝑛
)

2

)

2

= 𝑙𝑖𝑚
𝑛→∞

 (
𝑡2

𝑛
)

2

= 0 ⇒ 𝑑𝑡2 = 0

, (3.1.29) 

This is what they mean when they say 𝑑𝑡2 squared is equal to zero. 

The proof of 𝑑𝑊2 = 𝑑𝑡. By following the same steps in the previous two paragraphs, we can 

write; 

∫ 𝑑
𝑡

0

𝑊𝑠
2 = lim

𝑛→∞
𝐸 [(∑ Δ𝑊𝑡𝑘

2

𝑛

𝑘=1

− 𝑡)

2

] , (3.1.30) 

whereas we used the definition of the mean square convergence 

lim
𝑛→∞

𝐸 [|𝑋𝑛 − 𝑋|2] = 0. 

Then replaced  𝑋𝑛 with ∑ Δ𝑊𝑡𝑘

2𝑛
𝑘=1  and 𝑡 in place of 𝑋. We are claiming that the  

lim
𝑛→∞

𝐸 [(∑ Δ𝑊𝑡𝑘

2𝑛
𝑘=1 − 𝑡)

2
] = 0. After substituting each term in place, we get; 

∫  
𝑡

0

𝑑𝑊𝑠
2 = 𝑙𝑖𝑚

𝑛→∞
 𝐸 [(∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 − 𝑡)

2

]

= 𝑙𝑖𝑚
𝑛→∞

 𝐸 [(∑  

𝑛

𝑘=1

Δ𝑊𝑙𝑘

2)

2

+ 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑊𝑘
2]

     , (3.1.31) 

now we know that; 
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(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)2 = (∑ 𝑥𝑘

𝑛

𝑘=1

)

2

= ∑ 𝑥𝑘
2

𝑛

𝑘=1

+ 2 ∑ ∑ 𝑥𝑘𝑥𝑗

𝑘−1

𝑗=1

𝑛

𝑘=1

, (3.1.32) 

by using (3.1.32) in (3.1.31) we obtain; 

∫  
𝑡

0

𝑑𝑊𝑠
2 = 𝑙𝑖𝑚

𝑛→∞
 𝐸 [(∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 )

2

+ 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 ]

= 𝑙𝑖𝑚
𝑛→∞

 𝐸 [∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

4 + 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

Δ𝑊𝑡𝑘

2 Δ𝑊𝑡𝑗

2 + 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 ]

, (3.1.33) 

now we know from the moments of Brownian's motion that; 

𝐸[𝐵𝑡
2𝑘+1] = 0

𝐸[𝐵𝑡
2𝑘] = (2𝑘 − 1)‼ 𝑡𝑘; 𝑘 = 0,1,2, ⋯

, (3.1.34) 

where 

𝑛‼ = 𝑛(𝑛 − 2)(𝑛 − 4). (3.1.35) 

So if that ; 

𝐸[𝐵𝑡] = 0

𝐸[𝐵𝑡
2] = 𝑡

𝐸[𝐵𝑡
3] = 0

    𝐸[𝐵𝑡
4] = 3𝑡2

, (3.1.36) 

using previous relationships, we find that; 

𝐸[Δ𝑊𝑡
4] = 3Δ𝑡2,  𝐸[Δ𝑊𝑡

2] = Δ𝑡, (3.1.37) 

Now from (3.1.33) and because the Brownian increments and disjoint interval are 

independent, we replace expected value of Δ𝑊 squared by Δ𝑡  we obtain; 
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∫  
𝑡

0

𝑑𝑊𝑠
2 = 𝑙𝑖𝑚

𝑛→∞
 𝐸 [(∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 )

2

+ 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 ]

= 𝑙𝑖𝑚
𝑛→∞

 𝐸 [∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

4 + 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

Δ𝑊𝑡𝑘

2 Δ𝑊𝑡𝑗

2 + 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑊𝑡𝑘

2 ]

= 𝑙𝑖𝑚
𝑛→∞

  [3 ∑  

𝑛

𝑘=1

Δ𝑡𝑘
2 + 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

Δ𝑡𝑘Δ𝑡𝑗 + 𝑡2 − 2𝑡 ∑  

𝑛

𝑘=1

Δ𝑡𝑘]

, (3.1.38) 

but ∑ Δ𝑡𝑘
𝑛
𝑘=1 = 𝑡 and Δ𝑡 =

𝑡

𝑛
,  so if that; 

∫  
𝑡

0

𝑑𝑊𝑠
2 = 𝑙𝑖𝑚

𝑛→∞
  [3 ∑  

𝑛

𝑘=1

Δ𝑡𝑘
2 + 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

Δ𝑡𝑘Δ𝑡𝑗 + 𝑡2 − 2𝑡2]

= 𝑙𝑖𝑚
𝑛→∞

  [3 ∑  

𝑛

𝑘=1

Δ𝑡𝑘
2 + 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

Δ𝑡𝑘Δ𝑡𝑗 − 𝑡2]

= 𝑙𝑖𝑚
𝑛→∞

  [3 ∑  

𝑛

𝑘=1

(
𝑡

𝑛
)

2

+ 2 ∑  

𝑛

𝑘=1

∑  

𝑘−1

𝑗=1

𝑡

𝑛

𝑡

𝑛
− 𝑡2]

= 𝑙𝑖𝑚
𝑛→∞

  [3𝑛
𝑡2

𝑛2
+ 2

𝑛(𝑛 − 1)

2

𝑡2

𝑛2
− 𝑡2]

= 𝑙𝑖𝑚
𝑛→∞

  [3
𝑡2

𝑛
+ (1 −

1

𝑛
) 𝑡2 − 𝑡2]

= [0 + (1 − 0)𝑡2 − 𝑡2]
= 0

, (3.1.39) 

and we thus conclude that the integral of 𝑑𝑊 squared over an interval goes to the length of 

the interval; 

∫ 𝑑
𝑡

0

𝑊𝑠
2 = 𝑡 ⇒ 𝑑𝑊𝑡

2 = 𝑑𝑡, (3.1.40) 

and this is what is meant by 𝑑𝑊 squared equal to 𝑑𝑡. 

Definition 3.10. Stochastic Integral. For any function 𝑓 = 𝑓(𝑡) the stochastic integral is a 

function like 𝑊 = 𝑊(𝑡), 𝑡 ∈ [0, 𝑇] which is given by, 
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𝑊(𝑡) = ∫ 𝑓(𝑠)𝑑𝐵(𝑠)
𝑡

0

= lim
𝑛→∞

∑ 𝑓(𝑡𝑘−1)(𝐵(𝑡𝑘) − 𝐵(𝑡𝑘−1))

𝑁

𝑘=1

, (3.1.41) 

where 𝑡𝑘 =
𝑘𝑡

𝑁
. 

The main types of stochastic integrals that appear in SDEs are:  

1. Ito stochastic integral. 

2. Stratonovich integral. 

Definition 3.11. Ito's Integral. Ito was the inventor of the theory that describes movement 

due to random events, which is called the theory of stochastic differential equations, in 1942, 

as Ito began his work from scratch in reconstructing the stochastic integrals in addition to the 

theory of analysis associated with it. Ito continued and developed his thoughts on stochastic 

analysis after receiving his doctorate in 1945. Besides, Ito published many effective papers 

on this topic. Among these papers are “On a stochastic integral equation” (1946), “On the 

stochastic integral” (1948), “Stochastic differential equations in a differentiable manifold” 

(1950), “Brownian motions in a Lie group” (1950), and “On stochastic differential equations” 

(1951). 

The Ito stochastic integral for the step process 𝐺 ∈ 𝐿2(0, 𝑇) on the interval (0, 𝑇)  is given 

by the following form: 

∫ 𝐺𝑑𝑊
𝑇

0

≔ ∑ 𝐺𝑘(𝑊(𝑡𝑘+1) − 𝑊(𝑡𝑘))

𝑚−1

𝑘=0

, (3.1.42) 

Definition 3.12. Stratonovich integral. The stochastic calculus that can be used as an 

alternative for Ito calculus was invented by Stratonovich. Besides, when looking at physical 

laws, Stratonovich calculus is considered completely natural. Additionally, Stratonovich 

integral appears in his stochastic calculus. Moreover, he solved the optimization problem 

other than non-linear filtering on the basis of his theory of Markov conditional processes, 

which published in his papers in 1959 and 1960. The Kalman-Bucy (linear) filter (1961) is a 
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special case of Stratonovich's filter. In addition, he developed the value of information theory 

(1965). The other most popular stochastic integral besides Ito stochastic integral is, 

Stratonovich stochastic integral defined as 

∫ 𝐵(𝑋, 𝑡)
𝑇

0

∘ 𝑑𝐵(𝑡) = lim
|𝑃𝑛|→0

∑ 𝐵 (
𝑋(𝑡𝑘+1

𝑛 ) − 𝑋(𝑡𝑘
𝑛)

2
, 𝑡𝑘

𝑛) (𝑊(𝑡𝑘+1
𝑛 ) − 𝑊(𝑡𝑘

𝑛))

𝑚𝑛−1

𝑘=0

 

provided this limit exists in 𝐿2(Ω) for all sequences of partitions 𝑃𝑛, with 

|𝑃𝑛| → 0. Here 𝑋(. ) a stochastic process with values in 𝑅𝑛. The symbol "∘" is used to denote 

that the integral is the Stratonovich integral. Two integrals find use in different areas. The Ito 

integral is used mostly in the fields of mathematics and finance because of martingale 

property, the Stratonovich integral is more popular in physics because of the limit of smooth 

noise argument. In particular, two integrals are mathematically equivalent in the following 

sense; any Stratonovich process 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑡)𝑑𝑡 ± σ(𝑋𝑡, 𝑡) ∘ 𝑑𝐵𝑡 

has an equivalent Ito process with identical solutions, which is given by 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑡)𝑑𝑡 ≠ σ(𝑋𝑡, 𝑡)𝑑𝐵𝑡 ±
1

2

∂σ

∂𝑥
(𝑋𝑡, 𝑡)𝑎(𝑋𝑡, 𝑡)𝑑𝑡. 

This formula holds in both directions. So, if we already have a well-defined SDE, either in 

the Ito or Stratonovich sense, then we can convert between the two conventions arbitrarily, 

depending on which properties we feel are more convenient for the problem at hand. Notice 

that the conversion formula basically comes down to a modification of the drift (𝑑𝑡) term. 

3.1.3. Stochastic differential equations 

If one or more of the terms of a differential equation is a stochastic process, then this 

equation is called a stochastic differential equation (SDE). In addition, the resulting solution 

is also a stochastic process in itself. There are various phenomena such as thermal 

fluctuations or the fluctuation of stock prices that subject to randomness. For their modeling, 

SDE is used. We also know that from the Brownian motion (or Wiener process) white noise 

is derived which would normally be incorporated into SDEs.  
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Systems in many branches of science and industrial sectors are often affected by 

different types of environmental noise. Therefore, in order for the mathematical modeling of 

many problems to be closer to reality, either the coefficients of the terms of the differential 

equations should contain randomness or a forcing term containing randomness must be added 

to the equation. 

For an example, let's take the population growth model given in (Mao, 2007) and 

(Øksendal, 2003) as follows  

   

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑓(𝑡)𝑁(𝑡), 𝑁(0) = 𝑁0, (3.1.43) 

where 𝑁(𝑡) is the population size at time 𝑡, 𝑓(𝑡) is related with deterministic growth rate at 

time 𝑡, and 
𝑑𝑁(𝑡)

𝑑𝑡
 is the rate of change in population size. Consider that the function 𝑓(𝑡) is 

not known completely but depends on some random external effects. In other words, it is 

written in the form; 

𝑓(𝑡) = 𝑟(𝑡) + σ(𝑡)"noise". (3.1.44) 

Here, the behavior of the term "noise" is not completely known, only the probability 

distribution is known. Let us consider that the function 𝑟(𝑡) is non-random and replaced with 

𝑓(𝑡) in the previous population growth model, we find that 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟(𝑡)𝑁(𝑡) + 𝜎(𝑡)𝑁(𝑡)"noise". (3.1.45) 

It can be written in the integral form as follows  

𝑁(𝑡) = 𝑁0 + ∫ 𝑟(𝑠)𝑁(𝑠)𝑑
𝑡

0

𝑠 + ∫ σ(𝑠)𝑁(𝑠)"noise"𝑑
𝑡

0

𝑠. (3.1.46) 

Whereas the mathematical interpretation of the term "noise" in the literature is derived from 

Brownian motion (Wiener process) and is denoted by 
𝑑𝑊(𝑡)

𝑑𝑡
. Based on the above, the term 

"noise"𝑑𝑡 can be expressed as "noise"𝑑𝑡 = �̇�(𝑡)𝑑𝑡 = 𝑑𝑊(𝑡) and 
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∫ 𝜎(𝑠)𝑁(𝑠)"noise"
𝑡

0
𝑑𝑠 = ∫ 𝜎(𝑠)𝑁(𝑠)

𝑡

0
𝑑𝑊(𝑠). The following form of (3.1.46) Called the 

integral formula  

𝑁𝑡 = 𝑁0 + ∫ 𝑟(𝑠)𝑁(𝑠)𝑑
𝑡

0

𝑠 + ∫ σ(𝑠)𝑁(𝑠)𝑑𝑊(𝑠)
𝑡

0

, (3.1.47) 

and the differential form of (3.1.46) is  

𝑑𝑁𝑡 = 𝑟(𝑡)𝑁(𝑡)𝑑𝑡 + σ(𝑡)𝑁(𝑡)𝑑𝑊(𝑡). (3.1.48) 

Now if we include the parameters ϕ, the continuous time 𝑡 and the variable 𝑁𝑡, then the 

differential equation (3.1.48) in a general form can be written as follows  

𝑑𝑁(𝑡) = 𝑏(𝑁(𝑡), 𝑡, ϕ)𝑑𝑡 + σ(𝑁(𝑡), 𝑡, ϕ)𝑑𝑊(𝑡), (3.1.49) 

or in integral form as 

𝑁(𝑡) = 𝑁0 + ∫ 𝑏(𝑠, 𝑁𝑠)𝑑
𝑡

𝑡0

𝑠 + ∫ σ(𝑠, 𝑁𝑠)𝑑𝑊𝑠

𝑡

𝑡0

, (3.1.50) 

whereas the drift and diffusion coefficients are 𝑏 and σ, respectively, and the above 

differential equation is called the Ito stochastic differential equation. 𝑁0 is called the initial 

value of the random variable at moment 𝑡0 and the stochastic process 𝑁𝑡 is called the solution 

for (3.1.49) or (3.1.50). 

3.1.4. Existence and uniqueness theorem for SDE 

Let 𝐴, 𝐵: 𝑅 × [0, 𝑇] → 𝑅 be continuous functions satisfying (Øksendal, 2003), 

Lipschitz condition {
|𝐴(𝑥, 𝑡) − 𝐴(𝑦, 𝑡)| ≤ 𝛿|𝑥 − 𝑦|
|𝐵(𝑥, 𝑡) − 𝐵(𝑦, 𝑡)| ≤ 𝛿|𝑥 − 𝑦|

∀𝑥, 𝑦 ∈ 𝑅, 𝑡 ∈ [0, 𝑇] , (3.1.51) 

Linear growth condition {
|𝐴(𝑥, 𝑡)| ≤ 𝛿(1 + |𝑥|)
|𝐵(𝑥, 𝑡)| ≤ 𝛿(1 + |𝑥|)

∀𝑥 ∈ 𝑅, 𝑡 ∈ [0, 𝑇] , (3.1.52) 

for some constant δ. Let 𝑋 be a random variable independent of the filtration ℱ0 relative to 

a standard Brownian motion {𝑊𝑡} , such that 

𝐸|𝑋|2 < ∞, 
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Then there exists a unique solution 𝑋𝑡 ∈ 𝐿2(0, 𝑇) of the SDE 

{
𝑑𝑋𝑡 = 𝐴(𝑋𝑡, 𝑡)𝑑𝑡 + 𝐵(𝑋𝑡, 𝑡)𝑑𝑊𝑡

𝑋0 = 𝑋
 

3.1.5. Wick-product 

In 1991 Lindstrom et al. (Lindstrøm et al., 1991) proved that there is a close 

relationship between the deterministic differential equation of the form 

𝑑𝑥𝑡

𝑑𝑡
= 𝑏(𝑥𝑡) + 𝑠(𝑥𝑡) ⋅ ∑ 𝑥𝑘(𝑡)𝑧𝑘

𝑘

, (3.1.53) 

and the Ito-Skorohod stochastic differential equation of the form 

𝑑𝑋𝑡 = 𝑏⋄(𝑋𝑡)𝑑𝑡 + 𝜎⋄(𝑋𝑡)𝛿. (3.1.54) 

Here 𝑏⋄, 𝜎⋄ show Wick versions of functions 𝑏 and 𝜎, respectively. The connection 

is achieved by converting the stochastic process 𝑋𝑡 taken from 𝐿2 into the analytical function 

ℋ(𝑋𝑡)(𝑧1, 𝑧2, ⋯ ) with the help of the ℋ Hermite transformation and its ℋ−1 inverse. The 

Wick product was firstly defined by G.C. Wick (Wick, 1950) in the scope of his work on 

quantum theory in 1950, and a similar concept was later introduced in the field of probability 

theory by Hida and Ikeda in 1965. Then the Wick product has become an important tool in 

the study of stochastic differential equations. To establish a connection between stochastic 

differential equations and deterministic ones, we need to use Hermite transform which 

converts the Wick products into ordinary products. The basic idea of using the Hermite 

transform is to make a correspondence between the elements of the space of stochastic 

distributions and a space of analytic functions of complex variables. In the white noise space, 

the name of the Wick product is given over the standard multiplication of two items. On the 

other hand, in a white noise space the Wick product is unstable so we must look at larger (or 

smaller) space where it is stable. The so-called weighted stochastic spaces whose elements 

are characterized by their Wiener chaos coefficients which include Hida and Kondratiev 

spaces of stochastic test functions and stochastic distributions are the required spaces. Below 

we will give a brief description of them. 
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3.1.6. Preliminaries on white noise analysis 

The Schwartz space 𝒮(𝑅𝑑) consists of rapidly decreasing functions 𝑓: ℝ𝑑 → ℂ such 

that 𝑓 ∈ 𝐶∞(𝑅𝑑) and for all multi-indices 𝛼 ≥  0  and 𝛽 ≥  0  the function mapping 𝑥 to 

𝑥𝛼𝜕𝛽𝑓(𝑥) is bounded on 𝑅𝑑 (Adams and Fournier, 2003). The space of tempered 

distributions 𝒮′(𝑅𝑑) equipped with a weak-star topology is dual of 𝒮(𝑅𝑑). Tempered 

distributions can be thought of as distributions that do not grow faster than a polynomial at 

infinity. By the Bohner-Minlos theorem there exists a unique probability measure 𝜇 on Borel 

subsets ℬ(𝒮′(𝑅𝑑)) of 𝒮′(𝑅𝑑) which forms a white noise probability space 

(𝒮′(𝑅𝑑), ℬ(𝒮′(𝑅𝑑)), 𝜇). Throughout this work, we also use the spaces (𝑆) and (𝑆)∗ which 

provide a suitable environment for stochastic differential equations and are named as Hida 

test function space and Hida distribution space, respectively. Hida distribution and test 

function spaces are subspaces of 𝐿2(𝑅) in some respects corresponding to Schwartz 

subspaces of 𝐿2(𝑅). Let the Hermite polynomial ℎ𝑛(𝑥) of order  𝑛 be defined by 

 

ℎ𝑛(𝑥) = (−1)𝑛e
x2

2 𝑑𝑛

𝑑𝑥𝑛 (e-
x2

2 ) ,  𝑛 = 0,1,2, … , (3.1.55) 

and the  𝑛𝑡ℎ Hermite function 휁𝑛(𝑥) be defined by 

휁𝑛(𝑥) = 𝜋−1/4((𝑛 − 1)!)
−1/2e

-
1
2

x2

ℎ𝑛−1(√2𝑥),  𝑛 ≥ 1. (3.1.56) 

Then 휁𝑛(𝑥) ∈ 𝒮(𝑅𝑑) is an eigenfunction for the operator 𝐴 = − (
𝑑

𝑑𝑥
)

2

+ 𝑥2 + 1, and 

{휁𝑛}𝑛≥1 constitutes an orthonormal basis for 𝐿2(𝑅). Therefore, the family of tensor products 

휁𝛼 = 휁(𝛼1,…,𝛼𝑑) = 휁𝛼1
⊗ ⋯ ⊗ 휁𝛼𝑑

(𝛼 ∈ 𝑁𝑑)  forms an orthogonal basis for 𝐿2(𝑅), where 𝛼 =

(𝛼1, . . . , 𝛼𝑑) denote 𝑑 −dimensional multi-indices with 𝛼1, … , 𝛼𝑑 ∈ 𝑁. Assume that the 

family of  𝑖 -th multi-index 𝛼(𝑖) = (𝛼1
(𝑖)

, … , 𝛼𝑑
(𝑖)

)  is given in some fixed ordering   

𝑖 < 𝑗 ⇒ 𝛼1
(𝑖)

+ ⋯ + 𝛼𝑑
(𝑖)

≤ 𝛼1
(𝑗)

+ ⋯ + 𝛼𝑑
(𝑗)

 

i.e., the {𝛼(𝑗)}
𝑗=1

∞
 is formed in an increasing order. Let us define 
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휂𝑖 = 휁𝛼(𝑖) = 휁
𝛼1

(𝑖) ⊗ ⋯ ⊗ 휁
𝛼𝑑

(𝑖) ,  𝑖 ≥ 1. 

To take the multi-indices of arbitrary length, we consider multi-indices of elements 

of the space (𝑁𝟘
N)𝑐 , of all sequences 𝛼 = (𝛼1, 𝛼2, . . . ) with elements 𝛼𝑖 ∈ 𝑁𝟘 and with 

compact support. Let 𝐽 = (𝑁𝟘
𝑁)𝑐, and  𝛼 ∈ 𝐽 . Before defining Kondratiev and Hida spaces, 

we will give the following useful theorem named Wiener-Ito chaos expansion which provides 

an orthonormal expansion using Hermite polynomials.  

Theorem 3.2. (Wiener-Ito chaos expansion). Holden et al. (2010). Every element 𝑓 in 𝐿2 

has a unique expansion  

𝑓(𝜔) = ∑ 𝑐𝛼𝐻𝛼(𝜔)

𝛼

, 

where 𝑐𝛼 ∈ 𝑅𝑛. By 𝐻𝛼, we define the random variable 

 𝐻𝛼(𝜔) = ∏ ℎ𝛼𝑖
(⟨𝜔, 휂𝑖⟩)∞

𝑖=1 ,  𝜔 = (𝜔1, … , 𝜔𝑚) ∈ 𝒮′(𝑅𝑑). 

Moreover, let us note that {𝐻𝛼}𝛼∈𝐽 forms an orthogonal basis in 𝐿2(𝒮′(𝑅𝑑)), and has 

norm expression 

  |𝐻𝛼|
𝐿2(𝒮′(𝑅𝑑))

2 = 𝛼! ≔ 𝛼1! 𝛼2! … 

Now, we will define the Kondratiev spaces of stochastic test and distribution spaces. 

Definition 3.13. Space of the Kondratiev test functions. For 𝑘 = 1,2, ⋯ 𝑎𝑛𝑑 − 1 ≤ ρ ≤ 1, 

let 

(𝒮)ρ,𝑘 = {𝑓 ∈ 𝐿2(μ): 𝑓(ω) = ∑ 𝑐α𝐻α(ω)

α

, 𝑐α ∈ 𝑅} , 

such that 

|𝑓|(𝒮)ρ,𝑘

2 ≔ ∑(α!)1+ρ𝑐α
2(2𝑁)𝑘α

α

< ∞, 

where 
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(2𝑁)𝑘α = ∏(2(𝑖 − 1)𝑚 + 𝑗)α𝑖𝑗

𝑚

𝑖,𝑗=1

, if α = (α𝑖𝑗)
1≤𝑖,𝑗≤𝑚

. 

The space of Kondratiev test functions (𝒮)ρ, is defined by 

(𝒮)ρ = ⋂(𝒮)ρ,𝑘

∞

𝑘=1

 

Definition 3.14. Space of Hida distributions. The space of the Hida distributions can be 

described in simple terms as follows: 

• The space of Hida distributions, (𝒮)−𝜌, is defined by 

(𝑆)−𝜌 = ⋃(𝒮)−𝜌,𝑘

∞

𝑘=1

 

• We have 

(𝒮)𝜌 ⊂ 𝐿2(𝜇) ⊂ (𝒮)−𝜌 

 

Definition 3.15. Wick product. Let 𝐹 = ∑ 𝑎α𝐻αα  and 𝐺 = ∑ 𝑎β𝐻ββ  be the two elements 

taken from (𝒮)−1
𝑛 , 𝑎α, 𝑏α ∈ 𝑅𝑛. In this case, the Wick product of 𝐹 and 𝐺 is denoted by 𝐹 ⋄

𝐺 and identified by  

𝐹 ⋄ 𝐺 = ∑ 𝑎𝑎𝑏β𝐻𝑎+β

𝑎,β

= ∑ 𝑐γ𝐻γ

γ

. 

Where 𝑐γ = ∑ 𝑎α𝑏βα+β=γ . 

The following basic algebraic properties of the Wick product follow directly 

from the definition. 

• (Commutative law) 𝐹, 𝐺 ∈ (𝒮)−1
𝑛 ⇒ 𝐹 ⋄ 𝐺 = 𝐺 ⋄ 𝐹. 

• (Associative law) 𝐹, 𝐺, 𝐾 ∈ (𝒮)−1
𝑛 ⇒ 𝐹 ⋄ (𝐺 ⋄ 𝐾) = (𝐹 ⋄ 𝐺) ⋄ 𝐾. 

• ( Distributive law )𝐹, 𝐺, 𝐾 ∈ (𝒮)−1
𝑛 ⇒ 𝐹 ⋄ (𝐺 + 𝐾) = 𝐹 ⋄ 𝐺 + 𝐹 ⋄ 𝐾. 
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Definition 3.16. Hermite transform. Let 𝐹 = ∑ 𝑏α𝐻αα  taken from (𝒮)−1
𝑛 , 𝑎α ∈ 𝑅𝑛. In this 

case, the Hermite transform of 𝐹, which denoted by ℋ𝐹 or �̃�, is defined by 

ℋ𝐹(𝑧) = �̃�(𝑧) = ∑ 𝑏α𝑧α

α

∈ 𝐶𝑛, 

where 𝑧 = (𝑧1, 𝑧2, … ) ∈ 𝐶𝑁 and 𝑧α = 𝑧1
α1𝑧2

α2 … 𝑧
𝑗

α𝑗
 if α = (α, α, … ) ∈ 𝒥 where 𝑧𝑖

0 = 1 

3.1.7. Galilean transform 

The set of equations that relate the coordinates of space and time in classical physics 

for two systems moving at a constant speed relative to each other are called Galilean 

transformations. These transformations were mentioned in the paper of Wadati and Akutsu  

(Wadati and Akutsu, 1984) to convert the stochastic PDE into a deterministic PDE. In this 

thesis, we will use these transformations for solving stochastic differential equations. For an 

example and clarification about this transformation, we will review an example from 

Wadati’s article (Wadati and Akutsu, 1984). Example. By using the following Galilean 

transform 

𝑢(𝑥, 𝑡) = 𝑈(𝑋, 𝑡) + 𝑊(𝑡)

𝑋 = 𝑥 + 𝑚(𝑡)

𝑚(𝑡) = 6 ∫  
𝑡

0

𝑊(𝑡′)𝑑𝑡′

𝑊(𝑡) = ∫  
𝑡

0

휂(𝑠)𝑑𝑠

, (3.1.58) 

we can transform the following stochastic equation 

𝑢𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 휂(𝑡), (3.1.59) 

to the following deterministic form 

𝑈𝑡(𝑥, 𝑡) − 6𝑈(𝑥, 𝑡)𝑈𝑥(𝑥, 𝑡) + 𝑈𝑥𝑥𝑥(𝑥, 𝑡) = 0. (3.1.60) 

 

3.2. Basic Concepts on The Nonlinear Methods 

Throughout the thesis we use tanh, extended tanh and F-expansion methods. The aim 

of this section is to provide basic information on these methods.  
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The methods of tanh and extended tanh methods mainly lead to transforming of a 

traveling wave as  𝑢(𝑥, 𝑡) = 𝑢(𝑥 − 𝜈𝑡) = 𝑈(𝜉) , where 𝑈(𝜉) is the wave solution traveling 

at speed  𝜈. Then these methods assume a priori that travelling wave solutions may be 

expressed in terms of the function tanh. In the following, we explain these methods. 

3.2.1. Preliminaries of the method of tanh 

Firstly, we start by considering the equation of nonlinear partial differential in  a general 

form with two  independent  variables 𝑡 and 𝑥  describing the waveform  𝑢(𝑥, 𝑡)  

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , ⋯ ) = 0, (3.2.1) 

where 𝑃 in its arguments represents a polynomial and we want to know that if the travelling 

waves are solutions of (3.2.1), or not. 

1. As a first step, we introduce the following transformation to produce the traveling 

wave solution for Eq. (3.2.1)  

𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡), (3.2.2) 

where both constants 𝑘 and  𝑐  are determined later. As a result of this 

transformation, the derivatives are changed into 

∂

∂𝑡
= −𝑘𝑐

𝑑

𝑑𝑧
,

∂

∂𝑥
= −𝑘

𝑑

𝑑𝑧
∂2

∂𝑥2
= 𝑘2

𝑑2

𝑑𝑧2
,

∂3

∂𝑥3
= 𝑘3

𝑑3

𝑑𝑧3
, … ,

(3.2.3) 

and so on for the other derivates. Substitution of (3.2.3) into (3.2.1) yields the 

following form of the ODE 

𝑃(𝑉, 𝑉′, 𝑉′′, 𝑉′′′, … ) = 0. (3.2.4) 

2. In this step there are two options, for more details see (Malfliet, 2004). 

a) With zero boundary condition. In some cases, boundary conditions may be 

imposed a priori, for example, if we analyze the problems with vanishing tail 

or front, we implement conditions such as 

𝑉(𝑧) → 0,  
𝑑𝑛𝑉(𝑧)

𝑑𝑧𝑛
→ 0,  (𝑛 = 1,2, … ) 𝑓𝑜𝑟 𝑧 → ±∞. (3.2.5) 
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In this case, the constants resulting from the process of integrating the 

differential equation with respect to the derivative  𝑧  are selected as zeros 

(Malfliet, 1992, 2004). Then we obtain a simplified ODE. 

b) Without boundary conditions. We move to the step (3) without integrating 

the ODE. 

3. Now we change the independent variable  𝑧  to another new independent variable as 

follows 

𝑌 = 𝑡𝑎𝑛ℎ(𝑧) 𝑜𝑟 𝑌 = 𝑐𝑜𝑡ℎ(𝑧). (3.2.6) 

As a result of the previous transformation, we get a change in the derivatives as 

follows 

𝑑

𝑑𝑧
= (1 − 𝑌2)

𝑑

𝑑𝑌
𝑑2

𝑑𝑧2
= (1 − 𝑌2) (−2𝑌

𝑑

𝑑𝑌
+ (1 − 𝑌2)

𝑑2

𝑑𝑌2
)

𝑑3

𝑑𝑧3
= (1 − 𝑌2) ((6𝑌2 − 2)

𝑑

𝑑𝑌
− 6𝑌(1 − 𝑌2)

𝑑2

𝑑𝑌2
+ (1 − 𝑌2)2

𝑑3

𝑑𝑌3
) .

(3.2.7) 

4. Applying the previous steps, the solution will be written as a series of powers of 𝑌  

as follows  

𝑉(𝑧) = ∑ 𝑎𝑠𝑌𝑠

𝑀

𝑠=0

, (3.2.8) 

where 𝑀 is a parameter determined in the next step by using homogeneous balance. 

Then by using both of (3.2.7)  and (3.2.6) in ODE (3.2.4) we obtain an equation in 

the powers of  𝑌 . 

5. The balancing integer term 𝑀 can be calculated using the principle of homogeneous 

balance after using (3.2.4) in (3.2.6), as follows: 

    𝐷 [
𝑑𝑞𝑉

𝑑𝑧𝑞] = 𝑀 + 𝑞 

    𝐷 [𝑉𝑟 (
𝑑𝑞𝑉

𝑑𝑧𝑞)
𝑠

] = 𝑀𝑟 + 𝑠(𝑞 + 𝑀) 
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 Therefore, the value of 𝑀 in Eq. (3.2.8) is found. 

6. Reaching this step means that the integer positive number  𝑀 is known. If we make 

the coefficients of the powers of 𝑌 in the resulting equation from step 4 equal to zero 

we obtain a system of algebraic equations with the unknown parameters 𝑎𝑠, (𝑠 =

 0, 1, . . . , 𝑀). By solving this system, we obtain the required parameters. Finally, using 

(3.2.8), we obtain the analytical solution in closed form of (3.2.1). 

3.2.2. Preliminaries of the method of extended-tanh 

In this method, the same algorithm is followed in the tanh method except for step 4, the 

expansion is replaced by the next expansion of the solution 𝑢(𝑥, 𝑡)  

𝑉(𝑧) = ∑ 𝑎𝑠𝑌𝑠

𝑀

𝑠=0

+ ∑ 𝑎−𝑠𝑌−𝑠

𝑀

𝑠=1

. (3.2.9) 

Likewise, in the tanh method, we obtain the parameter  𝑀  by applying the principle of 

homogeneous balance between the higher order nonlinear and linear terms. Then we 

replace (3.2.9) in ODE (3.2.4) and proceed as suggested with the method of tanh. 

3.2.3. Preliminaries of the F-expansion method 

A brief description of the essential steps of the F-expansion method will be provided here 

since the method was explained in several papers (Wang and Li, 2005; Zhou et al., 2003). 

Before applying the F-expansion method, the Wick-type equation will be transformed to an 

ordinary products equation by using the Hermite transform. So, the first step will be the 

Hermite transformation. 

1. The Wick-type equation. 

 

𝐴⋄(𝑡, 𝑥, 𝜕𝑡 , ∇𝑥, 𝑈, 𝜔) = 0, (3.2.10) 

 will be transformed to the following partial differential equation (PDE)

 

�̃�(𝑡, 𝑥, 𝜕𝑡, ∇𝑥, �̃�, 𝑧1, 𝑧2, … ) = 0, (3.2.11) 
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by use of the Hermite transform. This step replaces the real-valued function with a 

complex-valued function. Now, we have to solve a deterministic PDE with complex 

coefficients. 

2. The deterministic PDE with complex coefficients (3.2.11) will be converted into an 

ordinary differential equation (ODE) by considering the transformation of the form 

�̃�(𝑡, 𝑥, 𝑧) = 𝑢(𝑡, 𝑥, 𝑧) = 𝑢(ζ), ζ = 𝑓(𝑡, 𝑥)𝑥 + 𝑔(𝑡, 𝑥). The converted equation reads 

as follows  

𝐴(𝑢, 𝑢ζ, 𝑢ζζ, … ) = 0. (3.2.12) 

3. We assume that the solution of Eq. (3.2.12) can be expressed in the form of finite 

series as follows  

𝑢(ζ) = ∑ 𝑎𝑖(𝑡, 𝑧)𝐹𝑖(ζ)

𝑛

𝑖=0

, (3.2.13) 

where the function 𝐹(ζ) satisfies the following elliptic equation of first kind 

𝐹ζ
2 = 𝐴1 + 𝐴2𝐹2 + 𝐴3𝐹4, (3.2.14) 

Eq. (3.2.14) has 24 Jacobian elliptic function solutions given in Table 3.3. 

Table 3.3. The 24 Jacobian elliptic function solutions of Eq. (3.2.14). 

Case 𝐴1 𝐴2 𝐴3 𝐹(ζ) 

1 1 −(1 + 𝑚2) 𝑚2 𝑠𝑛(ζ) 

2 1 −(1 + 𝑚2) 𝑚2 𝑐𝑑(ζ) 

3 1 − 𝑚2 2𝑚2 − 1 −𝑚2 𝑐𝑛(ζ) 

4 𝑚2 − 1 2 − 𝑚2 -1 𝑑𝑛(ζ) 

5 𝑚2   − (1 + 𝑚2)  1 𝑛𝑠(ζ) 

6 𝑚2 −(1 + 𝑚2) 1 𝑑𝑐(ζ) 

7 −𝑚2 2𝑚2 − 1 1 − 𝑚2 𝑛𝑐(ζ) 

8 -1 2 − 𝑚2 1 − 𝑚2𝑛𝑑(ζ) 𝑛𝑑(ζ) 

9 1 2 − 𝑚2 1 − 𝑚2 𝑠𝑐(ζ) 

10 1 2𝑚2 − 1 −𝑚2(1 − 𝑚2) 𝑠𝑑(ζ) 

11 1 − 𝑚2 2 − 𝑚2 1 𝑐𝑠(ζ) 

12 −𝑚2(1 − 𝑚2) 2𝑚2 − 1 1 𝑑𝑠(ζ) 

13 

𝑚2

4
 

 

𝑚2 − 2

2
 

𝑚2

4
 𝑛𝑠(ζ) ± 𝑑𝑠(ζ) 

14 
𝑚2

4
 

𝑚2 − 2

2
 

𝑚2

4
 𝑠𝑛(ζ) ± i𝑐𝑛(ζ) 

15 
𝑚2

4
 

𝑚2 − 2

2
 

𝑚2

4
 √1 − 𝑚2𝑠𝑑(ζ) ± 𝑐𝑑(ζ) 
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                        Table 3.3. (Continue) 1. 

Case 𝐴1 𝐴2 𝐴3 𝐹(ζ) 

17 

1

4
 

 

1 − 𝑚2

2
 

1

4
 𝑚𝑠𝑛(ζ) ± i𝑑𝑛(ζ) 

18 
1

4
 

1 − 𝑚2

2
 

1

4
 𝑛𝑠(ζ) ± 𝑐𝑠(ζ) 

19 

1

4
 

 

1 − 𝑚2

2
 

1

4
 √1 − 𝑚2𝑠𝑐(ζ) ± 𝑑𝑐(ζ) 

20 

𝑚2 − 1

4
 

 

𝑚2 + 1

2
 

𝑚2 − 1

4
 𝑚𝑠𝑑(ζ) ± 𝑛𝑑(ζ) 

21 

1 − 𝑚2

4
 

 

𝑚2 + 1

2
 

1 − 𝑚2

4
 𝑛𝑐(ζ) ± 𝑠𝑐(ζ) 

22 
1 + 4𝑚2 − 𝑚4

4
 

𝑚2 + 1

2
 −

1

4
 𝑚𝑐𝑛(ζ) ± 𝑑𝑛(ζ) 

23 

(1 − 𝑚2)2

4
 

 

𝑚2 + 1

2
 

1

4
 𝑑𝑠(ζ) ± 𝑐𝑠(ζ) 

24 

𝑚4(1 − 𝑚2)

2(2 − 𝑚2)
 

 

2(1 − 𝑚2)

𝑚2 − 2
 

1 − 𝑚2

2(2 − 𝑚2)
 𝑑𝑐(ζ) ± √1 − 𝑚2𝑛𝑐(ζ) 

∗ 𝑚 is the module of Jacobian elliptic function. 

   

4. To specify the parameter 𝑛 of step 3, the highest order nonlinear term and highest 

order derivative term in Eq. (3.2.12) will be balanced. Substitution of 𝑛 into Eq. 

(3.2.13) yields the solution of Eq. (3.2.12) as follows  

𝑢(ζ) = 𝑎0(𝑡, 𝑧) + 𝑎1(𝑡, 𝑧)𝐹(ζ) + ⋯ + 𝑎𝑛(𝑡, 𝑧)𝐹(ζ)𝑛. (3.2.15) 

5. The next step is substitution of Eqs. (3.2.14) and (3.2.15) into Eq. (3.2.12). Then 

setting the coefficients of all powers of 𝐹𝑖 , 𝑥𝐹𝑖 and 𝐹ζ𝐹𝑖 of the resulting equation to 

zero gives a set of algebraic equations. By solving the set of algebraic equations, the 

parameters 𝑓, 𝑔, 𝑎𝑖(𝑖 = 0,1, … , 𝑛) can be obtained explicitly. 

6. By putting the parameters obtained in the previous step into Eq. (3.2.15) and ζ =

𝑓(𝑡, 𝑥)𝑥 + 𝑔(𝑡, 𝑥) we obtain the general formal solution 𝑢(ζ) = 𝑢(𝑡, 𝑥, 𝑧) of Eq. 

(3.2.11). 

7. Obtain general formal solution for Eq. (3.2.10). Taking the inverse Hermite 

transformation of 𝑢(𝑡, 𝑥, 𝑧) obtained in Step 6, i.e., 𝑈(𝑡, 𝑥) = ℋ(𝑢(𝑡, 𝑥, 𝑧)).We 
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deduce 𝑈(𝑡, 𝑥) which is a general formal solution of Wick-type stochastic Eq. 

(3.2.10). 

8. Derive the solutions of Jacobian elliptic function for Eq. (3.2.10). Replacing 

𝐴1, 𝐴2, 𝐴3, 𝐹(휁) in 𝑈(𝑡, 𝑥) obtained in step 7 with corresponding values in the Table 

3.3, we obtain a series of solutions of Jacobian elliptic function for Wick-type 

stochastic Eq. (3.2.10). 



4. RESULTS 

In this chapter, the method of tanh and extended tanh, the first two of the proposed 

methods for solving the evolution equations, are applied to a set of famous equations. As a 

first step, the search is for the appropriate Galilean transformation that transfers the stochastic 

equation into the deterministic case. Then methods of tanh and extended-tanh are used here 

to find solutions to the resulting equation, and then by replacing the Galilean transformation 

in the resulting equations, closed solutions of the studied equations are obtained. Finally, we 

visualize some solutions using computer programs to show the effect of stochastic terms on 

the solution. 

4.1. Using Galilean Transform for Solving the Stochastic KdV–Burgers Equation Via  

       The Method of Tanh 

The Korteweg-de Vries-Burgers equation is often used in the description of wave 

processes in dissipative-dispersive systems in many areas of physics ( Kudryashov, 1991). 

Let us start with the following equation  

𝑈𝑡 + 𝑈𝑈𝑋 − 𝐵𝑈𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋 = 휂(𝑇), (4.1.1) 

we call Eq. (4.1.1) a stochastic Korteweg de Vries-Burger's (KdVB) equation. Here 

inhomogeneous term 휂(𝑇) stands for external noise and both of   𝑋  and  𝑇  point to partial 

differentiations with respect to  𝑋  and  𝑇 , respectively. One simply applies the following 

Galilean transformation  

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (4.1.2) 

𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑
𝑇

0

𝑇′, (4.1.3) 

to convert the stochastic Kortewegde Vries-Burger's equation into its deterministic 

counterpart  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝐵𝑢𝑥𝑥 + 𝑅𝑢𝑥𝑥𝑥 = 0. (4.1.4) 

In the following sections, both the method of tanh and extended tanh will be applied, 

respectively, to the stochastic Korteweg de Vries-Burger's equation to develop solitary wave 

solutions. It should be noted that the method of extended tanh gives further solitary wave 

solutions. Boundary conditions can be applied a priori to reduce unnecessary calculations. 
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4.1.1. The method of tanh with zero boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the 

Korteweg de Vries-Burger's equation (4.1.4) into an ODE "with zero boundary condition", 

i.e, for 𝑉(𝑧) → 0,  
𝑑𝑛𝑉(𝑧)

𝑑𝑧
→ 0,  

𝑑2𝑉(𝑧)

𝑑𝑧2
→ 0 as  𝑧 →  ±∞,  

−𝑐𝑘𝑉 +
1

2
𝑉2 − 𝐵𝑘2𝑉′ + 𝑅𝑘3𝑉′′ = 0. (4.1.5) 

Balancing 𝑉′′with 𝑉2 in (4.1.5) lead to 

𝑀 + 2 = 2𝑀. (4.1.6) 

Therefore 

𝑀 = 2. (4.1.7) 

Hence the next step of the method of tanh gives the following finite expansion  

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.1.8) 

From the two relations (4.1.8) and (4.1.5), we get the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑘 and 𝑐 after collecting the coefficients 𝑌𝑆 , (𝑆 = 0,1,2, … ,4)  with 

each other and equating them to zero 

𝑌0 .: 
1

2
𝑘𝑎0

2 + 2𝑎2𝑅𝑘3 − 𝐵𝑘2𝑎1 − 𝑐𝑘𝑎0 = 0  

𝑌1 .: −2𝑅𝑘3𝑎1 − 2𝐵𝑘2𝑎2 − 𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0  

𝑌2 .: 𝑘𝑎0𝑎2 +
1

2
𝑘𝑎1

2 − 8𝑎2𝑅𝑘3 + 𝐵𝑘2𝑎1 − 𝑐𝑘𝑎2 = 0                                            (4.1.9) 

𝑌3 .: 2𝑅𝑘3𝑎1 + 2𝐵𝑘2𝑎2 + 𝑘𝑎1𝑎2 = 0  

𝑌4 .: 
1

2
𝑘𝑎2 + 6𝑎2𝑅𝑘3 = 0  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following two cases of solutions: 

1.  

𝑐 = −
6𝐵2

25𝑅
,  𝑘 =

𝐵

10𝑅
,  𝑎0 = −

3𝐵2

25𝑅
,  𝑎1 = −

6𝐵2

25𝑅
,  𝑎2 = −

3𝐵2

25𝑅
. (4.1.10) 
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2.   

𝑐 =
6𝐵2

25𝑅
,  𝑘 =

𝐵

10𝑅
,  𝑎0 =

9𝐵2

25𝑅
,  𝑎1 = −

6𝐵2

25𝑅
,  𝑎2 = −

3𝐵2

25𝑅
. (4.1.11) 

Solutions of the case 1. Substituting the following soliton solutions (4.1.10) into (3.2.8) and 

using (3.2.6), (3.2.2), we obtain the solution; 

𝑢1(𝑥, 𝑡) = −
3𝐵2

25𝑅
(1 + tanh[ϕ])2, (4.1.12) 

and 

𝑢2(𝑥, 𝑡) = −
3𝐵2

25𝑅
(1 + coth[ϕ])2, (4.1.13) 

where ϕ =
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥). We should note that in the above solution if ϕ → −∞ then 

𝑡𝑎𝑛ℎ[ϕ] → −1 and the solution 𝑢1 satisfies boundary conditions. From (4.1.12)- (4.1.13) 

and Eqs. (4.1.2)-(4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1), 

which are simplified as follows:  

𝑈1(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + tanh[ϕ1(𝑋, 𝑇)])2 + 𝑊(𝑇), (4.1.14) 

and 

𝑈2(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + coth[ϕ2(𝑋, 𝑇)])2 + 𝑊(𝑇), (4.1.15) 

where   

ϕ1(𝑋, 𝑇) = ϕ2(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)]. 

Solutions of the Case 2. Substituting the solutions (4.1.11) into (3.2.8) and using (3.2.6), 

(3.2.2), we arrive to the following soliton solutions; 

𝑢3(𝑥, 𝑡) = −
3𝐵2

25𝑅
(1 + tanh [

𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡 − 𝑥)]) (tanh [

𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡 − 𝑥)] − 3) , (4.1.16) 

and  
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𝑢4(𝑥, 𝑡) = −
3𝐵2

25𝑅
(1 + coth [

𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡 − 𝑥)]) (coth [

𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡 − 𝑥)] − 3) . (4.1.17) 

We should note that in the above solution if we take ϕ =
𝐵

10𝑅2
(𝑥 −

6𝐵2

25𝑅
𝑡) then tanh ϕ → 1 

when ϕ → ∞ , and the solution 𝑢3(𝑥, 𝑡) =
3𝐵2

25𝑅
(1 − tanh ϕ)(3 − tanh ϕ) satisfies 

boundary conditions. From (4.1.16)- (4.1.17) and Eqs. (4.1.2)- (4.1.3), we arrive at a set of 

exact stochastic solutions of Eq. (4.1.1), we arrive at a set of exact stochastic solutions of 

Eq. (4.1.1), which are simplified like this: 

𝑈3(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + tanh[𝜙3(𝑋, 𝑇)])(tanh[𝜙3(𝑋, 𝑇)] − 3) + 𝑊(𝑇), (4.1.18) 

and  

𝑈4(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + coth[ϕ4(𝑋, 𝑇)])(coth[ϕ4(𝑋, 𝑇)] − 3) + 𝑊(𝑇), (4.1.19) 

where  

𝜙3(𝑋, 𝑇) = 𝜙4(𝑋, 𝑇) = [
𝐵

10𝑅2
(

6𝐵2

25𝑅
𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 

4.1.2. The method of tanh without boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the 

Kortewegde Vries-Burger's equation (4.1.4) into an ODE with " no boundary conditions". 

−𝑐𝑘𝑉′ + 𝑘𝑉𝑉′ − 𝐵𝑘2𝑉′′ + 𝑅𝑘3𝑉′′′ = 0. (4.1.20) 

Balancing 𝑉′′′ with 𝑉′𝑉 in (4.1.20) gives 

 

𝑀 + 3 = 𝑀 + 1 + 𝑀. (4.1.21) 

So that  

𝑀 = 2. (4.1.22) 
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Hence the next step of the method of tanh gives the following finite expansion 

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.1.23) 

From the two relations  (4.1.23) and (4.1.20), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1,2, … ,5) coefficients to 

each other and equating them with zero 

𝑌0 .:   −2𝑅𝑘3𝑎1 − 2𝑎2𝐵𝑘2 − 𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0  

𝑌1 .:    −16𝑅𝑘3𝑎2 + 2𝐵𝑘2𝑎1 − 2𝑐𝑘𝑎2 + 2𝑘𝑎0𝑎2 + 𝑘𝑎1
2 = 0  

𝑌2 .:   8𝑅𝑘3𝑎1 + 8𝐵𝑎2𝑘2 + 𝑐𝑘𝑎1 − 𝑘𝑎0𝑎1 + 3𝑘𝑎1𝑎2 = 0  

𝑌3 .:   40𝑅𝑘3𝑎2 − 2𝐵𝑘2𝑎1 + 2𝑐𝑘𝑎2 − 2𝑘𝑎0𝑎2 − 𝑘𝑎1
2 + 2𝑘𝑎2

2 = 0, (4.1.24) 

𝑌4 .:    −6𝑅𝑘3𝑎1 − 6𝐵𝑎2𝑘2 − 3𝑘𝑎1𝑎2 = 0    

𝑌5 .:        
−24𝑅𝑘3𝑎2 − 2𝑘𝑎2

2 = 0.  
 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following solution: 

𝑐 = −
3𝐵2

25𝑅
+ 𝑎0,  𝑘 =

𝐵

10𝑅
,  𝑎0 = 𝑎0,  𝑎1 = −

6𝐵2

25𝑅
,  𝑎2 = −

3𝐵2

25𝑅
. (4.1.25) 

Substituting the solutions (4.1.25 ) into ( 4.1.23) and using (3.2.6 ),(3.2.2 ), we arrive to 

the following solitons solution which may be interpreted as a dark soliton solution: 

𝑢(𝑥, 𝑡) = 𝑎0 −
3𝐵2

25𝑅
(tanh2 [

𝐵

10𝑅
((

3𝐵2

25𝑅
− 𝑎0) 𝑡 + 𝑥)] + 2 tanh [

𝐵

10𝑅
((

3𝐵2

25𝑅
− 𝑎0) 𝑡 + 𝑥)]) , (4.1.26) 

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well as the velocity of the stationary wave. From (4.1.26) and Eqs. (4.1.2)- (4.1.3), we 

arrive at a set of exact stochastic solutions of Eq. (4.1.1), which are simplified as follows: 

𝑈(𝑋, 𝑇) = 𝑎0 −
3𝐵2

25𝑅
(tanh2[ϕ(𝑋, 𝑇)] + 2 tanh[ϕ(𝑋, 𝑇)]) + 𝑊(𝑇), (4.1.27) 

or 
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𝑈(𝑋, 𝑇) = 𝑎0 −
3𝐵2

25𝑅
(1 − 𝑠𝑒𝑐ℎ2[ϕ(𝑋, 𝑇)] + 2 tanh[ϕ(𝑋, 𝑇)]) + 𝑊(𝑇), (4.1.28) 

where   

ϕ(𝑋, 𝑇) = [
𝐵

10𝑅
((

3𝐵2

25𝑅
− 𝑎0) 𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 

Remark 1. In (4.1.27) if we take 𝑎0 = −
3𝐵2

25𝑅
 we obtain solution (4.1.14). 

4.1.3. Visualization of Some Solutions 

 

 

 

Figure 4.1. 3D, 2D, Contour Plots of the solution (4.1.15) for 𝐵 = 𝑅 = 1, where  𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.2. 3D, 2D, Contour Plots of the solution (4.1.15) for B=R=1, where    𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇] . 
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Figure 4.3. 3D, 2D, Contour Plots of the solution (4.1.15) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.4. 3D, 2D, Contour Plots of the solution (4.1.15) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

 

 

Figure 4.5. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where 𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.6. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.7. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇) 
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Figure 4.8. 3D, 2D, Contour Plots of the solution (4.1.28) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

  

4.2. Using Galilean Transform for Solving the Stochastic KdV–Burgers Equation Via  

       The Method of Extended Tanh 

4.2.1. The method of extended tanh with zero boundary condition 

Based on what was previously found, the balancing parameter takes the value 𝑀 = 2. 

Hence using (3.2.9) the next step of the method of extended tanh gives the following finite 

expansion 

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎−1𝑌−1 + 𝑎−2𝑌−2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.2.1) 

From the two relations ( 4.2.1) and  (4.1.5), we get the following system of algebraic 

equations for  𝑎0, 𝑎1, 𝑎2, 𝑎−1, 𝑎−2, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,8) 

coefficients with each other and equating them to zero 

𝑌0 .:   
1

2
𝑎−2

2 + 6𝑅𝑘2𝑎−2 = 0,  

𝑌1 .:   2𝑅𝑘2𝑎−1 + 2𝐵𝑘𝑎−2 + 𝑎−2𝑎−1 = 0  

𝑌2 .:   
1

2
𝑎−1

2 − 𝑐𝑎−2 + 𝑎−2𝑎0 − 8𝑅𝑘2𝑎−2 + 𝐵𝑘𝑎−1 = 0  

𝑌3 .:   −2𝑅𝑘2𝑎−1 − 2𝐵𝑘𝑎−2 − 𝑐𝑎−1 + 𝑎−2𝑎1 + 𝑎−1𝑎0 = 0.                                                     (4.2.2) 

𝑌4 .:   
1

2
𝑎0

2 − 𝑐𝑎0 + 𝑎−2𝑎2 + 𝑎−1𝑎1 − 𝐵𝑘𝑎1 + 2𝑅𝑘2𝑎−2 + 2𝑅𝑘2𝑎2 − 𝐵𝑘𝑎−1 = 0  

𝑌5 .:     −2𝑅𝑘2𝑎1 − 2𝐵𝑘𝑎2 − 𝑐𝑎1 + 𝑎−1𝑎2 + 𝑎0𝑎1 = 0   

𝑌6 .:   
1

2
𝑎1

2 + 𝑎0𝑎2 − 8𝑅𝑘2𝑎2 + 𝐵𝑘𝑎1 − 𝑐𝑎2 = 0  

𝑌7 .:   2𝑅𝑘2𝑎1 + 2𝐵𝑘𝑎2 + 𝑎1𝑎2 = 0  

𝑌8 .:   
1

2
𝑎2

2 + 6𝑅𝑘2𝑎2 = 0 . 
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Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following four cases of solutions: 

1.  

𝑐 =
6𝐵2

25𝑅
,  𝑘 =

𝐵

10𝑅
,  𝑎−2 = −

3𝐵2

25𝑅
,  𝑎−1 = −

6𝐵2

25𝑅
,  𝑎0 =

9𝐵2

25𝑅
,  𝑎1 = 0,  𝑎2 = 0. (4.2.3) 

2.  

𝑐 = −
6𝐵2

25𝑅
,  𝑘 =

𝐵

10𝑅
,  𝑎−2 = −

3𝐵2

25𝑅
,  𝑎−1 = −

6𝐵2

25𝑅
,  𝑎0 = −

3𝐵2

25𝑅
,  𝑎1 = 0,  𝑎2 = 0. (4.2.4) 

3.  

𝑐 =
6𝐵2

25𝑅
, 𝑘 =

𝐵

20𝑅
, 𝑎−2 = −

3𝐵2

100𝑅
,  𝑎−1 = −

3𝐵2

25𝑅
, 𝑎0 =

3𝐵2

10𝑅
, 𝑎1 = −

3𝐵2

25𝑅
, 𝑎2 = −

3𝐵2

100𝑅
. (4.2.5) 

4.  

𝑐 = −
6𝐵2

25𝑅
, 𝑘 =

𝐵

20𝑅
, 𝑎−2 = −

3𝐵2

100𝑅
, 𝑎−1 = −

3𝐵2

25𝑅
, 𝑎0 = −

9𝐵2

50𝑅
, 𝑎1 = −

3𝐵2

25𝑅
, 𝑎2 = −

3𝐵2

100𝑅
. (4.2.6) 

Solutions of the Case 1. Substituting the solutions (4.2.3) into (3.2.9) and using ( 3.2.6), 

(3.2.2 ), we obtain the following soliton solution; 

𝑢1(𝑥, 𝑡) =
3𝐵2

25𝑅
coth2 [

𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 − 𝑥)] (tanh [

𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 − 𝑥)] + 1) (3 tanh [

𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 − 𝑥)] − 1) . (4.2.7) 

We should note that in the above solution if we take ϕ =
𝐵

10𝑅
(𝑥 −

6𝐵2

25𝑅
𝑡) then tanh ϕ → 1 

when ϕ → ∞ , and the solution can be written as 𝑢1(𝑥, 𝑡) =
3𝐵2

25𝑅
(1 − tanh ϕ) ⋯ satisfies 

boundary conditions. From (4.2.7) and Eqs. (4.1.2 )-( 4.1.3), we arrive at a set of exact 

stochastic solutions of Eq. (4.1.1 ), which are simplified as follows: 

𝑈1(𝑋, 𝑇) =
3𝐵2

25𝑅
coth2[ϕ1(𝑋, 𝑇)] (tanh[ϕ1(𝑋, 𝑇)] + 1)(3 tanh[ϕ1(𝑋, 𝑇)] − 1) + 𝑊(𝑇), (4.2.8) 

where  

ϕ1(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 

Solutions of the Case 2. Substituting the solutions (4.2.4 ) into (3.2.9) and using ( 3.2.6), 

(3.2.2 ), we obtain the following soliton solution. 
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𝑢2(𝑥, 𝑡) = −
3𝐵2

25𝑅
coth2 [

𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥)] (tanh [

𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥)] + 1)

2

. (4.2.9) 

We should note that in the above solution if we take ϕ =
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥) then tanh ϕ →

−1 when ϕ → −∞ , and the solution can be written as 𝑢2(𝑥, 𝑡) = −
3𝐵2

25𝑅
coth2[ϕ] (1 +

tanh[ϕ])2 satisfies boundary conditions.  From (4.2.94.2.7) and Eqs. (4.1.2 )-( 4.1.3), we 

arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which are simplified as follows: 

𝑈2(𝑋, 𝑇) = −
3𝐵2

25𝑅
coth2[ϕ2(𝑋, 𝑇)] (tanh[ϕ2(𝑋, 𝑇)] + 1)2 + 𝑊(𝑇). (4.2.10) 

Where    

ϕ2(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 

Solutions of the Case 3. Substituting the solutions (4.2.54.2.4 ) into (3.2.9) and using ( 

3.2.6), (3.2.2 ), we obtain the following soliton solution. 

𝑢3(𝑥, 𝑡) = −
3𝐵2

100𝑅
coth2[ϕ3(𝑥, 𝑡)] (tanh2[ϕ3(𝑥, 𝑡)] − 6 tanh[ϕ3(𝑥, 𝑡)] + 1)(tanh[ϕ3(𝑥, 𝑡)] + 1)2, (4.2.11) 

where   

ϕ3(𝑥, 𝑡) = [
𝐵

20𝑅
(

6𝐵2

25𝑅
𝑡 − 𝑥)]. 

We should note that in the above solution if we take ϕ = [𝑥 −
𝐵

20𝑅
(

6𝐵2

25𝑅
𝑡)] = −ϕ3(𝑥, 𝑡) 

then tanh ϕ → 1 when ϕ → ∞ , and the solution can be written as 𝑢3(𝑥, 𝑡) =

−
3𝐵2

100𝑅
(1 − tanh[ϕ])2 satisfies boundary conditions. From (4.2.11) ,(4.2.9) ,(4.2.7) and 

Eqs. (4.1.2 )-( 4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which 

are simplified as follows: 

𝑈3(𝑋, 𝑇) = −
3𝐵2

100𝑅
coth2[ϕ3(𝑋, 𝑇)] (tanh2[ϕ3(𝑋, 𝑇)] − 6 tanh[ϕ3(𝑋, 𝑇)] + 1)(tanh[ϕ3(𝑋, 𝑇)] + 1)2 + 𝑊(𝑇), (4.2.12) 

where  ϕ3(𝑋, 𝑇) = [
𝐵

20𝑅
(

6𝐵2

25𝑅
𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)]. 
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Solutions of the Case 3. Substituting the solutions (4.2.64.2.54.2.4 ) into (3.2.9) and using ( 

3.2.6), (3.2.2 ), we obtain the following soliton solution. 

𝑢4(𝑥, 𝑡) = −
3𝐵2

100𝑅
coth2 [

𝐵

20𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥)] (tanh [

𝐵

20𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥)] + 1)

4

. (4.2.13) 

We should note that in the above solution if we take ϕ =
𝐵

20𝑅
(

6𝐵2

25𝑅
𝑡 + 𝑥) then tanh ϕ →

−1 when ϕ → −∞ , and the solution written as 𝑢4(𝑥, 𝑡) = −
3𝐵2

100𝑅
(1 + tanh[ϕ])4 coth2[ϕ] 

satisfies boundary conditions. From (4.2.13) ,(4.2.11) ,(4.2.9) ,(4.2.7) and Eqs. (4.1.2 )-( 

4.1.3), we arrive at a set of exact stochastic solutions of Eq. (4.1.1 ), which are simplified 

as follows: 

𝑈4(𝑋, 𝑇) = −
3𝐵2

100𝑅
coth2[ϕ4(𝑋, 𝑇)] (tanh[ϕ4(𝑋, 𝑇)] + 1)4 + 𝑊(𝑇), (4.2.14) 

where   

ϕ4(𝑋, 𝑇) = [
𝐵

20𝑅
(

6𝐵2

25𝑅
𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 

4.2.2. The method of extended tanh without boundary condition 

Based on what was previously found, the balancing parameter takes the value  𝑀 =  2. 

Hence, using (3.2.9)  the next step of the method of extended tanh gives the following finite 

expansion 

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎−1𝑌−1 + 𝑎−2𝑌−2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.2.15) 

From the two relations (4.2.15) and (4.1.20), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑎−1, 𝑎−2, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,10) 

coefficients to each other and equating them to zero. 

𝑌0 .:  −24𝑅𝑘2𝑎−2 − 2𝑎−2
2 = 0,  

𝑌1 .:   −6𝑅𝑘2𝑎−1 − 6𝐵𝑘𝑎−2 − 3𝑎−2𝑎−1 = 0  

𝑌2 .:   40𝑅𝑘2𝑎−2 − 2𝐵𝑘𝑎−1 + 2𝑐𝑎−2 + 2𝑎−2
2 − 2𝑎−2𝑎0 − 𝑎−1

2 = 0  
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𝑌3 .:   8𝑅𝑘2𝑎−1 + 8𝐵𝑘𝑎−2 + 𝑐𝑎−1 + 3𝑎−2𝑎−1 − 𝑎−2𝑎1 − 𝑎−1𝑎0 = 0  

𝑌4 .:    −16𝑅𝑘2𝑎−2 + 2𝐵𝑘𝑎−1 − 2𝑐𝑎−2 + 2𝑎−2𝑎0 + 𝑎−1
2 = 0  

𝑌5 .:   −2𝑅𝑘2𝑎−1 − 2𝑅𝑘2𝑎1 − 2𝐵𝑘𝑎−2 − 2𝐵𝑘𝑎2 − 𝑐𝑎−1 − 𝑐𝑎1 + 𝑎−2𝑎1 + 𝑎−1𝑎0 +
𝑎−1𝑎2 + 𝑎0𝑎1 = 0  

 

𝑌6 .:   −16𝑅𝑘2𝑎2 + 2𝐵𝑘𝑎1 − 2𝑐𝑎2 + 2𝑎0𝑎2 + 𝑎1
2 = 0,                                          (4.2.16) 

  

𝑌7 .:   8𝑅𝑘2𝑎1 + 8𝐵𝑘𝑎2 + 𝑐𝑎1 − 𝑎−1𝑎2 − 𝑎0𝑎1 + 3𝑎1𝑎2 = 0  

𝑌8 .:   40𝑅𝑘2𝑎2 − 2𝐵𝑘𝑎1 + 2𝑐𝑎2 − 2𝑎0𝑎2 − 𝑎1
2 + 2𝑎2

2 = 0  

𝑌9 .:     −6𝑅𝑘2𝑎1 − 6𝐵𝑘𝑎2 − 3𝑎1𝑎2 = 0  

𝑌10 .:     −24𝑅𝑘2𝑎2 − 2𝑎2
2 = 0  

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following solution: 

𝑐 = 𝑎0 −
3𝐵2

50𝑅
, 𝑘 = −

𝐵

20𝑅
, 𝑎−2 = −

3𝐵2

100𝑅
, 𝑎−1 =

3𝐵2

25𝑅
, 𝑎0 = 𝑎0, 𝑎1 =

3𝐵2

25𝑅
, 𝑎2 = −

3𝐵2

100𝑅
, (4.2.17) 

Substituting the solutions ( 4.2.17) into (3.2.9) and using ( 3.2.6), (3.2.2 ), we obtain the 

following soliton solution. 

𝑢(𝑥, 𝑡) = 𝑎0 +
6𝐵2

50𝑅
(coth2 [

𝐵

10𝑅
((𝑎0 −

3𝐵2

50𝑅
) 𝑡 − 𝑥)] + 2 coth [

𝐵

10𝑅
((𝑎0 −

3𝐵2

50𝑅
) 𝑡 − 𝑥)] −

1

2
) , (4.2.18) 

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well. From (4.2.18) and Eqs. (4.1.2 )-( 4.1.3), we arrive at a set of exact stochastic 

solutions of Eq. (4.1.1 ), which are simplified as follows: 

𝑈(𝑋, 𝑇) = 𝑎0 +
6𝐵2

50𝑅
(coth2[ϕ(𝑋, 𝑇)] + 2 coth[ϕ(𝑋, 𝑇)] −

1

2
) + 𝑊(𝑇), (4.2.19) 

where    

ϕ(𝑋, 𝑇) = [
𝐵

10𝑅
((𝑎0 −

3𝐵2

50𝑅
) 𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′)] 
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Remark 2. For cases (4.2.3) and (4.2.4) the obtained solutions are same with the solutions 

(4.1.17) and (4.1.15) respectively. But for cases (4.2.5) and (4.2.6) we obtain new solitary 

wave solutions. 

4.2.3. Visualization of Some Solutions 

 

 

 

 

Figure 4.9. 3D, 2D, Contour Plots of the solution (4.2.12) for B=R=1, where 𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.10. 3D, 2D, Contour Plots of the solution (4.2.12) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

Figure 4.11. 3D, 2D, Contour Plots of the solution (4.2.12) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇) 
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Figure 4.12. 3D, 2D, Contour Plots of the solution (4.2.12) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

 

 

 

Figure 4.13. 3D, 2D, Contour Plots of the solution (4.2.12)  for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 1. 

 

 

 

 

Figure 4.14. 3D, 2D, Contour Plots of the solution (4.2.19)  for B=R=1, where 𝑊(𝑇) = 0. 
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Figure 4.15. 3D, 2D, Contour Plots of the solution (4.2.19)  for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.16. 3D, 2D, Contour Plots of the solution (4.2.19)  for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.17. 3D, 2D, Contour Plots of the solution (4.2.19)  for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 
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Figure 4.18. 3D, 2D, Contour Plots of the solution (4.2.19)  for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 1. 

 

 

4.3. Using Galilean Transform for Solving the Stochastic Korteweg–De Vries (KdV)  

       Equation Via the Method of Tanh 

The KdV equation is often used in the description of wave processes in dissipative-

dispersive systems in many areas or physics (Ablowitz and Clarkson, 1991). Let us start from 

the following equation 

𝑈𝑡 + 𝑈𝑈𝑋 + 𝑅𝑈𝑋𝑋𝑋 = η(𝑇), (4.3.1) 

we call Eq. (4.3.1) a nonlinear stochastic Kortewegde Vries (KdV) equation. Here 

inhomogeneous term η(𝑇)  stands for external noise and subscripts 𝑋  and 𝑇 denote partial 

differentiation with respect to 𝑋  and 𝑇, respectively. One simply applies the Galilean 

transformation 

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (4.3.2) 

𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ η(𝑇′)𝑑
𝑇

0

𝑇′, (4.3.3) 

to transform the stochastic Kortewegde Vries into Kortewegde Vries equation 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑅𝑢𝑥𝑥𝑥 = 0. (4.3.4) 

 In the following sections, we will first use the tanh method to develop solitary wave 

solutions to the Stochastic Kortewegde Vries equation (4.3.1). The extended tanh method 

will be employed as well to develop more new solitary wave solutions. 
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4.3.1. The method of tanh with zero boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the 

Korteweg de Vries equation (4.3.4) into an ODE "with zero boundary condition" 

−𝑐𝑘𝑉 +
1

2
𝑘𝑉2 + 𝑅𝑘3𝑉′′ = 0. (4.3.5) 

Balancing 𝑉′′𝑤𝑖𝑡ℎ 𝑉2in (4.1.20) gives   

𝑀 + 2 = 2𝑀 (4.3.6) 

Therefore    

𝑀 = 2 (4.3.7) 

Hence the next step of the method of tanh gives the following finite expansion  

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧) (4.3.8) 

From the two relations (4.3.8) and (4.3.5), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑘 and 𝑐  after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,4) coefficients to each 

other and equating them with zero 

𝑌0 .:  1

2
𝑘𝑎0

2 + 2𝑎2𝑅𝑘3 − 𝑐𝑘𝑎0 = 0  

𝑌1 .:   −2𝑅𝑘3𝑎1 − 𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0  

𝑌2 .:   
𝑘𝑎0𝑎2 +

1

2
𝑘𝑎1

2 − 8𝑎2𝑅𝑘3 − 𝑐𝑘𝑎2 = 0.                                                               (4.3.9) 

  

𝑌3 .:   2𝑅𝑘3𝑎1 + 𝑘𝑎1𝑎2 = 0  

𝑌4 .:   1

2
𝑘𝑎2

2 + 6𝑎2𝑅𝑘3 = 0  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following solution: 

𝑐 = 4𝑘2𝑅,  𝑘 = 𝑘,  𝑎0 = 12𝑘2𝑅,  𝑎1 = 0,  𝑎2 = −12𝑘2𝑅. (4.3.10) 
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Substituting the solutions (4.3.10) into (4.3.8) and using (3.2.6),(3.2.2), we arrive to the 

following solutions; 

𝑢(𝑥, 𝑡) = 12𝑘2𝑅(1 − tanh[𝑘(4𝑅𝑘2𝑡 − 𝑥)])(1 + tanh[𝑘(4𝑅𝑘2𝑡 − 𝑥)]), (4.3.11) 

or 

𝑢(𝑥, 𝑡) = 12𝑘2𝑅(1 − tanh2[𝑘(4𝑅𝑘2𝑡 − 𝑥)]) = 12𝑘2𝑅𝑠𝑒𝑐ℎ2[𝑘(4𝑅𝑘2𝑡 − 𝑥)], (4.3.12) 

the well-known solitary wave in bell-shape form. We should note that in the above solution 

if we take ϕ = 𝑘(4𝑅𝑘2𝑡 − 𝑥) then tanh ϕ → 1 when ϕ → ∞ , and the solution satisfies 

boundary conditions. From (4.3.11) - (4.3.12) and Eqs. (4.3.2) - (4.3.3), we arrive at a set 

of exact stochastic solutions of Eq. (4.3.1), which are simplified as follows: 

𝑈(𝑋, 𝑇) = 12𝑘2𝑅(1 − tanh[ϕ(𝑋, 𝑇)])(1 + tanh[ϕ(𝑋, 𝑇)]) + 𝑊(𝑇), (4.3.13) 

or  

𝑈(𝑋, 𝑇) = 12𝑘2𝑅(1 − tanh2[𝜙(𝑋, 𝑇)]) + 𝑊(𝑇)

= 12𝑘2𝑅 sech2[𝜙(𝑋, 𝑇)] + 𝑊(𝑇)
, (4.3.14) 

where 

ϕ(𝑋, 𝑇) = [𝑘 (4𝑅𝑘2𝑡 − 𝑋 + ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)] 

4.3.2. The method of tanh without boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the 

Korteweg de Vries equation ( 4.3.4) into an ODE with "no boundary conditions" 

−𝑐𝑘𝑉′ + 𝑘𝑉𝑉′ + 𝑅𝑘3𝑉′′′ = 0. (4.3.15) 

Balancing 𝑉′′′ with 𝑉′𝑉 in ( 4.1.20) gives   

𝑀 + 3 = 𝑀 + 1 + 𝑀. (4.3.16) 

So that   

𝑀 = 2. (4.3.17) 

Hence the next step of the method of tanh gives the following finite expansion   
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𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.3.18) 

From the two relations (4.3.18 ) and (4.3.15 ), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑘 and 𝑐  after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,5) coefficients with 

each other and equating them to zero 

𝑌0 .:  −2𝑅𝑘3𝑎1 − 𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0  

𝑌1 .:   −16𝑅𝑘3𝑎2 − 2𝑐𝑘𝑎2 + 2𝑘𝑎0𝑎2 + 𝑘𝑎1
2 = 0  

𝑌2 .:   8𝑅𝑘3𝑎1 + 𝑐𝑘𝑎1 − 𝑘𝑎0𝑎1 + 3𝑘𝑎1𝑎2 = 0  

𝑌3 .:   40𝑅𝑘3𝑎2 + 2𝑐𝑘𝑎2 − 2𝑘𝑎0𝑎2 − 𝑘𝑎1
2 + 2𝑘𝑎2

2 = 0.                                          (4.3.19) 

  

𝑌4 .:   −6𝑅𝑘3𝑎1 − 3𝑘𝑎1𝑎2 = 0  

𝑌5 .:  −24𝑅𝑘3𝑎2 − 2𝑘𝑎2
2 = 0  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following solution: 

𝑐 = 𝑎0 − 8𝑅𝑘2,  𝑘 = 𝑘,  𝑎0 = 𝑎0,  𝑎1 = 0,  𝑎2 = −12𝑅𝑘2. (4.3.20) 

Substituting the solutions (4.3.20) into (4.3.18) and using (3.2.6), (3.2.2), we arrive to the 

following solutions; 

𝑢(𝑥, 𝑡) = 𝑎0 − 12𝑅𝑘2 tanh2[𝑘((8𝑅𝑘2 − 𝑎0)𝑡 + 𝑥)] , (4.3.21) 

and  

𝑢(𝑥, 𝑡) = 𝑎0 − 12𝑅𝑘2 coth2[𝑘((8𝑅𝑘2 − 𝑎0)𝑡 + 𝑥)] , (4.3.22) 

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well as the velocity of the stationary wave. From (4.3.21)-(4.3.11) and Eqs. (4.3.2) - 

(4.3.3), we arrive at a set of exact stochastic solutions of Eq. (4.3.1), which are simplified 

as follows: 
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𝑈(𝑋, 𝑇) = 𝑎0 − 12𝑅𝑘2 tanh2[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.3.23) 

and  

𝑈(𝑋, 𝑇) = 𝑎0 − 12𝑅𝑘2 coth2[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.3.24) 

or 

𝑈(𝑋, 𝑇) = 𝑎0 − 12𝑅𝑘2 + 12𝑅𝑘2𝑠𝑒𝑐ℎ2[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.3.25) 

and 

𝑈(𝑋, 𝑇) = 𝑎0 − 12𝑅𝑘2 − 12𝑅𝑘2𝑐𝑠𝑐ℎ2[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.3.26) 

where 

ϕ(𝑋, 𝑇) = [((8𝑅𝑘2 − 𝑎0)𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)]. 

Remark 3. In (4.3.25) if we take 𝑎0 = 12𝑅𝑘2 we obtain solution (4.3.14). 

4.3.3. Visualization of Some Solutions 

 

 

 

 

Figure 4.19. 3D, 2D, Contour Plots of the solution (4.3.14)  for 𝐵 = 𝑅 = 1, where  𝑊(𝑇) = 0. 
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Figure 4.20. 3D, 2D, Contour Plots of the solution (4.3.14)  for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.21. 3D, 2D, Contour Plots of the solution (4.3.14)  for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.22. 3D, 2D, Contour Plots of the solution (4.3.14)  for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

 

 

 

Figure 4.23. 3D, 2D, Contour Plots of the solution (4.3.23)  for  B=R=1, where  𝑊(𝑇) = 0. 
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Figure 4.24. 3D, 2D, Contour Plots of the solution (4.3.23)  for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.25. 3D, 2D, Contour Plots of the solution (4.3.23)  for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.26. 3D, 2D, Contour Plots of the solution (4.3.23)  for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 1. 

 

  

4.4. Using Galilean Transform for Solving the Stochastic Korteweg–De Vries (KdV)  

       Equation Via the Method of Extended Tanh 

4.4.1. The method of extended tanh with zero boundary condition 

Based on what was previously found, the balancing parameter takes the value  𝑀 =  2. 

Hence using (3.2.9)  the next step of the method of extended tanh gives the following finite 

expansion 

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎−1𝑌−1 + 𝑎−2𝑌−2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.4.1) 
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From the two relations (4.4.1) and (4.3.5), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑎−1, 𝑎−2, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,8) 

coefficients to each other and equating them with zero 

𝑌0 .:  6𝑅𝑘2𝑎−2 +
1

2
𝑎−2

2 = 0  

𝑌1 .:   2𝑅𝑘2𝑎−1 + 𝑎−2𝑎−1 = 0  

𝑌2 .:   1

2
𝑎−1

2 − 𝑐𝑎−2 + 𝑎−2𝑎0 − 8𝑅𝑘2𝑎−2 = 0  

𝑌3 .:   −2𝑅𝑘2𝑎−1 − 𝑐𝑎−1 + 𝑎−2𝑎1 + 𝑎−1𝑎0 = 0  

𝑌4 .:   1

2
𝑎0

2 − 𝑐𝑎0 + 𝑎−2𝑎2 + 𝑎−1𝑎1 + 2𝑅𝑘2𝑎−2 + 2𝑅𝑘2𝑎2 = 0.                              (4.4.2) 

  

𝑌5 .:   −2𝑅𝑘2𝑎1 − 𝑐𝑎1 + 𝑎−1𝑎2 + 𝑎0𝑎1 = 0  

𝑌6 .:   1

2
𝑎1

2 − 𝑐𝑎2 + 𝑎0𝑎2 − 8𝑅𝑘2𝑎2 = 0  

𝑌7 .:   2𝑅𝑘2𝑎1 + 𝑎1𝑎2 = 0  

𝑌8 .:   1

2
𝑎2

2 + 6𝑅𝑘2𝑎2 = 0  

   

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following cases of solutions: 

1.  

𝑐 = 4𝑅𝑘2, 𝑘 = 𝑘, 𝑎−2 = −12𝑅𝑘2, 𝑎−1 = 0, 𝑎0 = 12𝑅𝑘2, 𝑎1 = 0, 𝑎2 = 0. (4.4.3) 

2.  

𝑐 = 16𝑅𝑘2, 𝑘 = 𝑘, 𝑎−2 = −12𝑅𝑘2, 𝑎−1 = 0, 𝑎0 = 24𝑅𝑘2, 𝑎1 = 0, 𝑎2 = −12𝑅𝑘2. (4.4.4) 

 

Solutions of the case 1. Substituting the solutions (4.4.3) into (3.2.9) and using (3.2.6), 

(3.2.2), we obtain the following soliton solution. 

𝑢1(𝑥, 𝑡) = −12𝑅𝑘2𝑐𝑜𝑡ℎ2[𝑘(4𝑅𝑘2𝑡 − 𝑥)] 𝑠𝑒𝑐ℎ2[𝑘(4𝑅𝑘2𝑡 − 𝑥)]. (4.4.5) 
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We should note that in the above solution if we take 𝜙 = 𝑘(4𝑅𝑘2𝑡 − 𝑥) and 𝑠𝑒𝑐ℎ2[𝜙] =

1 − tanh2[𝜙] then tanh 𝜙 → 1 𝑤ℎ𝑒𝑛 𝜙 → ∞ , and the solution satisfies boundary 

conditions. From (4.4.5)-(4.3.11) and Eqs. (4.3.2) - (4.3.3), we arrive at a set of exact 

stochastic solutions of Eq. (4.3.1), which are simplified as follows: 

𝑈1(𝑋, 𝑇) = −12𝑅𝑘2𝑐𝑜𝑡ℎ2[ϕ1(𝑋, 𝑇)] 𝑠𝑒𝑐ℎ2[ϕ1(𝑋, 𝑇)] + 𝑊(𝑇), (4.4.6) 

where    

ϕ1(𝑋, 𝑇) = [𝑘 (4𝑅𝑘2𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)] 

Solutions of the Case 2. Substituting the solutions (4.4.4) into (3.2.9) and using (3.2.6), 

(3.2.2), we obtain the following soliton solution. 

𝑢2(𝑥, 𝑡) == −12𝑅𝑘2𝑐𝑜𝑡ℎ2[𝑘(16𝑅𝑘2𝑡 − 𝑥)] 𝑠𝑒𝑐ℎ4[𝑘(16𝑅𝑘2𝑡 − 𝑥)]. (4.4.7) 

We should note that in the above solution if we take ϕ = 𝑘(16𝑅𝑘2𝑡 − 𝑥) and 𝑠𝑒𝑐ℎ2[𝜙] =

1 − tanh2[𝜙] then tanh ϕ → 1 when ϕ → ∞ , and the solution satisfies boundary 

conditions. From (4.4.5),(4.3.11) and Eqs. (4.3.2) - (4.3.3), we arrive at a set of exact 

stochastic solutions of Eq. (4.3.1), which are simplified as follows: 

𝑈2(𝑋, 𝑇) = −12𝑅𝑘2𝑐𝑜𝑡ℎ2[ϕ1(𝑋, 𝑇)] 𝑠𝑒𝑐ℎ4[ϕ1(𝑋, 𝑇)] + 𝑊(𝑇). (4.4.8) 

where    

ϕ2(𝑋, 𝑇) = [𝑘 (16𝑅𝑘2𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)] 

4.4.2. The method of extended tanh without boundary condition 

Using (3.2.9),  the next step of the method of extended tanh gives the following finite 

expansion 

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎−1𝑌−1 + 𝑎−2𝑌−2, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.4.9) 

From the two relations (4.4.9) and (4.3.15), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑎−1, 𝑎−2, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,10) 

coefficients to each other and equating them with zero 
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𝑌0 .:  −24𝑅𝑘2𝑎−2 − 2𝑎−2
2 = 0  

𝑌1 .:   −6𝑅𝑘2𝑎−1 − 3𝑎−2𝑎−1 = 0  

𝑌2 .:   40𝑅𝑘2𝑎−2 + 2𝑐𝑎−2 + 2𝑎−2
2 − 2𝑎−2𝑎0 − 𝑎−1

2 = 0  

𝑌3 .:   8𝑅𝑘2𝑎−1 + 𝑐𝑎−1 + 3𝑎−2𝑎−1 − 𝑎−2𝑎1 − 𝑎−1𝑎0 = 0.                                    (4.4.10) 

  

𝑌4 .:   −16𝑅𝑘2𝑎−2 − 2𝑐𝑎−2 + 2𝑎−2𝑎0 + 𝑎−1
2 = 0  

𝑌5 .:   −2𝑅𝑘2𝑎−1 − 2𝑅𝑘2𝑎1 − 𝑐𝑎−1 − 𝑐𝑎1 + 𝑎−2𝑎1 + 𝑎−1𝑎0 + 𝑎−1𝑎2 + 𝑎0𝑎1 = 0  

𝑌6 .:   −16𝑅𝑘2𝑎2 − 2𝑐𝑎2 + 2𝑎0𝑎2 + 𝑎1
2 = 0  

𝑌7 .:   8𝑅𝑘2𝑎1 + 𝑐𝑎1 − 𝑎−1𝑎2 − 𝑎0𝑎1 + 3𝑎1𝑎2  

𝑌8 .:   40𝑅𝑘2𝑎2 + 2𝑐𝑎2 − 2𝑎0𝑎2 − 𝑎1
2 + 2𝑎2

2 = 0  

𝑌9 .:  −6𝑅𝑘2𝑎1 − 3𝑎1𝑎2 = 0  

𝑌10 .:    −24𝑅𝑘2𝑎2 − 2𝑎2
2 = 0  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following cases of solutions: 

𝑐 = 𝑎0 − 8𝑅𝑘2,  𝑘 = 𝑘,  𝑎−2 = −12𝑅𝑘2,  𝑎−1 = 0,  𝑎0 = 𝑎0,  𝑎1 = 0,  𝑎2 = −12𝑅𝑘2. (4.4.11) 

Substituting the solutions (4.4.11) into (3.2.9) and using (3.2.6), (3.2.2), we arrive to the 

following solitons solution; 

𝑢(𝑥, 𝑡) = 𝑎0 − 12𝑅𝑘2(tanh2[𝑘((𝑎0 − 8𝑅𝑘2)𝑡 + 𝑥)] + coth2[𝑘((𝑎0 − 8𝑅𝑘2)𝑡 + 𝑥)]), (4.4.12) 

 

or 

𝑢(𝑥, 𝑡) = 𝑎0 + 24𝑅𝑘2 − 48𝑅𝑘2 coth2[2𝑘((𝑎0 − 8𝑅𝑘2)𝑡 + 𝑥)] , (4.4.13) 

or 
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𝑢(𝑥, 𝑡) = 𝑎0 − 24𝑅𝑘2 − 48𝑅𝑘2𝑐𝑠𝑐ℎ2[2𝑘((𝑎0 − 8𝑅𝑘2)𝑡 + 𝑥)], (4.4.14) 

where the arbitrary constant 𝑎0 affects the solution. From (4.4.12 )-(4.4.14 ) and Eqs. 

(4.3.2) - (4.3.3), we arrive at a set of exact stochastic solutions of Eq. (4.3.1), which are 

simplified as follows: 

𝑈(𝑋, 𝑇) = 𝑎0 − 12𝑅𝑘2(tanh2[ϕ(𝑋, 𝑇)] + coth2[ϕ(𝑋, 𝑇)]) + 𝑊(𝑇), (4.4.15) 

or 

𝑈(𝑋, 𝑇) = 𝑎0 + 24𝑅𝑘2 − 48𝑅𝑘2 coth2[2ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.4.16) 

or 

𝑈(𝑋, 𝑇) = 𝑎0 − 24𝑅𝑘2 − 48𝑅𝑘2𝑐𝑠𝑐ℎ2[2ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.4.17) 

where    

ϕ(𝑋, 𝑇) = [𝑘 ((𝑎0 − 8𝑅𝑘2)𝑇 + 𝑋 − ∫ 𝑊(𝑇′)
𝑇

0

)] 

Remark 4. Solutions (4.4.17) and (4.3.25) can be obtained from one to the other. 

4.4.3. Visualization of Some Solutions 

 
 

 

Figure 4.27. 3D, 2D, Contour Plots of the solution (4.4.6)  for B=R=1, where  𝑊(𝑇) = 0. 
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Figure 4.28. 3D, 2D, Contour Plots of the solution (4.4.6) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.29. 3D, 2D, Contour Plots of the solution (4.4.6) for B=R=1,where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.30. 3D, 2D, Contour Plots of the solution (4.4.6) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

 

4.5. Using Galilean Transform for Solving the Stochastic Burgers' Equation Via the  

       Method of Tanh 

This equation, quoted as the most simple nonlinear wave equation, models fluid 

turbulence in a channel (Burgers, 1974). Also unidirectional sound waves in a gas, governed 

by the Navier Stokes equation, are described by such an equation (Karpman, 1975). The most 

appealing application, however, is its relation to shock waves in real fluids. Let us start from 

the following equation 
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𝑈𝑡 + 𝑈𝑈𝑋 − 𝐵𝑈𝑋𝑋 = 휂(𝑇). (4.5.1) 

We call Eq.(4.5.1) a Burgers’ nonlinear stochastic evolution equation.Here 

inhomogeneous term 휂(𝑇) stands for external noise and subscripts 𝑋  and 𝑇  denote partial 

differentiations with respect to 𝑋  and 𝑇  , respectively. One simply applies the Galilean 

transformation 

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇),   𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (4.5.2) 

𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑
𝑇

0

𝑇′, (4.5.3) 

to transform the stochastic Burgers’ into deterministic Burgers’ equation  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝐵𝑢𝑥𝑥 = 0. (4.5.4) 

In the following sections, we will first use the tanh method to develop solitary wave 

solutions to the Stochastic Burgers’ equation (4.5.1). 

4.5.1. The method of tanh with zero boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the Burgers’ 

equation (4.5.4) into an ODE "with zero boundary condition"  

−𝑐𝑘𝑉 +
1

2
𝑘𝑉2 − 𝐵𝑘2𝑉′ = 0. (4.5.5) 

Balancing 𝑉′𝑤𝑖𝑡ℎ 𝑉2 in (4.5.5 ) gives  

2𝑀 = 𝑀 + 1. (4.5.6) 

 Therefore    

𝑀 = 1. (4.5.7) 

Hence the next step of the method of tanh gives the following finite expansion  

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.5.8) 

From the two relations (4.5.8) and (4.5.5), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,2) coefficients to each 

other and equating them with zero 

𝑌0 .:   1

2
𝑘𝑎0

2 − 𝐵𝑘2𝑎1 − 𝑐𝑘𝑎0 = 0  
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𝑌1 .:   −𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0.                                                                                                  (4.5.9) 

  

𝑌2 .:    
1

2
𝑘𝑎1

2 + 𝐵𝑘2𝑎1 = 0  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following solution: 

𝑐 = 2𝑘𝐵,  𝑘 = 𝑘,  𝑎0 = 2𝑘𝐵,  𝑎1 = −2𝑘𝐵 (4.5.10) 

Substituting the solutions (4.5.10 ) into (4.5.8 ) and using (3.2.6), (3.2.2), we arrive to the 

following solitons solution 

𝑢(𝑥, 𝑡) = 2𝑘𝐵(tanh[𝑘(2𝐵𝑘𝑡 − 𝑥)] + 1) = −2𝑘𝐵(1 − tanh[𝑘(𝑥 − 2𝐵𝑘𝑡)]), (4.5.11) 

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well as the velocity of the stationary wave. From (4.5.11) and Eqs. (4.5.2 )-(4.5.3 ), we 

arrive at a set of exact stochastic solutions of Eq. (4.5.1), which are simplified as follows: 

𝑈(𝑋, 𝑇) = 2𝑘𝐵(tanh[ϕ(𝑋, 𝑇)] + 1) + 𝑊(𝑇), (4.5.12) 

where    

ϕ(𝑋, 𝑇) = [𝑘 (2𝐵𝑘𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)] 

4.5.2. The method of tanh without boundary condition 

Introducing the following wave variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) carries the Burgers’ 

equation (4.5.4) into an ODE "No boundary conditions" 

−𝑐𝑘𝑉′ + 𝑘𝑉𝑉′ − 𝐵𝑘2𝑉′′ = 0. (4.5.13) 

Balancing 𝑉′′ with 𝑉′𝑉 in (4.5.13) gives   

𝑀 + 2 = 𝑀 + 1 + 𝑀. (4.5.14) 

Therefore   

𝑀 = 1. (4.5.15) 

Hence the next step of the method of tanh gives the following finite expansion 
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𝑉(𝑧) = 𝑎0 + 𝑎1𝑌, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.5.16) 

From the two relations (4.5.16) and (4.5.13 ), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑘 and 𝑐 after collecting the 𝑌𝑆, (𝑆 = 0,1, … ,3) coefficients to each 

other and equating them with zero 

𝑌0 .:   −𝑐𝑘𝑎1 + 𝑘𝑎0𝑎1 = 0  

𝑌1 .:   2𝐵𝑘2𝑎1 + 𝑘𝑎1
2 = 0.                                                                                                   (4.5.17) 

  

𝑌2 .:   𝑐𝑘𝑎1 − 𝑘𝑎0𝑎1 = 0  

𝑌3 .:   −2𝐵𝑘2𝑎1 − 𝑘𝑎1
2 = 0  

Now, using one of the symbolic calculation programs such as Maple and mathematica to 

solve the above algebraic system, we get the following two cases of solutions:  

𝑐 = 𝑎0,  𝑘 = 𝑘,  𝑎0 = 𝑎0,  𝑎1 = −2𝐵𝑘. (4.5.18) 

Substituting the solutions (4.5.18) into (4.5.16) and using (3.2.6), (3.2.2), we arrive to the 

following solitons solution 

𝑢(𝑥, 𝑡) = 𝑎0 − 2𝐵𝑘 tanh[𝑘(𝑥 − 𝑎0𝑡)] , (4.5.19) 

and  

𝑢(𝑥, 𝑡) = 𝑎0 − 2𝐵𝑘 coth[𝑘(𝑥 − 𝑎0𝑡)] , (4.5.20) 

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well as the velocity of the stationary wave. From (4.5.19 ) and Eqs. (4.5.2 )-(4.5.3 ), we 

arrive at a set of exact stochastic solutions of Eq. (4.5.1), which are in the form of a shock 

wave and simplified as follows: 

𝑈(𝑋, 𝑇) = 𝑎0 − 2𝐵𝑘 tanh[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.5.21) 

and  

𝑈(𝑋, 𝑇) = 𝑎0 − 2𝐵𝑘 coth[ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.5.22) 

where    
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ϕ(𝑋, 𝑇) = [𝑘 (𝑋 − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′ − 𝑎0𝑇)]. 

Remark 5. In (4.5.21) if a is chosen appropriately we obtain solution (4.5.12). 

4.5.3. Visualization of some solutions 

 

 

 

Figure 4.31. 3D, 2D, Contour Plots of the solution (4.5.12 ) for B=R=1, where  𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.32. 3D, 2D, Contour Plots of the solution (4.5.12) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.33. 3D, 2D, Contour Plots of the solution (4.5.12) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 
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Figure 4.34. 3D, 2D, Contour Plots of the solution (4.5.12) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 1. 

 

 

 

 

Figure 4.35. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where 𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.36. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where  𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.37. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 
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Figure 4.38. 3D, 2D, Contour Plots of the solution (4.5.22) for B=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

 

 

4.6. Using Galilean Transform for Solving the Stochastic Burgers' Equation Via the  

       Method of Extended Tanh 

4.6.1. The method of extended tanh with zero boundary condition 

Based on what was previously found, the balancing parameter takes the value  𝑀 =  1. 

Hence using (3.2.9)  the next step of the method of extended tanh gives the following finite 

expansion   

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎−1𝑌−1, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧) (4.6.1) 

From the two relations (4.6.1 ) and (4.5.5 ), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎−1, 𝑘 and 𝑐 after collecting the 𝑌𝑆 , (𝑆 = 0,1, … ,4) coefficients to each 

other and equating them with zero 

𝑌0 .:   
1

2
𝑎−1

2 + 𝐵𝑘𝑎−1 = 0  

𝑌1 .:  𝑎−1𝑎0 − 𝑐𝑎−1 = 0  

𝑌2 .:  
 𝑎−1𝑎1 − 𝑐𝑎0 − 𝐵𝑘𝑎1 +

1

2
𝑎0

2 − 𝐵𝑘𝑎−1 = 0.                                                          (4.6.2) 

  

𝑌3 .:   − 𝑐𝑎1 + 𝑎0𝑎1 = 0  

𝑌4 .:   
1

2
𝑎1

2 + 𝐵𝑘𝑎1  

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following two cases of solutions: 
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1.  

𝑐 = 4𝐵𝑘,  𝑘 = 𝑘,  𝑎−1 = −2𝐵𝑘,  𝑎0 = 4𝐵𝑘,  𝑎1 = −2𝐵𝑘. (4.6.3) 

2.  

𝑐 = −2𝐵𝑘,  𝑘 = 𝑘,  𝑎−1 = −2𝐵𝑘,  𝑎0 = −2𝐵𝑘,  𝑎1 = 0. (4.6.4) 

Solutions of the Case 1. Substituting the solutions (4.6.3 ) into (3.2.9) and using (3.2.6), 

(3.2.2), we obtain the following soliton solution; 

𝑢1(𝑥, 𝑡) = 2𝐵𝑘coth [𝑘(2𝐵𝑘𝑡 − 𝑥)](tanh [𝑘(2𝐵𝑘𝑡 − 𝑥)] + 1)2

= −2𝐵𝑘coth [𝑘(𝑥 − 2𝐵𝑘𝑡)](1 − tanh [𝑘(𝑥 − 2𝐵𝑘𝑡)])2. (4.6.5) 

From ( 4.6.5) and Eqs. ( 4.5.2)- (4.5.3 ), we arrive at a set of exact stochastic solutions of 

Eq. (4.5.1 ), which are simplified as follows: 

𝑈1(𝑋, 𝑇) = 2𝐵𝑘 coth[ϕ1(𝑋, 𝑇)] (tanh[ϕ1(𝑋, 𝑇)] + 1)2 + 𝑊(𝑇), (4.6.6) 

where   

ϕ1(𝑋, 𝑇) = [𝑘 (2𝐵𝑘𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′)] 

Solutions of the Case 2. Substituting the solutions (4.6.4 ) into (3.2.9) and using (3.2.6), 

(3.2.2), we obtain the following soliton solutions; 

𝑢2(𝑥, 𝑡) = −2𝐵𝑘 coth[𝑘(2𝐵𝑘𝑡 + 𝑥)] (1 + tanh[𝑘(2𝐵𝑘𝑡 + 𝑥)]). (4.6.7) 

From (4.6.7 ) and Eqs. (4.5.2)- (4.5.3), we arrive at a set of exact stochastic solutions of 

Eq. (4.5.1 ), which are in the form of shock wave and simplified as follows: 

𝑈2(𝑋, 𝑇) = −2𝐵𝑘 coth[ϕ2(𝑋, 𝑇)] (1 + tanh[ϕ2(𝑋, 𝑇)]) + 𝑊(𝑇), (4.6.8) 

Where  ϕ2(𝑋, 𝑇) = [𝑘 (2𝐵𝑘𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑
𝑇

0
𝑇′)] 

4.6.2. The method of extended tanh without boundary condition 

Based on what was previously found, the balancing parameter takes the value  𝑀 =  1. 

Hence using (3.2.9) the next step of the method of extended tanh gives the following finite 

expansion   
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𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎−1𝑌−1, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.6.9) 

From the two relations (4.6.9 ) and (4.5.13 ), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎−1, 𝑘 and 𝑐 after collecting the 𝑌𝑆 , (𝑆 = 0,1, … ,6) coefficients to each 

other and equating them with zero 

𝑌0 .:  −2𝐵𝑎−1𝑘 − 𝑎−1
2 = 0  

𝑌1 .:   𝑐𝑎−1 − 𝑎−1𝑎0 = 0  

𝑌2 .:   2𝐵𝑎−1𝑘 + 𝑑−1
2 = 0  

𝑌3 .:  
−𝑐𝑎−1 − 𝑐𝑎1 + 𝑎−1𝑎0 + 𝑎0𝑎1 = 0.                                                                      (4.6.10) 

  

𝑌4 .:   2𝐵𝑘𝑎1 + 𝑎1
2 = 0  

𝑌5 .:  𝑐𝑎1 − 𝑎0𝑎1 = 0  

𝑌6 .:  −2𝐵𝑘𝑎1 − 𝑎1
2 = 0  

Now, using one of the symbolic calculation programs such as Maple and mathematica to 

solve the above algebraic system, we get the following solution:  

𝑐 = 𝑎0,  𝑘 = 𝑘,  𝑎−1 = −2𝐵𝑘,  𝑎0 = 𝑎0,  𝑎1 = −2𝐵𝑘. (4.6.11) 

Substituting the solutions (4.6.11) into (3.2.9) and using (3.2.6), (3.2.2), we arrive to the 

following solitons solution; 

𝑢(𝑥, 𝑡) = 𝑎0 + 2𝐵𝑘(coth[𝑘(𝑎0𝑡 − 𝑥)] + tanh[𝑘(𝑎0𝑡 − 𝑥)]), (4.6.12) 

or 

𝑢(𝑥, 𝑡) = 𝑎0 + 4𝐵𝑘 coth[2𝑘(𝑎0𝑡 − 𝑥)] , (4.6.13)

where the arbitrary constant 𝑎0 affects the solution (and therefore its boundary condition) 

as well as. From (4.6.12 )-( 4.6.13) and Eqs. (4.5.2)- (4.5.3), we arrive at a set of exact 

stochastic solutions of Eq. (4.5.1 ), which are simplified as follows:   

𝑈(𝑋, 𝑇) = 𝑎0 + 2𝐵𝑘(coth[ϕ(𝑋, 𝑇)] + tanh[ϕ(𝑋, 𝑇)]) + 𝑊(𝑇), (4.6.14) 

or  

𝑈(𝑋, 𝑇) = 𝑎0 + 4𝐵𝑘 coth[2ϕ(𝑋, 𝑇)] + 𝑊(𝑇), (4.6.15) 
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where  

𝜙(𝑋, 𝑇) = [𝑘 (𝑎0𝑇 − 𝑋 − ∫ 𝑊(𝑇′)
𝑇

0

)] 

Remark 6. In (4.6.15) if a is chosen appropriately we obtain solution (4.6.6). 

4.6.3. Visualization of some solutions 

 

 

 

 

Figure 4.39. 3D, 2D, Contour Plots of the solution (4.6.6) for B=R=1, where  𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.40. 3D, 2D, Contour Plots of the solution (4.6.6) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.41. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where 𝑊(𝑇) = 0. 
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Figure 4.42. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

 

Figure 4.43. 3D, 2D, Contour Plots of the solution (4.6.8) for B=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

4.7. Using Galilean Transform for Solving The Stochastic Kuramoto - Sivashinsky  

       (KS) Equation Via The Method of Tanh 

The present section is concerned with solitary wave solutions (solutions preserving 

their shapes as they travel with a phase speed 𝑐) of Kuramoto-Sivashinsky (KS)   

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥 + 𝜈𝑢𝑥𝑥𝑥𝑥 = 0, (4.7.1) 

Linear terms in the KS equation describe the balance between short wave stability and long 

wave instability while nonlinear terms provide a mechanism for transferring energy between 

wave modes (Sajjadian, 2014).  The equation that is studied in the present section is as 

follows: 

𝑈𝑡 + 𝐴𝑈𝑈𝑋 + 𝐵𝑈𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋𝑋 = η(𝑇), (4.7.2) 

where 𝐴, 𝐵 and 𝑅 are arbitrary constants, 휂(. ) stands for the external noise and the subscripts 

represent the partial derivatives with respect to 𝑋  and 𝑇. Eq. (4.7.2) arises in the modeling 

of erosion processes by ion sputtering in the surface of amorphous materials (Cuerno et al., 

1995). We start by applying the Galilean transformation to Eq. (4.7.2)  
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𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (4.7.3) 

𝑚(𝑇) = −𝐴 ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ η(𝑇′)𝑑
𝑇

0

𝑇′, (4.7.4) 

to transform the stochastic Kuramoto—Sivashinsky equation into its deterministic 

counterpart  

𝑢𝑡 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢𝑥𝑥 + 𝑅𝑢𝑥𝑥𝑥𝑥 = 0. (4.7.5) 

In the following, we  use the tanh method to obtain solitary wave solutions to the 

stochastic Kuramoto—Sivashinsky equation (4.7.2). Then by using the change of variable 

𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 = 𝑘(𝑥 − 𝑐𝑡) and integrating the resulting equation, the KS equation 

(4.7.5) transforms into an ODE of the form  

−𝑐𝑉 +
𝐴

2
𝑉2 + 𝐵𝑘𝑉′ + 𝑅𝑘3𝑉′′′ = 0, (4.7.6) 

where the constant of integration is set to zero. By balancing  𝑉′′′with 𝑉2 (4.7.6), we have 

  

𝑀 + 3 = 2𝑀, (4.7.7) 

hence  

𝑀 = 3. (4.7.8) 

Consequently, we use the following solution expansion for the tanh method  

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.7.9) 

If we use (4.7.9) in (4.7.6) and set the coefficients of different degree of 𝑌𝑆, (𝑆 = 0,1, … ,6) 

to zero, we get the following system of algebraic equations for 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑘 and 𝑐: 

𝑌0 .:   − 𝑐𝑎0 +
1

2
𝐴𝑎0

2 + 6𝑎3𝑅𝑘3 − 2𝑅𝑘3𝑎1 + 𝐵𝑘𝑎1 = 0  

𝑌1 .:  −16𝑅𝑘3𝑎2 + 𝐴𝑎0𝑎1 + 2𝐵𝑘𝑎2 − 𝑐𝑎1 = 0  

𝑌2 .:  3𝐵𝑘𝑎3 + 𝐴𝑎0𝑎2 − 60𝑎3𝑅𝑘3 + 8𝑅𝑘3𝑎1 − 𝐵𝑘𝑎1 − 𝑐𝑎2 +
1

2
𝐴𝑎1

2 = 0  

𝑌3 .:   40𝑅𝑘3𝑎2 + 𝐴𝑎0𝑎3 + 𝐴𝑎1𝑎2 − 2𝐵𝑘𝑎2 − 𝑐𝑎3 = 0.                                          (4.7.10) 
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𝑌4 .:   𝐴𝑎1𝑎3 + 114𝑎3𝑅𝑘3 − 6𝑅𝑘3𝑎1 − 3𝐵𝑘𝑎3 +
1

2
𝐴𝑎2

2 = 0  

𝑌5 .:  −24𝑅𝑘3𝑎2 + 𝐴𝑎2𝑎3 = 0  

𝑌6 .:   − 60𝑎3𝑅𝑘3 +
1

2
𝐴𝑎3

2 = 0  

 

The following two cases of solutions are found by solving the above algebraic system via 

symbolic calculation programs: 

1.  

𝑎0 =
30𝐵

19𝐴
√

−𝐵

19𝑅
, 𝑎1 =

45𝐵

19𝐴
√

−𝐵

19𝑅
, 𝑎2 = 0, 𝑎3 = −

15𝐵

19𝐴
√

−𝐵

19𝑅
, 𝑘 =

1

2
√

−𝐵

19𝑅
, 𝑐 =

30𝐵

19
√

−𝐵

19𝑅
,  

𝐵

𝑅
< 0. (4.7.11) 

2.  

𝑎0 =
30𝐵

19𝐴
√

11𝐵

19𝑅
, 𝑎1 = −

135𝐵

19𝐴
√

11𝐵

19𝑅
, 𝑎2 = 0, 𝑎3 = −

165𝐵

19𝐴
√

11𝐵

19𝑅
, 𝑘 =

1

2
√

11𝐵

19𝑅
, 𝑐 =

30𝐵

19
√

11𝐵

19𝑅
,  

𝐵

𝑅
> 0. (4.7.12) 

Solutions of the case 1. Substituting the solutions (4.7.11 ) into ( 3.2.8) and using( 3.2.6 ), 

(3.2.2 ), we get the following soliton solutions for 
𝐵

𝑅
< 0; 

𝑢1(𝑥, 𝑡) =
15𝐵

19𝐴
√

−𝐵

19𝑅
(2 + 3 tanh[φ(𝑥, 𝑡)] − tanh3[φ(𝑥, 𝑡)]), (4.7.13) 

and 

𝑢2(𝑥, 𝑡) =
15𝐵

19𝐴
√

−𝐵

19𝑅
(2 + 3 coth[φ(𝑥, 𝑡)] − coth3[φ(𝑥, 𝑡)]), (4.7.14) 

 

where 

φ(𝑥, 𝑡) =
1

2
√

−𝐵

19𝑅
(𝑥 −

30𝐵

19
√

−𝐵

19𝑅
𝑡) 
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However, for 
𝐵

𝑅
> 0, complex solutions can be easily obtained. From  (4.7.13)-(4.7.14) and 

Eqs. (4.7.3)- (4.7.4), we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which 

are simplified as follows:  

𝑈1(𝑋, 𝑇) =
15𝐵

19𝐴
√

−𝐵

19𝑅
(2 + 3 tanh[ϕ1(𝑋, 𝑇)] − tanh3[ϕ1(𝑋, 𝑇)]) + 𝑊(𝑇). (4.7.15) 

 

 

 

Figure 4.44. 3D, 2D, Contour Plots of the solution (4.7.15) for 𝐵 = −1, 𝐴 = 𝑅 = 1, where  𝑊(𝑇) = 0 . 

 

 

 

 

Figure 4.45. 3D, 2D, Contour Plots of the solution (4.7.15) for B=-1,A=R=1, 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

    

Figure 4.46. 3D, 2D, Contour Plots of the solution (4.7.15) for B=-1,A=R=1, 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 
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and  

𝑈2(𝑋, 𝑇) =
15𝐵

19𝐴
√

−𝐵

19𝑅
(2 + 3 coth[ϕ2(𝑋, 𝑇)] − coth3[ϕ2(𝑋, 𝑇)]) + 𝑊(𝑇), (4.7.16) 

where   

ϕ1(𝑋, 𝑇) = ϕ2(𝑋, 𝑇) = [
1

2
√

−𝐵

19𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
30𝐵

19
√

−𝐵

19𝑅
𝑇)] 

Solutions of the Case 2. Inserting the solutions (4.7.12) into (3.2.8) and 

using(3.2.6),(3.2.2), we have the soliton solutions for  
𝐵

𝑅
> 0; 

𝑢3(𝑥, 𝑡) =
15𝐵

19𝐴
√

11𝐵

19𝑅
(2 − 9 tanh[φ(𝑥, 𝑡)] + 11 tanh3[φ(𝑥, 𝑡)]), (4.7.17) 

and 

𝑢4(𝑥, 𝑡) =
15𝐵

19𝐴
√

11𝐵

19𝑅
(2 − 9 coth[φ(𝑥, 𝑡)] + 11 coth3[φ(𝑥, 𝑡)]), (4.7.18) 

where 

φ(𝑥, 𝑡) =
1

2
√

11𝐵

19𝑅
(𝑥 −

30𝐵

19
√

11𝐵

19𝑅
𝑡). 

As for the previous case, complex solutions can be easily obtained for 
𝐵

𝑅
< 0,. 

From ( 4.7.17)-(4.7.18 ) and Eqs. (4.7.3)-( 4.7.4), we get a series of exact stochastic 

solutions of Eq. (4.7.2) which are simplified as follows:  

𝑈3(𝑋, 𝑇) =
15𝐵

19𝐴
√

11𝐵

19𝑅
(2 − 9 tanh[ϕ3(𝑋, 𝑇)] + 11 tanh3[ϕ3(𝑋, 𝑇)]) + 𝑊(𝑇), (4.7.19) 

and  
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𝑈4(𝑋, 𝑇) =
15𝐵

19𝐴
√

11𝐵

19𝑅
(2 − 9 coth[ϕ4(𝑋, 𝑇)] + 11 coth3[ϕ4(𝑋, 𝑇)]) + 𝑊(𝑇), (4.7.20) 

where   

ϕ3(𝑋, 𝑇) = ϕ4(𝑋, 𝑇) = [
1

2
√

11𝐵

19𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
30𝐵

19
√

11𝐵

19𝑅
𝑇)] 

4.8. Using Galilean Transform for Solving the Stochastic Kuramoto - Sivashinsky  

       (KS) Equation Via the Method of Extended-Tanh 

Recalling that 𝑀 =  3  and using (3.2.9), we have the following finite expansion for 

the extended-tanh method   

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑎−1𝑌−1 + 𝑎−2𝑌−2 + 𝑎−3𝑌−3, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.8.1) 

Inserting (4.8.1) into(4.7.6), setting the coefficients of the same degree of 

𝑌𝑆, (𝑆 = 0,1, … ,12) to zero, we get to the following system of algebraic equations for 

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎−1, 𝑎−2, 𝑎−3, 𝑘 and 𝑐: 

 

𝑌0 .:  −60𝑅𝑘3𝑎−3 +
1

2
𝐴𝑎−3

2 = 0  

𝑌1 .:  −24𝑅𝑘3𝑎−2 + 𝐴𝑎−3𝑎−2 = 0  

𝑌2 .:  
114𝑅𝑘3𝑎−3 − 6𝑅𝑘3𝑎−1 + 𝐴𝑎−3𝑎−1 +

1

2
𝐴𝑎−2

2 − 3𝐵𝑘𝑎−3 = 0,                     (4.8.2) 

  

𝑌3 .:  40𝑅𝑘3𝑎−2 + 𝐴𝑎−3𝑎0 + 𝐴𝑎−2𝑎−1 − 2𝐵𝑘𝑎−2 − 𝑐𝑎−3 = 0  

𝑌4 .:  −60𝑅𝑘3𝑎−3 + 8𝑅𝑘3𝑎−1 + 𝐴𝑎−3𝑎1 + 𝐴𝑎−2𝑎0 +
1

2
𝐴𝑎−1

2 + 3𝐵𝑘𝑎−3 − 𝐵𝑘𝑎−1 −

𝑐𝑎−2 = 0,  
𝑌5 .:  −16𝑅𝑘3𝑎−2 + 𝐴𝑎−3𝑎2 + 𝐴𝑎−2𝑎1 + 𝐴𝑎−1𝑎0 + 2𝐵𝑘𝑎−2 − 𝑐𝑎−1 = 0,  

𝑌6 .:  6𝑅𝑘3𝑎−3 − 2𝑅𝑘3𝑎−1 − 2𝑅𝑘3𝑎1 + 6𝑅𝑘3𝑎3 + 𝐴𝑎−3𝑎3 + 𝐴𝑎−2𝑎2 + 𝐴𝑎−1𝑎1 +
1

2
𝐴𝑎0

2 + 𝐵𝑘𝑎−1 + 𝐵𝑘𝑎1 − 𝑐𝑎0 = 0,  

𝑌7 .:  −16𝑅𝑘3𝑎2 + 𝐴𝑎−2𝑎3 + 𝐴𝑎−1𝑎2 + 𝐴𝑎0𝑎1 + 2𝐵𝑘𝑎2 − 𝑐𝑎1 = 0,  
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𝑌8 .:  8𝑅𝑘3𝑎1 − 60𝑅𝑘3𝑎3 + 𝐴𝑎−1𝑎3 + 𝐴𝑎0𝑎2 +
1

2
𝐴𝑎1

2 − 𝐵𝑘𝑎1 + 3𝐵𝑘𝑎3 − 𝑐𝑎2 = 0,  

𝑌9 .:  40𝑅𝑘3𝑎2 + 𝐴𝑎0𝑎3 + 𝐴𝑎1𝑎2 − 2𝐵𝑘𝑎2 − 𝑐𝑎3 = 0,  

𝑌10 .:  −6𝑅𝑘3𝑎1 + 114𝑅𝑘3𝑎3 + 𝐴𝑎1𝑎3 +
1

2
𝐴𝑎2

2 − 3𝐵𝑘𝑎3 = 0,  

 

𝑌11 .:   − 24𝑅𝑘3𝑎2 + 𝐴𝑎2𝑎3 = 0,  

𝑌12 .:  −60𝑅𝑘3𝑎3 +
1

2
𝐴𝑎3

2 = 0  

 

 

Two cases of solutions are obtained by solving the above system via symbolic calculation 

programs. 

1.  

𝑎0 =
30𝐵

19𝐴
√

−𝐵

19𝑅
,  𝑎1 =

135𝐵

152𝐴
√

−𝐵

19𝑅
,  𝑎2 = 0,  𝑎3 = −

15𝐵

152𝐴
√

−𝐵

19𝑅
,  𝑎−1 =

135𝐵

152𝐴
√

−𝐵

19𝑅
, 

𝑎−2 = 0, 𝑎−3 = −
15𝐵

152𝐴
√

−𝐵

19𝑅
,  𝑘 =

1

4
√

−𝐵

19𝑅
,  𝑐 =

30𝐵

19
√

−𝐵

19𝑅
,  

𝐵

𝑅
< 0, (4.8.3)

 

2.  

𝑎0 =
30𝐵

19𝐴
√

11𝐵

19𝑅
,  𝑎1 = −

45𝐵

152𝐴
√

11𝐵

19𝑅
,  𝑎2 = 0,  𝑎3 =

165𝐵

152𝐴
√

11𝐵

19𝑅
, 

𝑎−1 = −
45𝐵

152𝐴
√

11𝐵

19𝑅
,  𝑎−2 = 0, 𝑎−3 =

165𝐵

152𝐴
√

11𝐵

19𝑅
,  𝑘 =

1

4
√

11𝐵

19𝑅
, 

𝑐 =
30𝐵

19
√

11𝐵

19𝑅
,  

𝐵

𝑅
> 0, (4.8.4)

  

Solutions of the case 1. Inserting the solutions (4.8.3) into (3.2.9) and using (3.2.6),(3.2.2), 

we arrive to the following soliton solutions for 
𝐵

𝑅
< 0,  

𝑢(𝑥, 𝑡) =
15𝐵

152𝐴
√

−𝐵

19𝑅
(16 + 9 tanh[φ] − tanh3[φ] + 9 coth[φ] − coth3[φ]), (4.8.5) 

where  

φ = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

−𝐵

19𝑅
,  𝑐 =

30𝐵

19
√

−𝐵

19𝑅
,  

𝐵

𝑅
< 0 
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However, complex solutions are obtained for 
𝐵

𝑅
> 0. From  (4.8.5) and Eqs. (4.7.3)-( 4.7.4), 

we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which are simplified as 

follows:  

𝑈(𝑋, 𝑇) =
15𝐵

152𝐴
√

−𝐵

19𝑅
(16 + 9 tanh[ϕ] − tanh3[ϕ] + 9 coth[ϕ] − coth3[ϕ]) + 𝑊(𝑇), (4.8.6) 

where   

ϕ = ϕ(𝑋, 𝑇) = [
1

4
√

−𝐵

19𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
30𝐵

19
√

−𝐵

19𝑅
𝑇)] 

Solutions of the Case 2. Substituting the solutions (4.8.4) into (3.2.9) and using 

(3.2.6),(3.2.2), we arrive to the following soliton solution for 
𝐵

𝑅
> 0;  

𝑢(𝑥, 𝑡) =
15𝐵

152𝐴
√

11𝐵

19𝑅
(16 − 3 tanh[φ] + 11 tanh3[φ] − 3 coth[φ] + 11 coth3[φ]), (4.8.7) 

where 

φ = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

11𝐵

19𝑅
,  𝑐 =

30𝐵

19
√

11𝐵

19𝑅
,  

𝐵

𝑅
> 0 

However, for 
𝐵

𝑅
< 0, complex solutions can be easily obtained. From (4.8.7)and Eqs. 

(4.7.3)-( 4.7.4), we arrive at a set of exact stochastic solutions of Eq. (4.7.2), which are 

simplified as follows:  

𝑈(𝑋, 𝑇) =
15𝐵

152𝐴
√

11𝐵

19𝑅
(16 − 3 tanh[ϕ] + 11 tanh3[ϕ] − 3 coth[ϕ] + 11 coth3[ϕ]) + 𝑊(𝑇), (4.8.8) 

where  ϕ = ϕ(𝑋, 𝑇) = [
1

4
√

11𝐵

19𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′ −

30𝐵

19
√

11𝐵

19𝑅
𝑇)] 
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Figure 4.47. 3D, 2D, Contour Plots of the solution (4.8.8) for B=A=R=1, where  𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.48. 3D, 2D, Contour Plots of the solution (4.8.8) for B=A=R=1, where 𝑊(𝑇) = 𝑒𝑥𝑝(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇). 

 

 

 

 

Figure 4.49. 3D, 2D, Contour Plots of the solution (4.8.8) for B=A=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇2. 

  

4.9. Using Galilean Transform for Solving the Stochastic Kawahara (KH) Equation  

       Via the Method of Tanh  

The present section is concerned with solitary wave solutions (solutions preserving 

their shapes as they travel with a phase speed 𝑐) of Kawahara equation 

 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝜈𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (4.9.1) 
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with external noise, where 𝜈 is positive and represents the viscosity of the system for (4.9.1). 

Kawahara equation is a dispersive fifth-order equation arising in the modeling of magneto-

acoustic waves in plasma and small-amplitude water waves with surface tension and was 

introduced by Kawahara in 1972 (Kawahara, 1972). 

The equation that is studied in the present section is as follows:  

𝑈𝑇 + 𝐴𝑈𝑈𝑋 + 𝐵𝑈𝑋𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋𝑋𝑋 = 휂(𝑇), (4.9.2) 

where 𝐴, 𝐵 and 𝑅 are arbitrary constants, 휂(. ) stands for the external noise and the subscripts 

represent the partial derivatives with respect to 𝑋  and 𝑇. Eq. (4.9.2) arises in the modeling 

of small-amplitude water waves with surface tension when the surface of the fluid is 

subjected to a non-constant  pressure or  when the bottom of the layer is not flat. Let's start 

from the following equation.  

𝑈𝑇 + 𝐴𝑈𝑈𝑋 + 𝐵𝑈𝑋𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋𝑋𝑋 = 휂(𝑇). (4.9.3) 

Here inhomogeneous term η(𝑇)  stands for external noise and subscripts  𝑋 and 𝑇  denote 

partial differentiations with respect to  𝑋 and 𝑇 , respectively. The following Galilean 

transformation   

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (4.9.4) 

𝑚(𝑇) = −𝐴 ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ η(𝑇′)𝑑
𝑇

0

𝑇′, (4.9.5) 

is applied to transform the stochastic Kawahara equation into its deterministic counterpart  

𝑢𝑡 + 𝐴𝑢𝑢𝑥 + 𝐵𝑢𝑥𝑥𝑥 + 𝑅𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (4.9.6)

In the following , we  use the tanh method to obtain solitary wave solutions to the 

stochastic Kawahara equation (4.9.2), and then use the extended-tanh method to develop 

new solitary wave solutions. Then by using the change of variable 𝑢(𝑥, 𝑡) = 𝑉(𝑧), 𝑧 =

𝑘(𝑥 − 𝑐𝑡)   and integrating the resulting equation, the Kawahara equation (4.9.6) 

transforms into an ODE of the form  

−𝑐𝑉 +
𝐴

2
𝑉2 + 𝐵𝑘2𝑉′′ + 𝑅𝑘4𝑉′′′′ = 0, (4.9.7) 

Balancing 𝑉′′′′ with 𝑉2 in (4.9.7) in (43) yields  

𝑀 + 4 = 2𝑀, (4.9.8) 
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where we obtain  

𝑀 = 4. (4.9.9) 

Then, we use the following solution expansion for the tanh method  

𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑎4𝑌4, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧). (4.9.10) 

From the two relations (4.9.10) and (4.9.7), we get to the following system of algebraic 

equations for 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑘 and 𝑐 after collecting the coefficients of 𝑌𝑆, (𝑆 =

0,1, … ,8) with each other and equating them to zero 

𝑌0 .:   2𝐵𝑘2𝑎2 + 24𝑎4𝑅𝑘4 − 16𝑅𝑘4𝑎2 − 𝑐𝑎0 +
1

2
𝐴𝑎0

2 = 0   

𝑌1 .:   16𝑅𝑘4𝑎1 − 120𝑅𝑘4𝑎3 − 2𝐵𝑘2𝑎1 + 6𝐵𝑘2𝑎3 + 𝐴𝑎0𝑎1 − 𝑐𝑎1 = 0  

𝑌2 .:  −𝑐𝑎2 +
1

2
𝐴𝑎1

2 + 𝐴𝑎0𝑎2 − 8𝐵𝑘2𝑎2 + 12𝐵𝑘2𝑎4 + 136𝑅𝑘4𝑎2 − 480𝑎4𝑅𝑘4 = 0  

𝑌3 .:  −40𝑅𝑘4𝑎1 + 576𝑅𝑘4𝑎3 + 2𝐵𝑘2𝑎1 − 18𝐵𝑘2𝑎3 + 𝐴𝑎0𝑎3 + 𝐴𝑎1𝑎2 − 𝑐𝑎3 = 0  

 

𝑌4 .:  1

2
𝐴𝑎2

2 − 𝑐𝑎4 + 𝐴𝑎0𝑎4 + 𝐴𝑎1𝑎3 − 240𝑅𝑘4𝑎2 + 6𝐵𝑘2𝑎2 − 32𝐵𝑘2𝑎4  + 1696𝑎4𝑅𝑘4 = 0  

𝑌5 .:  24𝑅𝑘4𝑎1 − 816𝑅𝑘4𝑎3 + 12𝐵𝑘2𝑎3 + 𝐴𝑎1𝑎4 + 𝐴𝑎2𝑎3 = 0,                       (4.9.11) 

  

𝑌6 .:  −2080𝑎4𝑅𝑘4 +
1

2
𝐴𝑎3

2 + 𝐴𝑎2𝑎4 + 120𝑅𝑘4𝑎2 + 20𝐵𝑘2𝑎4 = 0  

𝑌7 .:  360𝑅𝑘4𝑎3 + 𝐴𝑎3𝑎4 = 0  

𝑌8 .:   840𝑎4𝑅𝑘4 +
1

2
𝐴𝑑4

2 = 0  

 

 

Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following two cases of solutions: 

1.  

𝑎0 = −
33𝐵2

169𝐴𝑅
,  𝑎1 = 0,  𝑎2 =

210𝐵2

169𝐴𝑅
,  𝑎3 = 0,  𝑎4 = −

105𝐵2

169𝐴𝑅
 𝑘 =

1

2
√−

𝐵

13𝑅
,  𝑐 =

36𝐵2

169𝑅
,  

𝐵

𝑅
< 0. (4.9.12) 
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2.  

𝑎0 = −
105𝐵2

169𝐴𝑅
,  𝑎1 = 0,  𝑎2 =

210𝐵2

169𝐴𝑅
,  𝑎3 = 0,  𝑎4 = −

105𝐵2

169𝐴𝑅
 𝑘 =

1

2
√−

𝐵

13𝑅
,  𝑐 = −

36𝐵2

169𝑅
,  

𝐵

𝑅
> 0. (4.9.13) 

Solutions of the Case 1. Substituting the solutions (4.9.12) into (3.2.8) and using 

(3.2.6),(3.2.2), we arrive to the following solitons solution for 
𝐵

𝑅
< 0; 

𝑢1(𝑥, 𝑡) = −
3𝐵2

169𝐴𝑅
(11 − 70 tanh2[φ1(𝑥, 𝑡)] + 35 tanh4[φ1(𝑥, 𝑡)]), (4.9.14) 

and   

𝑢2(𝑥, 𝑡) = −
3𝐵2

169𝐴𝑅
(11 − 70 coth2[φ2(𝑥, 𝑡)] + 35 coth4[φ2(𝑥, 𝑡)]), (4.9.15) 

where  

φ1,2(𝑥, 𝑡) =
1

2
√−

𝐵

13𝑅
(𝑥 −

36𝐵2

169𝑅
𝑡) 

Though, we arrive to the following periodic solutions for 
𝐵

𝑅
> 0. 

𝑢3(𝑥, 𝑡) = −
3𝐵2

169𝐴𝑅
(11 + 70 tan2[φ3(𝑥, 𝑡)] + 35 tan4[φ3(𝑥, 𝑡)]), (4.9.16) 

and 

𝑢4(𝑥, 𝑡) = −
3𝐵2

169𝐴𝑅
(11 + 70 cot2[φ4(𝑥, 𝑡)] + 35 cot4[φ4(𝑥, 𝑡)]), (4.9.17) 

where 

φ3,4(𝑥, 𝑡) =
1

2
√

𝐵

13𝑅
(𝑥 −

36𝐵2

169𝑅
𝑡) 

From (4.9.14 ) -(4.9.17) and Eqs. (4.9.4 ) - (4.9.5), we arrive at a set of exact stochastic 

solutions of Eq. (4.9.2), which are simplified as follows:  

𝑈1(𝑋, 𝑇) = −
3𝐵2

169𝐴𝑅
(11 − 70 tanh2[ϕ1(𝑋, 𝑇)] + 35 tanh4[ϕ1(𝑋, 𝑇)]) + 𝑊(𝑇), (4.9.18) 
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and   

𝑈2(𝑋, 𝑇) = −
3𝐵2

169𝐴𝑅
(11 − 70 coth2[ϕ2(𝑋, 𝑇)] + 35 coth4[ϕ2(𝑋, 𝑇)]) + 𝑊(𝑇), (4.9.19) 

where   

𝜙1(𝑋, 𝑇) = ϕ2(𝑋, 𝑇) = [
1

2
√−

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
36𝐵2

169𝑅
𝑇)] 

For  
𝐵

𝑅
> 0:  

𝑈3(𝑋, 𝑇) = −
3𝐵2

169𝐴𝑅
(11 + 70 tan2[ϕ3(𝑋, 𝑇)] + 35 tan4[ϕ3(𝑋, 𝑇)]) + 𝑊(𝑇), (4.9.20) 

and   

𝑈4(𝑋, 𝑇) = −
3𝐵2

169𝐴𝑅
(11 + 70 cot2[ϕ4(𝑋, 𝑇)] + 35 cot4[ϕ4(𝑋, 𝑇)]) + 𝑊(𝑇), (4.9.21) 

where  

 ϕ3(𝑋, 𝑇) = ϕ4(𝑋, 𝑇) = [
1

2
√

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′ −

36𝐵2

169𝑅
𝑇)] 

Solutions of the Case 2. Substituting the solutions (4.9.13) into (3.2.8) and using (3.2.6), 

(3.2.2), we arrive to the following solitons solution for  
𝐵

𝑅
< 0;  

𝑢5(𝑥, 𝑡) = −
105𝐵2

169𝐴𝑅
𝑠𝑒𝑐ℎ4 [

1

2
√−

𝐵

13𝑅
(𝑥 +

36𝐵2

169𝑅
𝑡)] , (4.9.22) 

and 

𝑢6(𝑥, 𝑡) = −
105𝐵2

169𝐴𝑅
𝑐𝑒𝑐ℎ4 [

1

2
√−

𝐵

13𝑅
(𝑥 +

36𝐵2

169𝑅
𝑡)] , (4.9.23) 

The following periodic solutions are obtained for 
𝐵

𝑅
> 0.  
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𝑢7(𝑥, 𝑡) = −
105𝐵2

169𝐴𝑅
𝑠𝑒𝑐4 [

1

2
√

𝐵

13𝑅
(𝑥 +

36𝐵2

169𝑅
𝑡)] , (4.9.24) 

and   

𝑢8(𝑥, 𝑡) = −
105𝐵2

169𝐴𝑅
𝑐𝑠𝑒𝑐4 [

1

2
√

𝐵

13𝑅
(𝑥 +

36𝐵2

169𝑅
𝑡)] , (4.9.25) 

From (4.9.22 ) - ( 4.9.25) and Eqs. (4.9.4)-( 4.9.5), we get a series of exact stochastic 

solutions of Eq. (4.9.2), which are simplified as follows:  

𝑈5(𝑋, 𝑇) = −
105𝐵2

169𝐴𝑅
𝑠𝑒𝑐ℎ4[ϕ5(𝑋, 𝑇)] + 𝑊(𝑇), (4.9.26) 

 

 

 

Figure 4.50. 3D, 2D, Contour Plots of the solution ( 4.9.26) for B=-1,A=R=1,where 𝑊(𝑇) = 0. 

 

 

 

 

Figure 4.51. 3D, 2D, Contour Plots of the solution ( 4.9.26) for B=-1,A=R=1, where  𝑊(𝑇) = sin[noise ∗ T]. 
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Figure 4.52. 3D, 2D, Contour Plots of the solution ( 4.9.26) for B=-1,A=R=1,where 𝑊(𝑇) = noise ∗  T2. 

 

 

and   

𝑈6(𝑋, 𝑇) = −
105𝐵2

169𝐴𝑅
𝑐𝑠𝑒𝑐ℎ4[ϕ6(𝑋, 𝑇)] + 𝑊(𝑇), (4.9.27) 

where   

ϕ5(𝑋, 𝑇) = ϕ6(𝑋, 𝑇) = [
1

2
√−

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ +
36𝐵2

169𝑅
𝑇)] 

For  
𝐵

𝑅
> 0:  

𝑈7(𝑋, 𝑇) = −
105𝐵2

169𝐴𝑅
𝑠𝑒𝑐4[ϕ7(𝑋, 𝑇)] + 𝑊(𝑇), (4.9.28) 

and   

𝑈8(𝑋, 𝑇) = −
105𝐵2

169𝐴𝑅
𝑐𝑠𝑒𝑐4[ϕ8(𝑋, 𝑇)] + 𝑊(𝑇), (4.9.29) 

where   

ϕ7(𝑋, 𝑇) = ϕ8(𝑋, 𝑇) = [
1

2
√

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ +
36𝐵2

169𝑅
𝑇)] 

4.10. Using Galilean Transform for Solving The Stochastic Kawahara (KH) Equation  

         Via The Method of Extended-Tanh 

Recalling that 𝑀 =  4  and using (3.2.9), we obtain the following finite expansion for the 

extended-tanh method  
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𝑉(𝑧) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑎4𝑌4 + 𝑎−1𝑌−1𝑎−2𝑌−2 + 𝑎−3𝑌−3 + 𝑎−4𝑌−4, 𝑌 = 𝑡𝑎𝑛ℎ(𝑧), (4.10.1) 

Inserting (4.10.1) into (4.9.7) and equating the coefficients of the same degree of 

𝑌𝑆, (𝑆 = 0,1, … ,16) yields the system of algebraic equations for 𝑎0, 𝑎1, 𝑎2, 𝑎3, 

𝑎4, 𝑎−1, 𝑎−2, 𝑎−3, 𝑎−4, 𝑘 and 𝑐: 

𝑌0 .:   1680𝑅𝑘4𝑎−4 + 𝐴𝑎−4
2 = 0,    

𝑌1 .:   720𝑅𝑘4𝑎−3 + 2𝐴𝑎−4𝑎−3 = 0,                                                                   (4.10.2) 

 

𝑌2 .:   − 4160𝑅𝑘4𝑎−4 + 240𝑅𝑘4𝑎−2 + 40𝐵𝑘2𝑎−4 + 2𝐴𝑎−4𝑎−2 + 𝐴𝑎−3
2 = 0,     

𝑌3 .:  −1632𝑅𝑘4𝑎−3 + 48𝑅𝑘4𝑎−1 + 24𝐵𝑘2𝑎−3 + 2𝐴𝑎−4𝑎−1 + 2𝐴𝑎−3𝑎−2 = 0,   

𝑌4 .:  3392𝑅𝑘4𝑎−4 − 480𝑅𝑘4𝑎−2 − 64𝐵𝑘2𝑎−4 + 12𝐵𝑘2𝑎−2 + 2𝐴𝑎−4𝑎0 +
2𝐴𝑎−3𝑎−1 + 𝐴𝑎−2

2 − 2𝑐𝑎−4 = 0,  
𝑌5 .:  1152𝑅𝑘4𝑎−3 − 80𝑅𝑘4𝑎−1 − 36𝐵𝑘2𝑎−3 + 4𝐵𝑘2𝑎−1 + 2𝐴𝑎−4𝑎1 +

2𝐴𝑎−3𝑎0 + 2𝐴𝑎−2𝑎−1 − 2𝑐𝑎−3 = 0,  
𝑌6 .:  −960𝑅𝑘4𝑎−4 + 272𝑅𝑘4𝑎−2 + 24𝐵𝑘2𝑎−4 − 16𝐵𝑘2𝑎−2 + 2𝐴𝑎−4𝑎2 +

2𝐴𝑎−3𝑎1 + 2𝐴𝑎−2𝑎0 + 𝐴𝑎−1
2 − 2𝑐𝑎−2 = 0,  

𝑌7 .:   − 240𝑅𝑘4𝑎−3 + 32𝑅𝑘4𝑎−1 + 12𝐵𝑘2𝑎−3 − 4𝐵𝑘2𝑎−1 + 2𝐴𝑎−4𝑎3  +
2𝐴𝑎−3𝑎2 + 2𝐴𝑎−2𝑎1 + 2𝐴𝑎−1𝑎0 − 2𝑐𝑎−1 = 0,   

𝑌8 .:   48𝑅𝑘4𝑎−4 − 32𝑅𝑘4𝑎−2 − 32𝑅𝑘4𝑎2 + 48𝑅𝑘4𝑎4 + 4𝐵𝑘2𝑎−2 + 4𝐵𝑘2𝑎2 + 2𝐴𝑎−4𝑎4 +
2𝐴𝑎−3𝑎3 + 2𝐴𝑎−2𝑎2 + 2𝐴𝑎−1𝑎1 + 𝐴𝑎0

2  − 2𝑐𝑎0 = 0,  

𝑌9 .:   32𝑅𝑘4𝑎1 − 240𝑅𝑘4𝑎3 − 4𝐵𝑘2𝑎1 + 12𝐵𝑘2𝑎3 + 2𝐴𝑎−3𝑎4 + 2𝐴𝑎−2𝑎3 +
2𝐴𝑎−1𝑎2 + 2𝐴𝑎0𝑎1 − 2𝑐𝑎1 = 0,   

𝑌10 .:   272𝑅𝑘4𝑎2 − 960𝑅𝑘4𝑎4 − 16𝐵𝑘2𝑎2 + 24𝐵𝑘2𝑎4 + 2𝐴𝑎−2𝑎4 + 2𝐴𝑎−1𝑎3 +
2𝐴𝑎0𝑎2 + 𝐴𝑎1

2 − 2𝑐𝑎2 = 0,   
𝑌11 .:  −80𝑅𝑘4𝑎1 + 1152𝑅𝑘4𝑎3 + 4𝐵𝑘2𝑎1 − 36𝐵𝑘2𝑎3 + 2𝐴𝑎−1𝑎4 + 2𝐴𝑎0𝑎3 +

2𝐴𝑎1𝑎2 − 2𝑐𝑎3 = 0,  
𝑌12 .:   − 480𝑅𝑘4𝑎2 + 3392𝑅𝑘4𝑎4 + 12𝐵𝑘2𝑎2 − 64𝐵𝑘2𝑎4 + 2𝐴𝑎0𝑎4 +

2𝐴𝑎1𝑎3 + 𝐴𝑎2
2 − 2𝑐𝑎4 = 0,    

𝑌13 .:   48𝑅𝑘4𝑎1 − 1632𝑅𝑘4𝑎3 + 24𝐵𝑘2𝑎3 + 2𝐴𝑎1𝑎4 + 2𝐴𝑎2𝑎3 = 0,  

𝑌14 .:  240𝑅𝑘4𝑎2 − 4160𝑅𝑘4𝑎4 + 40𝐵𝑘2𝑎4 + 2𝐴𝑎2𝑎4 + 𝐴𝑎3
2 = 0,  

𝑌15 .:   720𝑅𝑘4𝑎3 + 2𝐴𝑎3𝑎4 = 0,  

𝑌16 .:   1680𝑅𝑘4𝑎4 + 𝐴𝑎4
2 = 0,  
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Now, using one of the symbolic calculation programs to solve the above algebraic system, 

we get the following two cases of solutions: 

1.  

𝑎0 = −
315𝐵2

1352𝐴𝑅
,  𝑎1 = 0,  𝑎2 =

105𝐵2

676𝐴𝑅
,  𝑎3 = 0,  𝑎4 = −

105𝐵2

2704𝐴𝑅
 𝑎−1 = 0, 

𝑎−2 =
105𝐵2

676𝐴𝑅
, 𝑎−3 = 0,  𝑎−4 = −

105𝐵2

2704𝐴𝑅
,  𝑘 =

1

4
√

−𝐵

13𝑅
,  𝑐 = −

36𝐵2

169𝑅
,  

𝐵

𝑅
< 0, (4.10.3)

 

 

2.  

𝑎0 =
261𝐵2

1352𝐴𝑅
,  𝑎1 = 0,  𝑎2 =

105𝐵2

676𝐴𝑅
,  𝑎3 = 0,  𝑎4 = −

105𝐵2

2704𝐴𝑅
 𝑎−1 = 0, 

𝑎−2 =
105𝐵2

676𝐴𝑅
, 𝑎−3 = 0,  𝑎−4 = −

105𝐵2

2704𝐴𝑅
 𝑘 =

1

4
√

−𝐵

13𝑅
,  𝑐 =

36𝐵2

169𝑅
,  

𝐵

𝑅
< 0, (4.10.4)

 

 

Solutions of the Case 1. We obtain the following soliton solutions for 
𝐵

𝑅
< 0 by inserting the 

solutions (4.10.3) into (3.2.9) and using (3.2.6) , (3.2.2).  

𝑢1(𝑥, 𝑡) = −
105𝐵2

2704𝐴𝑅
(6 − 4 tanh2[φ] + tanh4[φ] − 4 coth2[φ] + coth4[φ]), (4.10.5) 

where  

φ(𝑥, 𝑡) = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

−𝐵

13𝑅
,  𝑐 = −

36𝐵2

169𝑅
,  

𝐵

𝑅
< 0 

The following periodic solutions are obtained for  
𝐵

𝑅
> 0. 

𝑢2(𝑥, 𝑡) = −
105𝐵2

2704𝐴𝑅
(6 + 4 tan2[φ] + tan4[φ] + 4 cot2[φ] + cot4[φ]), (4.10.6) 

where  

φ(𝑥, 𝑡) = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

𝐵

13𝑅
,  𝑐 = −

36𝐵2

169𝑅
, 
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From (4.10.5) and Eqs. (4.9.4)-( 4.9.5), we have a series of exact stochastic solutions of 

Eq. (4.9.2), which are simplified as follows:  

𝑈1(𝑋, 𝑇) = −
105𝐵2

2704𝐴𝑅
(6 − 4 tanh2[ϕ1] + tanh4[ϕ1] − 4 coth2[ϕ1] + coth4[ϕ1]) + 𝑊(𝑇), (4.10.7) 

where   

ϕ1 = ϕ1(𝑋, 𝑇) = [
1

4
√

−𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ +
36𝐵2

169𝑅
𝑇)] 

 

 

 

Figure 4.53. 3D, 2D, Contour Plots of the solution ( 4.10.7) for B=-1,A=R=1, where  $W(T)=0 $ 

 

 

 

 

Figure 4.54. 3D, 2D, Contour Plots of the solution ( 4.10.7) for B=-1,A=R=1, 𝑊(𝑇) = 𝑠𝑖𝑛[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇]. 

 

 

 

Figure 4.55. 3D, 2D, Contour Plots of the solution ( 4.10.7) for B=-1,A=R=1, where 𝑊(𝑇) = 𝑛𝑜𝑖𝑠𝑒 ∗ T2. 
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For  
𝐵

𝑅
> 0 ,  

𝑈2(𝑋, 𝑇) = −
105𝐵2

2704𝐴𝑅
(6 + 4 tan2[ϕ2] + tan4[ϕ2] + 4 cot2[ϕ2] + cot4[ϕ2]) + 𝑊(𝑇), (4.10.8) 

where  

ϕ2 = ϕ2(𝑋, 𝑇) = [
1

4
√

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ +
36𝐵2

169𝑅
𝑇)] 

Solutions of the Case 2. Inserting the solutions (4.10.4 ) into (3.2.9) and using 

(3.2.6),(3.2.2), we obtain the soliton solutions for 
𝐵

𝑅
< 0  

𝑢3(𝑥, 𝑡) =
3𝐵2

2704𝐴𝑅
(174 + 140 tanh2[φ] − 35 tanh4[φ]+140 coth2[φ] − 35 coth4[φ]), (4.10.9) 

where  

φ(𝑥, 𝑡) = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

−𝐵

13𝑅
,  𝑐 =

36𝐵2

169𝑅
,  

𝐵

𝑅
< 0 

The following periodic solutions are also obtained for  
𝐵

𝑅
> 0.  

𝑢4(𝑥, 𝑡) =
3𝐵2

2704𝐴𝑅
(174 − 140 tan2[φ] − 35 tan4[φ] − 140 cot2[φ] − 35 cot4[φ]), (4.10.10) 

where  

φ(𝑥, 𝑡) = 𝑘(𝑥 − 𝑐𝑡), 𝑘 =
1

4
√

𝐵

13𝑅
,  𝑐 =

36𝐵2

169𝑅
, 

From  (4.10.9) and Eqs. (4.9.4)-( 4.9.5), we arrive at a set of exact stochastic solutions of 

Eq. (4.9.2), which are simplified as follows:  

𝑈3(𝑋, 𝑇) =
3𝐵2

2704𝐴𝑅
(174 + 140 tanh2[ϕ3] − 35 tanh4[ϕ3]+140 coth2[ϕ3] − 35 coth4[ϕ3]) + 𝑊(𝑇), (4.10.11) 

where  

ϕ3 = ϕ3(𝑋, 𝑇) = [
1

4
√

−𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
36𝐵2

169𝑅
𝑇)] 
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For  
𝐵

𝑅
> 0 ,  

𝑈4(𝑋, 𝑇) =
3𝐵2

2704𝐴𝑅
(174 − 140 tan2[ϕ

4
] − 35 tan4[ϕ

4
] − 140 cot2[ϕ

4
] − 35 cot4[ϕ

4
]) + 𝑊(𝑇), (4.10.12) 

where  

ϕ4 = ϕ4(𝑋, 𝑇) = [
1

4
√

𝐵

13𝑅
(𝑋 − 𝐴 ∫ 𝑊(𝑇′)𝑑

𝑇

0

𝑇′ −
36𝐵2

169𝑅
𝑇)] 

4.11. Exact Solutions for Wick-Type Stochastic Extended KdV Equation 

In this chapter, we aim to provide exact solutions to the Wick-type extended KdV 

eqaution 

𝑈𝑡 + 𝐻1(𝑡) ⋄ 𝑈𝑥 + 𝐻2(𝑡) ⋄ 𝑈 ⋄ 𝑈𝑥 + 𝐻3(𝑡) ⋄ 𝑈𝑥𝑥𝑥 = 0, (4.11.1) 

where  ⋄ is the Wick product on the Hida distribution space (𝑆)∗, and 𝐻𝑖(𝑖 = 1,2,3) are the 

white noise functions. The F-expansion method and Hermit transformation are employed. By 

means of these methods and with the help of a symbolic computation package, we get 

periodic wave solutions for the Wick-type stochastic extended KdV  equation. 2D, 3D, and 

contour graphs have been drawn by giving special values to the constants in the solutions via 

computer software. Moreover, by considering different random values to the noise, the effect 

of the noise on the wave-forms has been exhibited. The obtained results has been discussed 

in detail. 

The KdV equation was introduced as a model for waves on shallow water surfaces. 

It is one of the simplest equations involving the interaction of nonlinearity and dispersion 

effects. Then, it was used as a model for shock wave generation, solitons, turbulence, 

boundary layer behavior and mass transport in many fields such as fluid dynamics, plasma 

physics, aerodynamics and lattice dynamics, and many studies were performed on by 

mathematicians (Adem and Khalique, 2012; Bona and Smith, 1975; Kato, 1979; Kenig et al., 

1991; S. Zhang et al., 2008; Zhou et al., 2003). Bakırtaş and Antar (2003), Bakırtaş and 

Demiray (2005), using the method of reductive perturbation, studied the weakly nonlinear 

propagation of waves in elastic tubes filled with non-compressible viscous fluid where long-

wave approximation was used. The KdV equation obtained in (Bakırtaş and Antar, 2003) and 

(I. Bakırtaş and Demiray, 2005), by treating blood as a non-compressible viscous fluid and 
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the arteries as tapered, flexible, thin-walled, long circular conical tube, is as follows   

  

𝑢𝑡 + 𝜈1𝑢𝑢𝑥 + 𝜈2𝑢𝑥𝑥𝑥 + 𝜇(𝑡)𝑢𝑥 = 0, (4.11.2) 

 where 𝜈1 and 𝜈2 are constants due to the initial deformation of the tube material, and 𝜇(𝑡)𝑢𝑥 

represents the contribution of the tapering of tube. The equation (4.11.2) is called the 

extended-KdV equation by the authors of ( Bakırtaş and Antar, 2003). 

The deterministic KdV equation is insufficient in the modeling of physical 

phenomena that include uncertainty due to the difficulty of describing the physical systems 

of the real-world with deterministic equations. In order to eliminate this deficiency, Wadati 

(Wadati, 1983), added a forcing term comprising external noise   

𝑢𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 휂(𝑡), (4.11.3) 

and  Iizuka (Iizuka, 1993) added a derivative term multiplicated by noise with long-range 

correlation

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 휂(𝑡)𝑢𝑥 = 0. (4.11.4) 

 Eq.(4.11.3) models traveling waves in noisy plasmas  while Eq. (4.11.4) with 

multiplicative noise arises in the modeling of diffusive behavior of the solitons (especially 

anomalous diffusion of solitons (Iizuka, 1993). In (Wadati, 1983), Wadati discovered 

diffusion of soliton for Eq. (4.11.3). Moreover, Wadati and Akutsu (1984) considered the 

effect of friction by adding a damping term to (4.11.3). Lin et al. (2006) studied Eq. ( 4.11.4) 

with homogeneous boundary conditions. They obtained numerical solutions of (4.11.4) using 

discontinuous Galerkin and finite difference methods with considering three different noise 

types: additive noise, multiplicative noise, and a combination of both noises. The main 

purpose here is to obtain the periodic wave solutions of Eq. (4.11.1) with a random term of 

white noise type.  As known, in nonlinear science construction of traveling wave solutions 

has an important role and several methods have been developed to obtain traveling wave 

solutions. Among these methods, we use the F-expansion method for obtaining the periodic 

solutions. We also aim to demonstrate the effect of noise on the wave-form by visualizing 

the solutions with different noise functions. To illustrate the F-expansion method and the 

possibilities it offers, we now investigate stochastic extended KdV Equation in detail. 

Depending on the steps presented in Section (3.2.3), we will present the detailed solution to 
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the Wick-type stochastic extended KdV equation ( 4.11.1) as follows. By applying the 

Hermite transform to Eq. ( 4.11.1 ), we obtain the following equation  

𝑈�̃� + 𝐻1̃(𝑡, 𝑧)𝑈�̃� + 𝐻2̃(𝑡, 𝑧)�̃�𝑈�̃� + 𝐻3̃(𝑡, 𝑧)𝑈𝑥𝑥�̃� = 0, (4.11.5) 

where 𝑧 = (𝑧1, 𝑧2, … ) ∈ 𝐶𝑐
N is a vector parameter. Let's denote 𝑢(𝑡, 𝑥, 𝑧) = �̃�(𝑡, 𝑥, 𝑧) and 

𝐻𝑖(𝑡, 𝑧) = 𝐻�̃�(𝑡, 𝑧)(𝑖 = 1,2,3) for simplicity. Suppose the formal solution to Eq. (4.11.5) 

takes the following form 

𝑢 = 𝑢(휁),  휁 = 𝑓(𝑡, 𝑥)𝑥 + 𝑔(𝑡, 𝑥). (4.11.6) 

Whereas in the previous equation, both 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are functions that will be 

determined later. Anyway, let's consider the solution of the Eq. (4.11.5). It is expressed in 

the following form  

𝑢(휁) = ∑ 𝑎𝑖(𝑡, 𝑧)𝐹𝑖(휁)

𝑛

𝑖=0

. (4.11.7) 

The balancing integer term  𝑛  can be calculated using the principle of homogeneous 

balance between the highest order linear term and the nonlinear term in Eq. (4.11.9). Also 

the functions 𝑎𝑖(𝑡, 𝑧) and 𝐹𝑖(휁)(𝑖 = 0,1,2, … , 𝑛) will be determined later. Assuming that 

solutions of the elliptic equation (4.11.8) is the function 𝐹(휁) given in the equation (4.11.7). 

 

𝐹ζ
2 = 𝐴1 + 𝐴2𝐹2(ζ) + 𝐴3𝐹4(ζ), (4.11.8) 

 

where 𝐴1, 𝐴2, 𝐴3 and 𝐹(휁) are values determined using the corresponding values which 

geves in Table 3.3 .The following equation is obtained by substituting Eq.(4.11.6) into Eq. 

(4.11.5).

(𝑓𝑡𝑥 + 𝑔𝑡)𝑢ζ + 𝐻1𝑓𝑢ζ + 𝐻2𝑓𝑢𝑢ζ + 𝐻3𝑓3𝑢ζζζ = 0. (4.11.9) 

 Balancing 𝑢𝑢ζ with 𝑢ζζζ gives 𝑛 = 2 , then, the ansatz takes the following form

 

𝑢 = 𝑎0 + 𝑎1𝐹 + 𝑎2𝐹2. (4.11.10)

Now from Eq.(4.11.10) and Eq. (4.11.9) we get    
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𝑎0𝑡 + 𝑎1𝑡𝐹 + 𝑎2𝑡𝐹2 + 2𝐻3𝑎2𝑓3𝐹𝐹ζζζ + 𝐻3𝑓3𝑎1𝐹ζζζ + 6𝐻3𝑎2𝑓3𝐹ζζ𝐹𝜁 + 2𝐻2𝑎2
2𝑓𝐹3𝐹ζ + 3𝐻2𝑎1𝑎2𝑓𝐹2𝐹ζ

+(2𝑎2𝑓𝑡𝑥 + 2𝐻2𝑥𝑎2𝑓 + 2𝐻1𝑎2𝑓 + 𝐻2𝑎1
2𝑓 + 2𝑎2𝑔𝑡 + 2𝐻2𝑎0𝑎2𝑓)𝐹𝐹ζ

+(𝑎1𝑓𝑡𝑥 + 𝑎1𝑔𝑡 + 𝐻1𝑎1𝑓 + 𝐻2𝑎0𝑎1𝑓)𝐹ζ = 0. (4.11.11)

According to Eq. (4.11.8), we get  

𝐹ζζ = 𝐴2𝐹 + 2𝐴3𝐹3, (4.11.12) 

𝐹ζζζ = (𝐴2 + 6𝐴3𝐹2)𝐹ζ. (4.11.13)

Using Eqs. (4.11.8),(4.11.12) and (4.11.13) into Eq. (4.11.11), we  

𝑎0𝑡 + 𝑎1𝑡𝐹 + 𝑎2𝑡𝐹2 + (𝑎1(𝑓𝑡𝑥 + 𝑔𝑡) + 𝐻1𝑎1𝑓 + 𝐻2𝑎0𝑎1𝑓 + 𝐻3𝑎1𝑓3𝐴2)𝐹ζ

+(2𝑎2(𝑓𝑡𝑥 + 𝑔𝑡)+2𝐻1𝑎2𝑓 + 𝐻2𝑎1
2𝑓 + 2𝐻2𝑎0𝑎2𝑓 + 8𝐻3𝑎2𝑓3𝐴2)𝐹𝐹ζ

+(3𝐻2𝑎1𝑎2𝑓 + 6𝐻3𝑎1𝑓3𝐴3)𝐹2𝐹ζ + (2𝐻2𝑎2
2𝑓 + 24𝐻3𝑎2𝑓3𝐴3)𝐹3𝐹ζ = 0. (4.11.14)

 

 From the Eq. (4.11.14), we get the following system of algebraic equations for 𝑎0, 𝑎1, 𝑎2, 𝑓 

and 𝑔 after collecting the coefficients of 𝐹𝑖, 𝐹𝑖𝐹ζ(𝑖 = 1,2,3) with each other and equating 

them to zero, we have  

𝑎0𝑡 = 𝑎1𝑡 = 𝑎2𝑡 = 0, (4.11.15) 

𝑎1(𝑓𝑡𝑥 + 𝑔𝑡 + 𝐻1𝑓 + 𝐻2𝑎0𝑓 + 𝐻3𝑓3𝐴2) = 0, (4.11.16) 

2𝑎2(𝑓𝑡𝑥 + 𝑔𝑡 + 𝐻1𝑓) + 𝐻2𝑓(𝑎1
2 + 2𝑎0𝑎2) + 8𝐻3𝑎2𝑓3𝐴2 = 0, (4.11.17) 

3𝑎1𝑓(𝐻2𝑎2 + 2𝐻3𝑓2𝐴3) = 0, (4.11.18) 

2𝑎2𝑓(𝐻2𝑎2 + 12𝐻3𝑓2𝐴3) = 0. (4.11.19) 

Solving  Eqs. (4.11.15),(4.11.16), we get  

𝑎0 = 𝑐0,  𝑎1 = 𝑐1,  𝑎2 = 𝑐2, (4.11.20) 

where 𝑐0, 𝑐1 and 𝑐2 are arbitrary constants. Through equations (4.11.16) and (4.11.17), we 

find that  

𝑓(𝑡, 𝑧) = 𝑓0, (4.11.21) 

 where 𝑓0 ≠ 0 is constant.  Also from both equations (4.11.19) and (4.11.21), we derive 

𝑎2(𝑡, 𝑧) = −
12𝐴3𝑓0

2𝐻3(𝑡, 𝑧)

𝐻2(𝑡, 𝑧)
. (4.11.22) 

 Comparing the equations (4.11.20) and (4.11.22), yields  
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𝐻3(𝑡, 𝑧) = γ𝐻2(𝑡, 𝑧), (4.11.23) 

 where γ is constant. From both equations (4.11.23 ) and (4.11.22), we have   

𝑎2(𝑡, 𝑧) = −12𝐴3𝑓0
2γ. (4.11.24) 

 Also, through equations (4.11.18) and (4.11.20), we find that  

𝑎1(𝑡, 𝑧) = 𝑐1 = 0. (4.11.25) 

 Now, by using equations (4.11.21), (4.11.24) and (4.11.25 ) in equation (4.11.17), we get 

𝑔(𝑡, 𝑧) = −𝑓0 ∫ 𝐻1(𝑠, 𝑧)𝑑𝑠
𝑡

0

− (𝑓0𝑎0 + 4γ𝑓0
3𝐴2) ∫ 𝐻2(𝑠, 𝑧)𝑑𝑠

𝑡

0

. (4.11.26) 

 In view of Eqs. (4.11.6), (4.11.21) and (4.11.26) we get  

ζ = 𝑓0𝑥 − 𝑓0 ∫ 𝐻1(𝑠, 𝑧)𝑑𝑠
𝑡

0

− (𝑓0𝑎0 + 4γ𝑓0
3𝐴2) ∫ 𝐻2(𝑠, 𝑧)𝑑𝑠

𝑡

0

. (4.11.27) 

 In view of equations (4.11.10), (4.11.20), (4.11.22) and (4.11.25), we get the solution of 

the Eq. (4.11.5) as follows  

𝑢(𝑡, 𝑥, ζ) = 𝑐0 − 12𝐴3𝑓0
2γ𝐹(ζ)2, (4.11.28) 

 where ζ is calculated based on Eq.(4.11.27) and 𝐹(ζ) is all solutions of the Jacobian 

elliptic function fulfilled for Eq. (4.11.8).  Let  ℎ(𝑡) be integrable function on 

𝑅− 𝑎𝑛𝑑 𝑏𝑖(𝑖 = 1,2) be arbitrary constants and  

𝐻1(𝑡) = 𝑏1𝑊(𝑡),  𝐻2(𝑡) = ℎ(𝑡) + 𝑏2𝑊(𝑡). (4.11.29) 

 In Eq. (4.11.29), Gaussian white noise and Brown motion are denoted by 𝑊(𝑡) and 𝐵(𝑡), 

respectively. Also from the stochastic analysis, we have 𝑊(𝑡) = �̇�(𝑡). Through Eq. 

(4.11.23), we have  

𝐻1(𝑡) = 𝑏1𝑊(𝑡),                           

𝐻2(𝑡) = ℎ(𝑡) + 𝑏2𝑊(𝑡),           

𝐻3(𝑡) = γ(ℎ(𝑡) + 𝑏2𝑊(𝑡)).   (4.11.30)
 

 Using the Hermite transformations for Eqs. (4.11.29) and  ( 4.11.30) , respectively, we 

obtain    
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𝐻1̃(𝑡, 𝑧) = 𝑏1�̃�(𝑡, 𝑧),                              

𝐻2̃(𝑡, 𝑧) = ℎ(𝑡) + 𝑏2�̃�(𝑡, 𝑧),      

𝐻3̃(𝑡, 𝑧) = γ (ℎ(𝑡) + 𝑏2�̃�(𝑡, 𝑧)),           (4.11.31)

 

where �̃�(𝑡, 𝑧) = ∑ ∫ η𝑘(𝑠)d
𝑡

0
𝑠∞

𝑘=1 𝑧𝑘.  Through Eqs.(4.11.28) and (4.11.27), we can find 

the general formal 

𝑈(𝑡, 𝑥) = 𝑐0 − 12𝐴3𝑓0
2γ𝐹2⋄(ζ̅), (4.11.32) 

 where 𝐹(ζ̅) is all solutions of the Jacobian elliptic function fulfilled for Eq.( 4.11.8) and 

ζ̅ = 𝑓0𝑥 − 𝑓0 ∫ 𝐻1(𝑠)𝑑𝑠
𝑡

0

− (𝑓0𝑎0 + 4γ𝑓0
3𝐴2) ∫ 𝐻2(𝑠)𝑑𝑠

𝑡

0

                   

= 𝑓0𝑥 − 𝑓0𝑏1𝐵(𝑡) − (𝑓0𝑎0 + 4γ𝑓0
3𝐴2) (𝑏2𝐵(𝑡) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) . (4.11.33)

 

In view of  exp⋄(𝐵(𝑡)) = exp (𝐵(𝑡) −
1

2
𝑡2) (see (Holden et al., 1996), Lemma 2.6.16). By 

means of Eqs.(4.11.33), (4.11.32), (4.11.30) and (4.11.31) we obtain 

𝑈(𝑡, 𝑥) = 𝑐0 − 12𝐴3𝑓0
2γ𝐹2(ζ), (4.11.34) 

 where 

ζ = 𝑓0𝑥 − 𝑓0 ∫ 𝑏1

𝑡

0

δ𝐵(𝑠) − (𝑓0𝑎0 + 4γ𝑓0
3𝐴2) ∫ (ℎ(𝑠)𝑑𝑠 + 𝑏2δ𝐵(𝑠))

𝑡

0

                               

= 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 4γ𝑓0

3𝐴2) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.35)

 

Also, it must be noted that we used the following relation in Eq.(4.11.35)  

∫ Ψ(𝑡)
𝑅

⋄ 𝑊(𝑡)d𝑡 = ∫ Ψ(𝑡)δ𝐵(𝑡)
𝑅

,  Ψ(𝑡) ∈ 𝐿2(𝑅), (4.11.36) 

where the stochastic integral ∫(. )δ𝐵(𝑠)  is the Skorohod integral. Using the values of 

𝐴2, 𝐴3, 𝐹(ζ) from Table 3.3 in Eqs. (4.11.35) and (4.11.34), we obtain a series of solutions 

of Jacobian elliptic function of Eq. (4.11.1). 
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In view of case 1. as an example, we obtain  

𝑈1(𝑡, 𝑥) = 𝑐0 − 12𝑚2𝑓0
2γ𝑠𝑛2(ζ), (4.11.37) 

where    

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 4γ𝑓0

3(1 + 𝑚2)) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.38) 

 Also, we know that 𝑠𝑛(ζ) → tanh(ζ) when 𝑚 → 1. Therefore, we can find a stochastic 

soliton-like solution for Eq. (4.11.1) in the following form:  

𝑈1
∗(𝑡, 𝑥) = 𝑐0 − 12𝑓0

2γ tanh2(ζ) , (4.11.39) 

  where   

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 8γ𝑓0

3) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.40) 

Graphs of some solutions for particular values of parameters  𝑐0, 𝑓0, 𝑏1, 𝑏2, 𝑎0, γ  and 

different values of, 𝐵(𝑡), ℎ(𝑠) are visualized below. 

 

 

 

Figure 4.56. Graph of solution (4.11.39 ) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1, 𝐵(𝑡) = 0, ℎ(𝑠) = 𝑠 

 

 

 

Figure 4.57. Graph of solution (4.11.39) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1, 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) = 𝑠2 
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Figure 4.58. Graph of solution (4.11.39) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1, 𝐵(𝑡) = 0, ℎ(𝑠) = sin(s) 

 

 

 
Figure 4.59. Graph of solution (4.11.39) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1, 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) = 𝑠𝑖𝑛(𝑠) 

 

In view of case 3. We have  

𝑈3(𝑡, 𝑥) = 𝑐0 + 12𝑚2𝑓0
2γ𝑐𝑛2(ζ), (4.11.41) 

where 

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 − 4γ𝑓0

3(1 − 2𝑚2)) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.42) 

Also, we known that 𝑐𝑛(ζ) → 𝑠𝑒𝑐ℎ(ζ) when 𝑚 → 1. So if that we can find a stochastic 

soliton-like solution for Equation (4.11.1) in the following form: 

𝑈3
∗(𝑡, 𝑥) = 𝑐0 + 12𝑓0

2𝛾 Sech2(휁) , (4.11.43) 

 with    

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 4γ𝑓0

3) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.44) 
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Graphs of some solutions for particular values of parameters 𝑐0, 𝑓0, 𝑏1, 𝑏2, 𝑎0, γ  and 

different values of, 𝐵(𝑡), ℎ(𝑠) are visualized below. 

 

 

 

Figure 4.60. Graph of solution (4.11.43) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = 𝑠2 

 

 
 

 

Figure 4.61. Graph of solution (4.11.43) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) = 𝑠2 

In view of case 14. we obtain 

𝑈14(𝑡, 𝑥) = 𝑐0 − 3𝑚2𝑓0
2γ(𝑠𝑛(ζ) ± i𝑐𝑛(ζ))

2
, (4.11.45) 

where  

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 − 2γ𝑓0

3(𝑚2 − 2)) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) . (4.11.46) 

Also, we known that 𝑠𝑛(ζ) → tanh(ζ) and 𝑐𝑛(ζ) → 𝑠𝑒𝑐ℎ(ζ) when 𝑚 → 1. So, if that we 

can find a stochastic soliton-like solution for Equation (4.11.1) in the following form: 

𝑈14
∗ (𝑡, 𝑥) = 𝑐0 − 3𝑓0

2𝛾(𝑡𝑎𝑛ℎ (휁) ± 𝑖𝑆𝑒𝑐ℎ (휁))2,                                                          (4.11.47)  

with   

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + γ𝑓0

3) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) , (4.11.48) 
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Graphs of some solutions for particular values of parameters  𝑐0, 𝑓0, 𝑏1, 𝑏2, 𝑎0, γ  and 

different values of, 𝐵(𝑡), ℎ(𝑠)    are visualized below. 

 

 

 

Figure 4.62. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = 𝑠2, 

𝐼𝑚[𝑈14
∗ (𝑥, 𝑡)] 

 

 

 

Figure 4.63. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) =
𝑠2, 𝐼𝑚[𝑈14

∗ (𝑥, 𝑡)] 

 

 

 

Figure 4.64. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = 𝑠2, 

𝑅𝑒[𝑈14
∗ (𝑥, 𝑡)] 
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Figure 4.65. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) =
𝑠2, 𝑅𝑒[𝑈14

∗ (𝑥, 𝑡)] 

 

 

 

Figure 4.66. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = sin(𝑠), 

𝐼𝑚[𝑈14
∗ (𝑥, 𝑡)] 

 

 

 

Figure 4.67. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑠𝑖𝑛(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑡), ℎ(𝑠) =
𝑠𝑖𝑛(s), 𝐼𝑚[𝑈14

∗ (𝑥, 𝑡)] 

 

 

 

Figure 4.68. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = 𝑠𝑖𝑛(s), 

Re[𝑈14
∗ (𝑥, 𝑡)] 
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Figure 4.69. Graph of solution (4.11.47) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑠𝑖𝑛(𝑛𝑜𝑖𝑠𝑒 ∗ 𝑡), 

ℎ(𝑠) = 𝑠𝑖𝑛(s), Re[𝑈14
∗ (𝑥, 𝑡)] 

 

In view of case 22. we derive  

𝑈22(𝑡, 𝑥) = 𝑐0 + 3𝑓0
2γ(𝑚𝑐𝑛(ζ) ± 𝑑𝑛(ζ))

2
, (4.11.49) 

where  

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 2γ𝑓0

3(1 + 𝑚2)) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) . (4.11.50) 

Also, we known that 𝑑𝑛(ζ) → 𝑠𝑒𝑐ℎ(ζ) and 𝑐𝑛(ζ) → 𝑠𝑒𝑐ℎ(ζ). So, if that we can find a 

stochastic soliton-like solution for Equation (4.11.1) in the following form. 

𝑈22
∗ (𝑡, 𝑥) = 𝑐0 + 3𝑓0

2γ(𝑆𝑒𝑐ℎ(ζ) ± 𝑆𝑒𝑐ℎ(ζ))
2

, (4.11.51) 

with 

ζ = 𝑓0𝑥 − 𝑓0𝑏1 (𝐵(𝑡) −
1

2
𝑡2) − (𝑓0𝑎0 + 4γ𝑓0

3) (𝑏2 (𝐵(𝑡) −
1

2
𝑡2) + ∫ ℎ(𝑠)𝑑𝑠

𝑡

0

) (4.11.52) 

Graphs of some solutions for particular values of parameters  𝑐0, 𝑓0, 𝑏1, 𝑏2, 𝑎0, γ  and 

different values of, 𝐵(𝑡), ℎ(𝑠) are visualized below. 
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Figure 4.70. Graph of solution (4.11.51) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 0, ℎ(𝑠) = sin(𝑠) 

 

 
 

 

Figure 4.71. Graph of solution (4.11.51) for 𝑐0 = 𝑓0 = 𝑏1 = 𝑏2 = 𝑎0 = 𝛾 = 1 , 𝐵(𝑡) = 𝑒𝑛𝑜𝑖𝑠𝑒∗𝑡, ℎ(𝑠) =
sin(𝑠) 

 

By the following properties of the Jacobian elliptic function 

lim
𝑚→1

𝑠𝑛 (ζ) = tanh(ζ) ,  lim
𝑚→1

𝑐𝑛 (ζ) = 𝑠𝑒𝑐ℎ(ζ),  lim
𝑚→1

𝑑𝑛 (ζ) = 𝑠𝑒𝑐ℎ(ζ) (4.11.53) 

lim
𝑚→1

𝑛𝑠 (ζ) = 𝑐𝑜𝑡ℎ(ζ),  lim
𝑚→1

𝑐𝑠 (ζ) = 𝑐𝑠𝑐ℎ(ζ), lim
𝑚→1

𝑑𝑠 (ζ) = 𝑐𝑒𝑐ℎ(ζ) (4.11.54) 

𝑠𝑑(ζ) =
𝑠𝑛(ζ)

𝑑𝑛(ζ)
, 𝑐𝑑(ζ) =

𝑐𝑛(ζ)

𝑑𝑛(ζ)
,  𝑛𝑑(ζ) =

1

𝑑𝑛(ζ)
(4.11.55) 

𝑠𝑐(ζ) =
𝑠𝑛(ζ)

𝑐𝑛(ζ)
, 𝑑𝑐(ζ) =

𝑑𝑛(ζ)

𝑐𝑛(ζ)
,  𝑛𝑐(ζ) =

1

𝑐𝑛(ζ)
(4.11.56) 

The solutions of the hyperbolic function corresponding to Eq. (4.11.1) We can derive it 

simply from solutions of the Jacobian elliptical function not mentioned here 



5. DISCUSSION AND CONCLUSION 

In this thesis, we investigated the effect of noise on the solutions of stochastic 

evolution equations. For this purpose, several types of evolution equations have been treated, 

and two different analytical methods were employed. Solutions of stochastic KdV-Burgers, 

stochatic KdV, stochastic Burgers, stochastic Kuramoto-Sivashinsky and stochastic 

Kawahara equation are obtained by means of Galilean transformation and tanh, extended 

tanh methods. Solutions of a stochastic Wick-type extended-KdV equation are found by 

Hermite transform and by means of Jacobi elliptic functions. 

As soon as we are aware, the stochastic KdV-Burgers equation has not been dealed 

analyticaly before. The solitary wave solution obtained for KdV-Burgers equation 

𝑢3(𝑥, 𝑡) = −
3𝐵2

25𝑅
(1 + tanh(−𝜉))(tanh(−𝜉) − 3)

=
3𝐵2

25𝑅
(1 − tanh 𝜉)(3 − tanh 𝜉), (5.1)

 

can also be written in the following form: 

𝐹(𝑌) =
3𝐵2

25𝑅
(1 − 𝑀)(1 + 𝑀) +

6𝐵2

25𝑅
(1 − 𝑀)

=
3𝐵2

25𝑅
𝑠𝑒𝑐ℎ2𝜉 +

6𝐵2

25𝑅
(1 − tanh 𝜉), (5.2)

 

where  𝑀 = tanh [𝑥 −
𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡)], and 𝜉 = 𝑥 −

𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑡). It represents a 

particular combination of a solitary wave [first term on the r.h.s. of (5.2)] with a shock-wave 

(second term) due to the presence of −𝐵𝑈𝑋𝑋 in Eq. (4.1.1). One can see from the graphs that 

for the deterministic cases, i.e. for 𝑊(𝑇) = 0,   (for example Figure 4.1 , Figure 4.5), the 

graphs are smooth which shows that the wave-form does not change. But for the stochastic 

cases (i.e. when 𝑊(𝑇) ≠ 0, ), the impact of the noise can be seen clearly from the graphs 

(for example Figure 4.2, Figure 4.3, Figure 4.6 and Figure 4.12 ) which indicates that wave-

form changes under the effect of an external noise.  

We also investigated the analytical solutions of stochastic Kuramoto-Sivashinsky and 

Kawahara equations by transforming them into the deterministic counterparts by using 

Galilean transformation. Afterward, we used the tanh-function method for obtaining the 
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soliton solutions of the deterministic counterpart of the stochastic ones. We also obtained 

periodic solutions for stochastic Kawahara equation. We visualize some of their solutions 

with and without noise to compare the effect of the noise. One can see from the graphs that 

different noise functions changes the wave-form during the propagation of the solitons. 

The analytical solutions of a Wick type stochastic extended KdV equation arising in 

the modeling of the flow of blood in the arteries are studied by means of Hermite transform 

and F-expansion method. 

The Galilean and Hermite transformations are very useful tools in finding 

deterministic equivalents of stochastic equations, and they may be used to convert some other 

stochastic evolution equations arising in different fields such as physics, finance into their 

deterministic counterparts. 

If we add a singular  perturbation to the previously studied equations in this work, we 

will obtain stochastic singularly  perturbed  equations, so that in this case the nonlinear 

analytical methods do not give solutions and therefore we need numerical methods to find 

solutions to these equations, for example as the finite difference methods for more details see 

(Sakar et al., 2019) . 
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EXTENDED TURKISH SUMMARY 

ÖZ 

Doğrusal olmayan evolüsyon denklemler, 𝑡 zaman değişkenini bir bağımsız değişken 

olarak içeren ve sadece matematiğin birçok alanında değil fizik, mekanik ve materyal bilimi 

gibi diğer bilim dallarında da ortaya çıkan kısmi diferansiyel denklemlerdir. Navier-Stokes 

ve Euler denklemleri akışkanlar mekaniğinde, reaksiyon-difüzyon denklemleri ısı 

transferlerinde ve biyolojik bilimlerde, Klein-Gordon ve Schrödinger denklemleri kuantum 

mekaniğinde, Cahn-Hilliard denklemi ise materyal biliminde ortaya çıkan lineer olmayan 

evolüsyon denklemlerinden sadece birkaçıdır. Deterministik modeller genellikle birçok 

küçük pertürbasyonun etkisini ihmal ettiğinden stokastik denklemler olaylara daha iyi uyum 

sağlamaktadır. Örneğin, sığ suların yüzeyindeki dalgalar modellenirken, sıvı yüzeyini 

etkileyen sabit olmayan bir basınç veya tabakanın tabanının düz olmadığı durumda gerçekçi 

bir model oluşturulabilmesi için bu etkileri içeren stokastik bir terimin denkleme eklenmesi 

denklemi daha anlamlı kılacaktır. Bu tezde bu terimlerin, yani gürültünün bazı evolüsyon 

denklemlerinin çözümleri üzerindeki etkisi araştırıldı. Doğrusal olmayan stokastik evolüsyon 

denklemler fizik, kimya, biyoloji, ekonomi ve finans alanlarında çeşitli açılardan geniş bir 

uygulama alanına sahiptir. Doğrusal olmayan evolüsyon denklemlerin tam çözümlerinin 

bulunması, denklemlerin modellediği fiziksel veya mekaniksel problemler açısından olduğu 

kadar, kullanılan nümerik yöntemlerin doğruluğunun test edilmesi açısından da oldukça 

önemlidir. Bu önem stokastik evolüsyon denklemler için de geçerlidir. 

 

 

Anahtar kelimeler: Stochastic evolüsyon denklemler, KdV-Tipli denklemler, 

Hermite dönüşümü, Galilean dönüşümü, Jacobi eliptik fonksiyonlar. 
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1. MATERYAL VE YÖNTEM 

 

Tam çözümlerin bulunması için birçok yöntem geliştirilmiştir. Bu çalışmada, bu 

yöntemlerden tanh, extended tanh ve F-açılım metotları kullanılmıştır. Bu yöntemlerin 

kullanılabilmesi için, çalışılan stokastik denklemlerin deterministik karşılıklarını elde etmek 

amacıyla Hermite dönüşümü ve Galilean dönüşümü kullanıldı ve daha sonra yukarıda 

bahsedilen yöntemlerle çözümler elde edildi. Bu tez yedi bölümden oluşmaktadır. İlk bölüm 

giriş niteliğinde olup, stokastik diferansiyel denklemlere neden ihtiyaç duyulduğu bir örnekle 

anlatılmıştır. İkinci bölüm çalışılan denklemlerle ilgili literatürde yapılmış çalışmaları ve 

elde edilen sonuçlardan bazılarını içermektedir. Üçüncü bölüm, tezi daha anlaşılır olması için 

gerekli tanım, teorem ve kavramları içermekte, dördüncü bölüm ise kullanılan yöntem-leri 

detaylı olarak anlatmaktadır. Tezin beşinci bölümünde, Galilean dönüşümü ve tanh, 

genişletilmiş tanh yöntemleri kullanılarak stokastik KdV-Burgers, stokastik KdV, stokastik 

Burgers,  stokastik Kuramoto- Sivashinsky ve stokastik Kawahara denklemlerinin analitik 

çözümleri elde edilmiştir. Tezin altıncı bölümünde, stokastik Wick-tipi genişletilmiş KdV 

denkleminin çözümleri Hermite dönüşümü ve Jacobi eliptik fonksi-yonları kullanılarak 

bulunmuştur. Tezin yedinci ve son bölümünde ise elde edilen sonuçlar özetlenmiş ve 

gelecekte yapılabilecek çalışmalar anlatılmıştır. Gürültünün etkisinin daha iyi görülebilmesi 

için bazı çözümlerin grafiklerine yer verilmiştir. 

 

2. BULGULAR VE TARTIŞMA 

Beşinci bölümün ilk problemi stochastic KdV-Burgers denklemi 

𝑈𝑡 + 𝑈𝑈𝑋 − 𝐵𝑈𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋 = 휂(𝑇), (7.1) 

çözümlerinin bulunmasıdır. Burada η(𝑇) terimi dış gürültüyü temsil etmektedir. Bu 

denklemin deterministik karşılığını bulmak için aşağıdaki Galilean dönüşümü kullanılmıştır: 

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (7.2) 

𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑
𝑇

0

𝑇′. (7.3) 

Bu dönüşüm sonrasında (7.3) denklemi  

𝑢𝑡 + 𝑢𝑢𝑥 − 𝐵𝑢𝑥𝑥 + 𝑅𝑢𝑥𝑥𝑥 = 0, (7.4) 
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denklemine dönüşür. Bu denklem için iki farklı durum incelenmiştir:  

1. Denklem       

𝑧 → ±∞ 𝑖𝑘𝑒𝑛 𝑉(𝑧) → 0,  
𝑑𝑛𝑉(𝑧)

𝑑𝑧𝑛
→ 0,  (𝑛 = 1,2, … ), (7.5) 

sınır koşullarıyla beraber çalışılmış, 

2. Denklem herhangi bir sınır koşulu olmadan çalışılmıştır. 

Birinci durum için elde edilen çözümlerden biri   

𝑈1(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + tanh[𝜙1(𝑋, 𝑇)])2 + 𝑊(𝑇), (7.6) 

diğeri ise,  

𝑈3(𝑋, 𝑇) = −
3𝐵2

25𝑅
(1 + tanh[𝜙2(𝑋, 𝑇)])(tanh[𝜙2(𝑋, 𝑇)] − 3) + 𝑊(𝑇), (7.7) 

formundadır. Burada 𝜙1(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] ve 𝜙2(𝑋, 𝑇) =

[
𝐵

10𝑅2 (
6𝐵2

25𝑅
𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] dir. (7.7) çözümü aynı zamanda 

𝐹(𝑌) =
3𝐵2

25𝑅
(1 − 𝑀)(1 + 𝑀) +

6𝐵2

25𝑅
(1 − 𝑀) + 𝑊(𝑇)                                 

=
3𝐵2

25𝑅
𝑠𝑒𝑐ℎ2[𝜙2(𝑋, 𝑇)] +

6𝐵2

25𝑅
(1 − tanh[𝜙2(𝑋, 𝑇)]) + 𝑊(𝑇), (7.8)

 

formunda da yazılabilir. Burada 𝑀 = tanh[𝜙2(𝑋, 𝑇)] dir. (7.8) denklemine bakıldığında, sağ 

taraftaki ilk terim soliter dalgayı, ikinci terim şok dalgasını, üçüncü terim ise, dış gürültüyü 

temsil eder. Gürültü teriminin etkisinin daha iyi görülebilmesi için çözüm farklı fonksiyonlar 

alınarak görselleştirilmiştir. 

 

 

 

 

Figure 0.1. (7.6) çözümünün 𝐵 = 𝑅 = 1 ve 𝑊(𝑇) = 0 alınarak elde edilen 3D, 2D ve kontur grafikleri. 
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Figure 0.2. (7.6) çözümünün 𝐵 = 𝑅 = 1 ve 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇] alınarak elde edilen 3D, 2D ve kontur 

grafikleri. 

    

Yukarıdaki grafiklerden görüldüğü gibi 𝑊(𝑇) = 0 olması durumunda dalga formu 

düzgün bir yapıya sahip, ancak 𝑊(𝑇) = sin[𝑛𝑜𝑖𝑠𝑒 ∗ 𝑇] durumunda bu düzgünlük yerini 

zigzaglı, düzensiz bir yapıya bırakmıştır. İkinci durumda yani, herhangi bir sınır koşulu 

alınmadan elde edilen çözüm 

𝑈(𝑋, 𝑇) = 𝑎0 −
3𝐵2

25𝑅
(1 − 𝑠𝑒𝑐ℎ2[𝜙3(𝑋, 𝑇)] − 2 tanh[𝜙3(𝑋, 𝑇)]) + 𝑊(𝑇), (7.9) 

formundadır. Burada 𝜙3(𝑋, 𝑇) = [
𝐵

10𝑅
((

3𝐵2

25𝑅
− 𝑎0) 𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] dir. 

Extended tanh metodu ve sınır koşulları kullanılarak   

𝑈1(𝑋, 𝑇) =
3𝐵2

25𝑅
coth2[𝜙4(𝑋, 𝑇)] (tanh[𝜙4(𝑋, 𝑇)] + 1)(3 tanh[𝜙1(𝑋, 𝑇)] − 1) + 𝑊(𝑇), (7.10) 

𝑈2(𝑋, 𝑇) = −
3𝐵2

25𝑅
coth2[𝜙5(𝑋, 𝑇)] (tanh[𝜙5(𝑋, 𝑇)] + 1)2 + 𝑊(𝑇) (7.11) 

çözümleri elde edilir. Burada 𝜙4(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] ve  

𝜙5(𝑋, 𝑇) = [
𝐵

10𝑅
(

6𝐵2

25𝑅
𝑇 + 𝑋 − ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] dir. Bu çözümler dışında iki ayrı 

çözüm daha bulunmuştur. Sınır koşulları kullanılmazsa 

𝑈(𝑋, 𝑇) = 𝑎0 +
6𝐵2

50𝑅
(coth2[𝜙6(𝑋, 𝑇)] + 2 coth[𝜙6(𝑋, 𝑇)] −

1

2
) + 𝑊(𝑇) (7.12) 

çözümü elde edilir. Burada 𝜙6(𝑋, 𝑇) = [
𝐵

10𝑅
((𝑎0 −

3𝐵2

50𝑅
) 𝑇 − 𝑋 + ∫ 𝑊(𝑇′)𝑑

𝑇

0
𝑇′)] dir.  

Stokastik KdV denklemi  

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (7.13) 
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𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑
𝑇

0

𝑇′ (7.14) 

formundaki Galilean dönüşümü ile deterministik  

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑅𝑢𝑥𝑥𝑥 = 0 (7.15) 

denklemine dönüşür. Bu denklem için sınır koşulları kullanılarak bir çözüm, sınır koşulları 

kullanılmadan da bir çözüm bulunmuştur. Extended tanh metodu kullanılarak sınır koşulları 

ile iki çözüm, sınır koşulları olmadan bir çözüm bulunmuştur.  

Burgers denklemi için 

 

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (7.16) 

𝑚(𝑇) = − ∫ 𝑊(𝑇′)𝑑
𝑇

0

𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑
𝑇

0

𝑇′, (7.17) 

dönüşümü kullanılarak deterministik denklem elde edildikten sonra, sınır koşullarıyla bir, 

sınır koşulu olmadan bir çözüm bulunmuştur. 

Beşinci bölümdeki diğer bir denklem Kuramoto-Sivashinsky denklemi  

𝑈𝑡 + 𝐴𝑈𝑈𝑋 + 𝐵𝑈𝑋𝑋 + 𝑅𝑈𝑋𝑋𝑋𝑋 = 휂(𝑇), (7.18) 

dir. Bu denklem   

𝑈(𝑋, 𝑇) = 𝑢(𝑥, 𝑡) + 𝑊(𝑇), 𝑥 = 𝑋 + 𝑚(𝑡), 𝑡 = 𝑇, (7.19) 

 

𝑚(𝑇) = −𝐴 ∫ 𝑊(𝑇′)𝑑
𝑇

0
𝑇′,  𝑊(𝑇) = ∫ 휂(𝑇′)𝑑

𝑇

0
𝑇′, (7.20) 

dönüşümüyle deterministik forma dönüştürülmüş ve sınır koşulları kullanılarak tanh 

metoduyla 2 çözüm, extended tanh metoduyla da kullanılarak da 2 çözüm elde edilmiştir. 

Kawahara denklemi için sınır koşulları kullanılarak tanh metoduyla 8 çözüm, extended tanh 

için ise 4 çözüm bulunmuştur. Son bölüm olan altıncı bölümde Wick-tipli 

𝑈𝑡 + 𝐻1(𝑡) ⋄ 𝑈𝑥 + 𝐻2(𝑡) ⋄ 𝑈 ⋄ 𝑈𝑥 + 𝐻3(𝑡) ⋄ 𝑈𝑥𝑥𝑥 = 0, (7.21) 

denklemi incelenmiştir. Bu denkleme Hermite dönüşümü uygulanarak 

𝑈�̃� + 𝐻1̃(𝑡, 𝑧)𝑈�̃� + 𝐻2̃(𝑡, 𝑧)�̃�𝑈�̃� + 𝐻3̃(𝑡, 𝑧)𝑈𝑥𝑥�̃� = 0, (7.22) 

denklemi elde edilir. F-açılım metodu kullanılarak bu denklem için  

𝑈(𝑡, 𝑥) = 𝑐0 − 12𝐴3𝑓0
2𝛾𝐹2⋄(휁)̅, (7.23) 

çözümü elde edilir. 
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3. SONUÇ 

Galilean ve Hermite dönüşümleri, stokastik denklemlerin deterministik eşdeğerlerini 

bulmada çok yararlı araçlardır ve fizik, finans gibi farklı alanlarda ortaya çıkan diğer bazı 

stokastik evolüsyon denklemlerini deterministik eşdeğerlerine dönüştürmek için 

kullanılabilirler. Bu tezde çalışılan denklemlere singüler bir pertürbasyon eklenerek, 

stokastik singüler pertürbe denklemler incelenebilir. Bu tür denklemler için çözümlerin 

incelenmesi sonlu farklar gibi sayısal yöntemlerin kullanılmasını gerektirir. 
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