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In this study, the general theory of FK and BK spaces, the most important
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ÖZ
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CHAPTER 1

INTRODUCTION

The theory of FK space was initiated by K. Zeller in 1949. K. Zeller published

some seminar paper, for example, [5], [6], [8] around 1949. The subject was then

further developed by Zeller and many other mathematicians.

Measures of noncompactness are very useful tools in functional analysis, for

example in metric fixed point theory and in the theory of operator equations in

Banach spaces. They are very often used in the studies of functional equations,

ordinary and partial differential equations, optimal control theory, etc. In particular,

the characterizations of compact operators between Banach spaces can be obtained

from them.

The first measure of noncompactness, denoted by α, was defined and studied

by Kuratowski in 1930. Other measures of noncompactness have been defined since

then. The most important one of them is the Hausdorff measure of noncompactness

χ which was introduced by Goldens̆tein, Go’hberg and Markus in 1957.

We give an introduction to the general theory of FK spaces as well as BK,

AK and AD spaces, an axiomatic introduction of measures of noncompactness on

bounded sets of complete metric spaces, and study their most important properties.

In particular, we consider the Kuratowski and Hausdorff measures of noncompact-

ness. Moreover, we study the Hausdorff measures of noncompactness of operators

between Banach spaces. Lastly, we establish an identity for the Hausdorff measure

of noncompactness of bounded sets in the space ℓ1 of all absolutely convergent se-

ries of complex numbers and to characterize some classes of all compact bounded

1
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operators (ℓ1, ℓ1),
(
(ℓp)N̄q

, c0
)
,
(
(ℓp)N̄q

, c
)
and

(
(ℓp)N̄q

, ℓ1
)
.

1.1 PRELIMINARIES

The concept of a linear space involves an algebraic structure given by the

definition of two operations, namely the sum of any two of its vectors and the

product of any scalar with any vector. On the other hand a topological structure of

a set may be given by a metric.

Definition 1.1. Let X ̸= ∅ be a set. A function

d : X ×X → R

is said to be a metric for X if the following condition are satisfied for all x, y, z ∈ X

(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

(M2) d(x, y) = d(y, x) (symmetry)

(M3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The set X together with a metric d is called a metric space denoted by (X,d).

If a set is both a linear and metric space, then it will be natural to require the

algebraic operations to be continuous with respect to the metric. The continuity of

the algebraic operations of a linear metric space (X, d) means the following: If (xn)

and (yn) are two sequences in X and (λn) is a sequence of scalars with xn → x,

yn → y and λn → λ (n → ∞), then xn + yn → x + y and λnxn → λx (n → ∞).

This means that d(xn, x), d(yn, y) → 0 and λn → λ (n → ∞) together imply

d(xn + yn, x+ y) → 0 and d(λnxn, λx) → 0 (n → ∞).

Definition 1.2. Let X be a linear space and d a metric on X. Then (X, d), or X

for short, is said to be a linear metric space, if the algebraic operations on X are

continuous functions.
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Definition 1.3. Let X be a metric sapce. Then X is said to be complete if every

Cauchy sequence in X converges.

Definition 1.4. A complete linear metric space is said to be a Frechet space (cf. [11,

Definition 5.3.2, p. 78]).

The concept of paranorm is closely related to linear metric spaces. It is a

generalization of that of absolute value. The paranorm of a vector x may be thought

of as the distance from x to the origin 0.

Definition 1.5. Let X be a linear space. A function p : X → R is called paranorm,

if

(P.1) p(0) = 0

(P.2) p(x) ≥ 0 for all x ∈ X

(P.3) p(−x) = p(x) for all x ∈ X

(P.4) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X (triangle inequality)

(P.5) if (λn) is a sequence of scalars with λn → λ (n → ∞) and (xn) is a sequence

of vectors with p(xn − x) → 0 (n → ∞), then p(λnxn − λx) → 0 (n → ∞)

(continuity of multiplication by scalars).

If p is a paranorm on X, then (X, p), or X for short, is called a paranormed

space. A paranorm p for which p(x) = 0 implies x = 0 is called total. For any two

paranorms p and q, p is called stronger than q if, whenever (xn) is a sequence such

that p(xn) → 0 (n → ∞), then also q(xn) → 0 (n → ∞). If p is stronger than q,

then q is said to be weaker than p. If p is stronger than q and q is stronger than

p, then p and q are called equivalent. If p is stronger than q, but p and q are not

equivalent, then p is said to be strictly stronger than q, and q is called strictly

weaker than p.

It is easy to see that every totally paranormed space is a linear metric space.

The converse is also true. The metric of any linear metric space is given by some

total paranorm (cf. [11, Theorem 10.4.2, p. 183]).
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A sequence of paranorms may be used to define a paranorm.

Theorem 1.1. [16, Theorem 1.2] Let (pk)
∞
k=0 be a sequence of paranorms on a

linear space X. We define the so-called Fŕechet combination of (pk) by

p(x) =
∞∑
k=0

1

2k
pk(x)

1 + pk(x)
(1.1)

Then

(a) p is a paranorm on X and satisfies

p(xn) → 0 (n → ∞) if and only if pk(xn) → 0 (n → ∞) for each k ; (1.2)

(b) p is the weakest paranorm which is stronger than every pk;

(c) p is total if and only if every pk is total.

A subset S of a linear space X is said to be absorbing if for each x ∈ X there

is ε > 0 such that λx ∈ S for all scalars λ with |λ| ≤ ε.

Remark 1.1. Let (X, p) be a paranormed space. Then the open neighbourhoods of

0, Nr(0) = {x ∈ X : p(x) < r}, are absorbing for all r > 0.

Proof. We assume that Nr(0) is not absorbing for some r > 0. Then there are

x ∈ X and a sequence λ = (λn)
∞
n=0 of scalars with λn → 0 (n → ∞) and λx /∈ Nr(0)

for all n = 0, 1, . . . But this means p(λnx) ≥ r for all n. Let λn → 0 and xn = x.

Hence, p(λnxn − λx) = p(λnx) (⋆). Since p(λnx) ≥ r if we take n → ∞ in (⋆), we

observe multiplication by scalars is not continous. This is a contradiction with (P.5)

of Definition 1.5. So the remark is valid.

As a special case of Theorem 1.1, we obtain

Theorem 1.2. The set ω is a Fréchet space with respect to the metric d defined by

d(x, y) =
∞∑
k=0

1

2k
|xk − yk|

1 + |xk − yk|
for all x,y ∈ ω (1.3)

Furthermore convergence in (ω, d) and coordinatewise convergence are equivalent,

that is x(n) → x (n → ∞) in (ω, d) if and only if x
(n)
k → xk (n → ∞) for every k.
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Now we introduce the concept of a Schauder basis.

Definition 1.6. A Schauder basis of a linear metric space X is a sequence (bn)

of vectors such that for each vector x ∈ X there is a unique sequence (λn) of scalars

with
∑∞

k=0 λnbn = x, that is limm→∞
∑m

k=0 λnbn = x.

For finite dimensional spaces, the concepts of Schauder and algebraic bases

coincide. In most cases, however, the concepts differ. Every linear space has an

algebraic basis. But there are linear metric spaces without a Schauder basis, as we

shall see later in this subsection.

Example 1.1. For each n = 0, 1, . . ., let e(n) be the sequence with e
(n)
n = 1 and

e
(n)
k = 0 for k ̸= n. Then

(
e(n)
)∞
n=0

is a Schauder basis of ω. More precisely, every

sequence x = (xk)
∞
k=0 ∈ ω has a unique representation x =

∑∞
k=0 xke

(k), that is,

limm→∞ x[m] = x for x[m] =
∑m

k=0 xke
(k), the m-section of x.

A metric space (X, d) is called separable if it has a countable dense set. That

means there is a countable set A ⊂ X such that for all ε > 0 and for all x ∈ X there

is an element a ∈ A with d(x, a) < ε.

Definition 1.7. Let X be a vector space. A real-valued function ||.|| on X is called

a norm on X if it has the following properties for arbitrary vectors x, y ∈ X and

any scalar λ:

(N1) ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0

(N2) ||λx|| = |λ|||x|| (homogenity)

(N3) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).

A vector space X with a norm defined on it is called a normed space.

Definition 1.8. A complete normed space is called a Banach space.

Theorem 1.3. Every complex linear metric space X with Schauder basis is separa-

ble.
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Proof. Let (bn) be a Schauder basis of X. For each m ∈ N, we put

Am =

{
m∑

n=1

ρnbn : ρn ∈ Q+ iQ (n = 1, 2, . . . ,m)

}
and A =

∞∪
m=1

Am

Then A is a countable set in X and now we need to show that A is dense in X. Since

X has a Schauder basis, for any x ∈ X there is a unique sequence (λn) of scalars

with
∑∞

n=0 λnbn = x, that is limm→∞
∑m

n=0 λnbn = x where λn ∈ C for all n ∈ N.

We can write λn = βn + iγn as βn, γn ∈ R. Take any a ∈ X. Since Q is dense in R,

that is, Q = R, we can find |βn − ηn| < ε and |γn − ζn| < ε with ηn, ζn ∈ Q. We

can also describe αn = ηn + iζn. So we write |λn − αn| < 2ε (⋆⋆). If we consider

d(x, a) < ε and (⋆⋆) and if we define a =:
∑∞

n=0 αnbn, then a ∈ A∞ ∈
∪∞

m=1Am = A.

So A is dense in X.

Example 1.2. The set ℓ∞ = {x ∈ ω : supk |xk| < ∞} of all bounded sequences is a

Banach space with ||x||∞ = supk |xk| (x ∈ ℓ∞) which has no Schauder basis.

Proof. It is well-known that(ℓ∞, ∥.∥∞) is a Banach space.

If we show that ℓ∞ is not separable and apply Theorem 1.3, then ℓ∞ has no

Schauder basis. We assume that ℓ∞ is separable. Then there is a countable

dense set A = {an : n = 0, 1, 2, . . .} ⊂ ℓ∞. For every n, let Un = N 1
3
(an) ={

x ∈ ℓ∞ : ||x− an||∞ < 1
3

}
. Since A ⊂ ℓ∞ is dense, ℓ∞ ⊂

∪∞
n=0 Un. The set

B = {x ∈ ω : xk ∈ {0, 1} for all k=0,1,. . . } ⊂ ℓ∞

is uncountable. Therefore there must be a set Um which contains at least two distinct

sequences x and x
′
of B. Then

||x− x
′||∞ ≥ 1 and ||x− x

′||∞ ≤ ||x− am||∞ + ||am − x
′||∞ < 2/3,

a contradiction. Therefore ℓ∞ cannot be separable.

We introduce the so-called classical sequence spaces

ℓ∞ =

{
x ∈ ω : sup

k
|xk| < ∞

}
,

c =
{
x ∈ ω : lim

k→∞
xk = l for some l ∈ C

}
,

c0 =
{
x ∈ ω : lim

k→∞
xk = 0

}
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of all bounded, convergent and null sequences, and

ℓp =

{
x ∈ ω :

∞∑
k=0

|xk|p < ∞

}
for 1 ≤ p < ∞.

The following result gives the algebraic and topological properties of the sets ℓ∞, c,

c0 and ℓp.

Theorem 1.4. [16, Theorem 1.10]

(a) Each of the sets ℓ∞, c0 and c is a Banach space with ||.||∞ defined by ||x||∞ =

supk |xk|. Moreover |xk| ≤ ||x||∞ for all k = 0, 1, . . . .

(b) The sets ℓp are Banach spaces for 1 ≤ p < ∞ with ||.||p defined by ||x||p =

(
∑∞

k=0 |xk|p)1/p. Moreover |xk| ≤ ||x||p for all k = 0, 1, . . . .

(c) The sequence
(
e(n)
)∞
n=0

is a Schauder basis for each of the spaces c0 and ℓp for

1 ≤ p < ∞. More precisely, every sequence x = (xn)
∞
n=0 in any of these spaces

has a unique representation x =
∑∞

n=0 xne
(n).

(d) Let e be the sequence with ek = 1 for all k = 0, 1, . . . . We put b(0) = e

and b(n) = e(n−1) for n = 1, 2, . . . . Then the sequence (b(n))∞n=0 is a

Schauder basis for c. More precisely, every sequence x = (xn)
∞
n=0 ∈ c has a

unique representation x = le+
∑∞

n=0(xn − l)e(n) where l = l(x) = limn→∞ xn.

(e) The space ℓ∞ has no Schauder basis.

If A is an infinite matrix with complex entries ank (n, k ∈ N), then we write

A = (ank) instead of A = (ank)
∞
n,k=0. Also, we write An for the sequence in the n-th

row of A, that is, An = (ank)
∞
k=0 for every n ∈ N. In addition, if x = (xk) ∈ ω, then

we define the A-transform of x as the sequence A(x) = (An(x))
∞
n=0 where

An(x) =
∞∑
k=0

ankxk (x ∈ X) for all n = 0, 1, . . . (1.4)

provided the series on the right converges for each n ∈ N.

Definition 1.9. Let X and Y be vector spaces over the same field. An operator

T : X → Y is said to be linear if for all x, y ∈ X and scalars λ,

T (x+ y) = Tx+ Ty (1.5)
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T (λx) = λTx. (1.6)

Using the notation Tx instead of T (x) is a standard simplification. The null

space of T , denoted by N(T ), is the set of all x ∈ X such that Tx = 0.

The word ”kernel” is also used for null space.

Definition 1.10. Let X and Y be complete linear metric spaces and then a linear

operator T from X to Y is called compact or completely continuous if D(T ) = X

for the domain of T , and for every bounded sequence (xn) in X, the sequence (T (xn))

has a subsequence which converges in Y .

Remark 1.2. A compact operator is bounded, thus continuous.

Definition 1.11. For the sequence spaces λ and µ, the set S(λ, µ) defined by

S(λ, µ) := {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (1.7)

is called the multiplier space of λ and µ. With the notation of (1.7), the alpha-,

beta- and gamma-duals of a sequence space λ which are denoted by λα, λβ and λγ,

respectively, are defined by

λα = S(λ, ℓ1), λβ = S(λ, cs) and λγ = S(λ, bs),

that is

λα = {a = (ak) ∈ ω : a · x = (akxk)
∞
k=0 ∈ ℓ1 for all x ∈ X} ,

λβ = {a = (ak) ∈ ω : a · x = (akxk)
∞
k=0 ∈ cs for all x ∈ X} ,

and

λγ = {a = (ak) ∈ ω : a · x = (akxk)
∞
k=0 ∈ bs for all x ∈ X} .

Definition 1.12. Let X be a vector space.

(a) A subset C of X is said to be convex if λx + µy ∈ C for all x, y ∈ C and all

scalars λ and µ with λ, µ ≥ 0 and λ+ µ = 1. In other words, a subset C of X

is said to be convex if λx+(1−λ)y ∈ C for all x, y ∈ C and for all λ ∈ (0, 1).

(b) The convex hull of a subset S of X is the intersection of all convex sets that

contain S; it is denoted by co(S).
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(c) A convex combination of elements of a set S is an element of the form

n∑
k=1

λkxk where xk ∈ S, λk ≥ 0 (k = 1, ..., n) and
n∑

k=1

λk = 1 (n ∈ N).

The set of all convex combinations of elements of S is denoted by cvx(S).

Now we state two fundamental results,

Theorem 1.5. Let X be a linear space over C (or R), and C,C1, . . . , Cn be convex

subsets of X and S be any subset of X. Then we have

cvx(C) ⊂ C; (1.8)

co(S) = cvx(S); (1.9)

co

(
n∪

k=1

Ck

)
=

{
n∑

k=1

λkCk : λk ≥ 0 (k = 1, . . . , n),
n∑

k=1

λk = 1

}
(1.10)

Proof. (i)

We will prove (1.8) using the method of mathematical induction, it is enough

to show that for any n ≥ 2

xk ∈ C, λk ≥ 0 (k = 1, . . . , n) and
n∑

k=1

λk = 1 together imply
n∑

k=1

λkxk ∈ C

(1.11)

For n = 2, the statement is clearly true since C is a convex subset. Now we suppose

that the statement in (1.11) is true for a natural number n ≥ 2, and prove the

statement for n+1. Let xk ∈ C, λk ≥ 0 for k = 1, . . . , n+1 and
∑n+1

k=0 λk = 1, then

there are two cases:

• If
∑n

k=0 λk = 0 then we have λk = 0 for k = 1, . . . , n, λn+1 = 1 and so∑n+1
k=0 λkxk = xk+1 ∈ C.

• If Λ =
∑n

k=0 λk ̸= 0, then we have

n+1∑
k=1

λkxk = Λ
n∑

k=1

λk

Λ
xk + λn+1xn+1 ∈ C,
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since

ηk =
λk

Λ
≥ 0 (k = 1, . . . , n),

n∑
k=1

ηk = 1 and y =
n∑

k=1

ηkxk ∈ C by hypothesis .

furthermore

Λ + λn+1 = 1, Λ, λn+1 ≥ 0

imply Λy + λn+1xn+1 ∈ C.

The inclusion in (1.11) is established.

(ii) Now we show (1.9).

It follows from (1.11) that

cvx(S) ⊂ co(S). (1.12)

Since co(S) is a convex subset of X, it suffices to show that cvx(S) is convex.

Let λ ∈ (0, 1) and x, y ∈ cvx(S). Then there exist n,m ∈ N, αk ≥ 0, xk ∈ S

for k = 1, . . . , n with
∑n

k=1 αk = 1, also βj ≥ 0, yj ∈ S for j = 1, . . . ,m with∑m
j=1 βj = 1 such that

x =
n∑

k=1

αkxk and y =
m∑
j=1

βjyj.

Now
n∑

k=1

λαk +
m∑
j=1

(1− λ)βj = λ+ (1− λ) = 1

implies λx+ (1− λ)y ∈ cvx(S). Hence we have proved (1.9).

(iii) Finally, we show (1.10).

We put

F =

{
n∑

k=1

λkCk : λk ≥ 0 (k = 1, . . . , n),
n∑

k=1

λk = 1

}
It follows by (1.8) that

F ⊂ co

(
n∪

k=1

Ck

)
Since

∪n
k=1 Ck ⊂ F , it suffices to show that F is convex for the proof of (1.10).

So let λ ∈ (0, 1) and x, y ∈ F . Now there exist λk ≥ 0, xk ∈ Ck for k = 1, . . . , n
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with
∑n

k=1 αk = 1, and βj ≥ 0, yj ∈ Cj for j = 1, . . . , n with
∑n

j=1 βj = 1 such

that

x =
n∑

k=1

αkxk and y =
n∑

j=1

βjyj.

We put γk = λαk + (1 − λ)βk for k = 1, . . . , n. Since the sets C1, ..., Cn are

convex, there exist zk ∈ Ck for k = 1, . . . , n such that

λαkxk + (1− λ)βkyk = γkzk for k = 1, . . . , n. (1.13)

We observe that

n∑
k=1

γk = λ
n∑

k=1

αk + (1− λ)
n∑

k=1

βk = λ+ (1− λ) = 1 (1.14)

By (1.13) and (1.14), we have λx+ (1− λ)y =
∑n

k=1 γkzk ∈ F . Thus (1.10) is

proven.

Lemma 1.1. Let X be a normed space and Q ∈ MX . Then we have for any x ∈ X

sup
y∈co(Q)

||x− y|| = sup
z∈Q

||x− z|| (1.15)

Proof. We know that Q ⊂ co(Q), so supz∈Q ||x − z|| ≤ supy∈co(Q) ||x − y||. It is

clearly enough to show

sup
y∈co(Q)

||x− y|| ≤ sup
z∈Q

||x− z|| (1.16)

for the equation of (1.15). Let y ∈ co(Q). Then there exist xk ∈ Q and λk ≥ 0 for

k = 1, . . . , n such that
∑n

k=1 αk = 1 and y =
∑n

k=1 αkxk. It follows from

x− y = x
n∑

k=1

αk −
n∑

k=1

αkxk

=
n∑

k=1

αkx−
n∑

k=1

αkxk =
n∑

k=1

αk(x− xk),

that

||x− y|| ≤
n∑

k=1

αk||x− xk|| ≤ sup
xk∈Q

||x− xk|| = sup
z∈Q

||x− z||.

This implies (1.16).
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Definition 1.13. Let Q be a nonempty and bounded subset of a normed space X.

Then the convex closure of Q is the smallest convex and closed subset of X that

contains Q, and denoted Conv(Q).

Remark 1.3. It is easy to show that

Conv(Q) = co(Q). (1.17)

Proof. Since Conv(Q) both contains Q and is smallest closed convex, Conv(Q) ⊂

co(Q). Let a ∈ co(Q).

Since co(Q) =
∩
{Ci : i ∈ I, Q ⊂ Ci, Ci is closed and convex, I is an index set },

a ∈ Conv(Q). So co(Q) ⊂ Conv(Q).

Definition 1.14. The diameter of a set S in a metric space (X, d) is the number

sup {d(x, y) : x, y ∈ S}; it is denoted by diam(S).

Some important properties of the diameter are the following [17]:

Lemma 1.2. (i) diam(S) = 0 if and only if S is an empty set or consists of exactly

one point.

(ii) If S1 ⊂ S2, then diam(S1) ≤ diam(S2);

(iii) diam(S) = diam(S).

(iv) Cantor’s Intersection Theorem: If Sn is a decreasing sequence of nonempty,

closed and bounded subsets of X and limn→∞ diam(Sn) = 0, then the intersec-

tion S∞ of all Sn is nonempty and consists of exactly one point.

Moreover, if X is a Banach space, then:

(v) diam(cS) = |c|diam(S) for any scalar c,

(vi) diam(x+ S) = diam(S) for any x ∈ X,

(vii) diam(S1 + S2) ≤ diam(S1) + diam(S2),

(viii) diam(co(S)) = diam(S).
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Proof. The parts (i) − (vii), except (iv), can be shown in a direct way and (iv) is

known from elementary functional analysis, and (viii) is an immediate consequence

of Lemma 1.1.

Corollary 1.1. Let X be a normed space and Q ∈ MX . Then, by Definition 1.14

and Lemma 1.2, we have

diam(Q) = diam(Conv(Q)). (1.18)

Definition 1.15. Let X be a metric space. If M and S are subsets of X and ε > 0,

then the set S is called ε− net of M if for any x ∈ M there exists s ∈ S, such that

d(x, s) < ε.

Equivalently,

M ⊂ S + εB1(0) =
{
s+ εb : s ∈ S, b ∈ B1(0)

}
. (1.19)

If the set S is finite, then the ε− net of M is called finite ε− net.

A subset M of a metric space X is compact if every sequence (xn) in M has a

convergent subsequence, and in this case the limit of that subsequence is in M .

Definition 1.16. The set M is said to be relatively compact if the closure M of M

is a compact set. The set M is said to be totally bounded if it has a finite ε-net for

every ε > 0.

Definition 1.17. The set M is said to be totally bounded if M is relatively compact.

Remark 1.4. If the metric space (X, d) is complete, then the set M is relatively

compact if and only if it is totally bounded.



CHAPTER 2

FK AND BK SPACES

In this chapter, we shall give a short introduction into the general theory of

FK spaces and apply the results to characterize matrix transformations between the

classical sequence spaces.

2.1 INTRODUCTION INTO THE THEORY OF FK SPACES

In this section, we shall give an introduction into the general theory of FK

spaces. It is the most powerful tool for the solution of problems of various kinds in

summability, in particular in the characterization of matrix transformations between

sequence spaces. Most of the results of this subsection can be found in [23].

We saw in Theorem 1.2 that the set ω is a Fréchet space with the metric

d defined in (1.3) and that convergence in ω and coordinatewise convergence are

equivalent. Furthermore, by Theorem 1.4, the spaces ℓ∞, c0, c and ℓp (1 ≤ p < ∞)

are Banach spaces with the norms ||.||∞ and ||.||p, and convergence in any one of

these spaces implies coordinatewise convergence by the inequalities in Theorem 1.4

parts (a) and (b). Thus the metric generated by these norms is stronger than the

metric of ω on them.

Definition 2.1. A Fréchet sequence space (X, dX) is said to be an FK space if its

metric dX is stronger than the metric d|X of ω on X. A BK space is an FK space

which is a Banach space.

14
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Remark 2.1. [16, Remark 1.12] By definition, an FK space X is continuously

embedded in ω, that is the inclusion map ι : (X, dX) → (ω, d) defined by ι(x) = x

(x ∈ X) is continuous. An FK space X is a Fréchet sequence space with continuous

coordinates Pk : X → C defined by Pk(x) = xk (k = 0, 1, ...) for all x ∈ X.

Example 2.1. The space ω is an FK space with its natural metric d. The spaces

ℓ∞, c0, c and ℓp (1 ≤ p < ∞) are BK spaces with their natural norms.

Theorem 2.1. Let (X, dX) be a Fréchet space, (Y, dY ) an FK space and f : X → Y

a linear map. Then f : (X, dX) → (Y, d|Y ) is continuous if and only if f : (X, dX) →

(Y, dY ) is continuous.

Proof. Since f is linear, it is sufficient to show that f is continuous at 0 also f(0) = 0.

First we assume that f : (X, dX) → (Y, dY ) is continuous. Let (xn) be a sequence

with d(xn, 0) → 0 (n → ∞). Then dY (f(xn), 0) → 0 (n → ∞), since dY is stronger

than d|Y it follows that d|Y (f(xn), 0) → 0 (n → ∞). So f : (X, dX) → (Y, d|Y )

is continuous. Conversely we assume that f : (X, dX) → (Y, d|Y ) is continuous.

(Y, d|Y ) and (X, dX) are Hausdorff spaces because every metric space is a Hausdorff.

Since (Y, d|Y ) is a Hausdorff space and f is continuous, the graph of f , graph(f)

= {(x, f(x)) : x ∈ X}, is a closed set in (X, dX)×(Y, d|Y ) by the closed graph lemma

(see appendix 8.4), hence the graph of f is a closed set in (X, dX) × (Y, dY ), since

the FK metric dY is stronger than d|Y . By the closed graph theorem (see appendix

8.5), the map f : (X, dX) → (Y, dY ) is continuous.

Corollary 2.1. Let X be a Fréchet space, Y an FK space, f : X → Y a linear map

and Pn the n-th co-ordinate, that is, Pn(y) = yn (y ∈ Y ) for all n = 0, 1, . . . If each

map Pn o f : X → C is continuous, so is f : X → Y .

Proof. Since Pn o f : X → C is continuous for each n, the map f : X → ω is

continuous by the equivalence of coordinatewise convergence and convergence in ω.

Here, Y ⊂ ω and the metric on Y is the d|Y of ω on Y , so f : (X, dX) → (Y, d|Y ) is

continuous, hence f : X → Y is continuous by Theorem 2.1.

We shall give the following result.
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Remark 2.2. Let X ⊃ ϕ be an FK space and a ∈ ω. If the series
∑∞

k=0 akxk

converges for each x ∈ X, that is, a ∈ Xβ then the linear functional fa : X → C

defined by

fa(x) =
∞∑
k=0

akxk for all x ∈ X

is continuous.

Proof. We define the linear functional fa,n : X → C by fa,n =
∑n

k=0 akxk for all x ∈

X and for each n ∈ N0. Since X is an FK space, the coordinates Pk : X → C

are continuous on X for all k = 0, 1, . . ., and so the functionals fa,n =
∑n

k=0 akPk

(n = 0, 1, . . .) are continuous. Also fa(x) = limn→∞ fa,n(x) exists for each x ∈ X,

and so fa : X → C is continuous by the Banach-Steinhaus theorem (see appendix

8.6).

Theorem 2.2. Any matrix map between FK spaces is continuous.

Proof. Let X and Y be FK spaces, A ∈ (X,Y ) and the map fA : X → Y be defined

by fA(x) = A(x) for all x ∈ X. Since the maps Pn o fA : X → C are continuous

with (Pn o fA) (x) = Pn (fA(x)) = Pn (A(x)) = An(x) for all n ∈ N0 by Remark 2.2,

the linear map fA is continuous by Corollary 2.1.

Definition 2.2. Let X ⊃ ϕ be an FK space. Then X is said to have

(a) AD if ϕ is dense in X,

(b) AK if every sequence x = (xk)
∞
k=0 ∈ X has a unique representation x =∑∞

k=0 xke
(k), that is, if every sequence x is the limit of its m-sections

x[m] =
m∑
k=0

xke
(k).

If an FK space has AK or AD we also say that it is an AK or AD space.

Remark 2.3. [16, Remark 1.19.] Every AK space has AD. The converse is not

true in general.

Example 2.2. The spaces ω, c0 and ℓp (1 ≤ p < ∞) all have AK by Example 1.1

and Theorem 1.4.
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The FK metric of an FK space will turn out to be unique.

Theorem 2.3. Let X and Y be FK spaces and X ⊂ Y . Then the metric dX on

X is stronger than the metric dY |X of Y on X. The metrics are equivalent if and

only if X is a closed subspace of Y . In particular, the metric of an FK space is

unique, this means there is at most one way to make a linear subspace of ω into an

FK space.

Proof. Let ι : (X, dX) → (Y, dY ) be the inclusion map. Since X is an FK space,

ι : (X, dX) → (Y, d|Y ) is continuous, and so is ι : (X, dX) → (Y, dY ) by Theorem

2.1. Thus dX is stronger than dY |X . The uniqueness of an FK space is shown in

exactly the same way. Let X be closed in Y , then X becomes an FK space with

dY |X , and the uniqueness of an FK metric implies that dX and dY |X are equivalent.

Conversely, if dX and dY |X are equivalent, then X is a complete subspace of Y ,

hence a closed subspace of Y .

Example 2.3. The BK spaces c0 and c are closed subspaces of ℓ∞. Thus the BK

norms on c0, c and ℓ∞ must be the same. The BK space ℓ1 is a subspace of ℓ∞ which

is not closed in ℓ∞. Thus its BK norm ||.||1 is strictly stronger than the BK norm

||.||∞ on ℓ∞.



CHAPTER 3

THE GENERAL THEORY OF MEASURES OF

NONCOMPACTNESS

In this chapter, we give a comprehensive survey of measures of noncompactness

starting with an axiomatic approach as in [17]. Then in the following sections, we

consider two different measures of noncompactness : Kuratowski and Hausdorff

measures of noncompactness.

3.1 AN AXIOMATIC APPROACH TO A MEASURE OF NONCOM-

PACTNESS

In this section, we list the axioms for the general notion of measures of non-

compactness. We follow the general idea that the best way of studying measures

of noncompactness is to take an axiomatic approach. The two requirements for the

sets of axioms are that they should have natural realizations and be useful tools for

applications.

Definition 3.1. [17, Definition 1.1] Let (X, d) be a complete metric space and MX

be the family of all non-empty bounded subsets of X. A map

ϕ : MX → [0,+∞)

is called a measure of noncompactness defined on X if it satisfies the following

properties:

18
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(i) Regularity : ϕ(Q) = 0 if and only if Q is a relatively compact set.

(ii) Invariant under closure : ϕ(Q) = ϕ(Q), for all Q ∈ MX .

(iii) Semi-additivity : ϕ(Q1 ∪Q2) = max {ϕ(Q1), ϕ(Q2)} , for all Q1, Q2 ∈ MX .

From these axioms, the following properties can be deduced directly:

Theorem 3.1. (1) Monotonicity : Q1 ⊂ Q2 implies ϕ(Q1) ≤ ϕ(Q2).

(2) ϕ(Q1 ∩Q2) ≤ min {ϕ(Q1), ϕ(Q2)} , for all Q1, Q2 ∈ MX .

(3) Non - singularity : If Q is a finite set then ϕ(Q) = 0.

(4) Generalized Cantor’s Intersection Theorem: If (Qn) is a decreasing sequence of

nonempty, closed and bounded subsets of X and limn→ ϕ(Qn) = 0, then the

intersection Q∞ of all Qn is nonempty and compact.

Moreover, if X is a Banach space, a measure of noncompactness ϕ can be

satisfy some additional properties. We mention some of them:

(5) Semi-homogeneity : ϕ(tQ) = |t|ϕ(Q) for all scalars t and all Q ∈ MX .

(6) Algebraic semi-additivity : ϕ(Q1+Q2) ≤ ϕ(Q1)+ϕ(Q2), for all Q1, Q2 ∈ MX .

(7) Invariance under translations : ϕ(x+Q) = ϕ(Q) for any x ∈ X and Q ∈ MX .

(8) Invariance under passage to the convex hull : ϕ(Q) = ϕ(co(Q)), for all Q ∈

MX .

Example 3.1. [17, Example 1.] In every metric space X, the map

ϕ1(Q) =

 0, if Q is relatively compact;

1, otherwise.

is a measure of noncompactness. Furthermore ϕ1 is called the discrete measure of

noncompactness. This measure is algebraically semi-additive and invariant under

translations and passage to the convex hull in normed spaces.
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3.2 TWO MEASURES OF NONCOMPACTNESS

In this section we define the two most frequently used measures of noncom-

pactness: the Kuratowski measure of noncompactness and the Hausdorff measure

of noncompactness. We state their properties and give the relations between them.

3.2.1The Kuratowski measure of noncompactness and its properties

The notion of measure of noncompactness was first mentioned by Kuratowski

[20] in 1930. He defined this new measure in connection with general topological

problems.

Definition 3.2. Let (X, d) be a metric space and MX be the family of all nonempty

bounded subsets of X. The Kuratowski measure of noncompactness of Q ∈ MX ,

denoted by α(Q), is the infimum of all positive ε such that Q can be covered by

finitely many sets of diameters less than ε; that is, the function α : MX → [0,∞)

is defined as follows

α(Q) = inf

{
ε > 0 : Q ⊂

n∪
k=1

Sk, Sk ⊂ X, diam(Sk) < ε(k = 1, ..., n;n ∈ N)

}

We start with some results from Kuratowski:

Lemma 3.1. Let (X, d) be a complete metric space, and Q,Q1, Q2 ⊂ MX . Then

we have

α(Q) = 0 if and only if Q is relatively compact , (3.1)

Q1 ⊂ Q2 implies α(Q1) ≤ α(Q2), (3.2)

α(Q) = α(Q), (3.3)

α(Q1 ∪Q2) = max {α(Q1), α(Q2)} , (3.4)

α(Q1 ∩Q2) ≤ min {α(Q1), α(Q2)} . (3.5)

Proof. In view of the axiomatic approach we mentioned before, the properties (3.1),

(3.3) and (3.4) guarantee that the function α is indeed a measure of noncompactness.
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(i) We prove (3.1). By Definition 3.2, α(Q) = 0 directly implies Q is compact. We

assume that Q is relatively compact. Since X is a complete metric space, Q is

totally bounded. Then, for each ε > 0, Q can be covered by finitely many sets

with diameter smaller than or equal to ε. Since ε > 0 is arbitrary, α(Q) = 0.

(ii) The statement in (3.2) comes from Definition 3.2 as follows:

We assume α(Q2) = m and Q1 ⊂ Q2. Let ε > 0 be given. Then these

exist subsets Sk of which diam(Sk) ≤ m + ε (k = 1, 2, . . . , n) such that Q2 ⊂∪n
k=1 Sk. Now Q1 ⊂ Q2 implies Q1 ⊂

∪n
k=1 Sk and so α(Q1) ≤ m + ε. Since

ε > 0 is arbitrary α(Q1) ≤ m.

(iii) Now we show (3.3). We have α(Q) ≤ α(Q) by (3.2). To prove converse

inequality, let α(Q) = m and ε > 0 be given. Then there exist subsets Sk with

diam(Sk) ≤ m+ ε (k = 1, 2, . . . , n) such that

Q ⊂
n∪

k=1

Sk.

This implies

Q ⊂
n∪

k=1

Sk =
n∪

k=1

Sk.

and since diam(Sk) = diam(Sk) (k = 1, 2, . . . , n), we conclude α(Q) ≤ m =

α(Q). Hence the equality in (3.3) holds.

(iv) It follows from (3.2) that,

α(Q1) ≤ α(Q1 ∪Q2) and α(Q2) ≤ α(Q1 ∪Q2),

and so

max {α(Q1), α(Q2)} ≤ α(Q1 ∪Q2). (3.6)

Let max {α(Q1), α(Q2)} = m, and ε > 0 be given. We know that Q1 and

Q2 can be covered by a finite number of subsets of diameter smaller than

m+ ε (Definition 3.2). Obviously, the union of these covers is a finite cover of

Q1 ∪Q2. Hence we have α(Q1 ∪Q2) ≤ m+ ε. Since ε is arbitrary, we obtain

α(Q1 ∪Q2) ≤ max {α(Q1), α(Q1)} . (3.7)

Now the equality in (3.4) follows from (3.6) and (3.7)
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(v) Finally, we show (3.5).

From

Q1 ∩Q2 ⊂ Q1 and Q1 ∩Q2 ⊂ Q2,

we obtain by (3.2)

α(Q1 ∩Q2) ≤ α(Q1) and α(Q1 ∩Q2) ≤ α(Q2).

Hence we have the inequality

α(Q1 ∩Q2) ≤ min {α(Q1), α(Q2)} .

The next theorem is a generalization of the well-known Cantor Intersection

Theorem.

Theorem 3.2. (Kuratowski). Let (X, d) be a complete metric space. If {Qn} is a de-

creasing sequence of nonempty, closed and bounded subsets of X and limn→∞ α(Qn) =

0, then the intersection Q∞ of all Qn is a nonempty and compact subset of X.

Proof. First, we show Q∞ ̸= ∅. Let xn ∈ Qn and Xn = {xk : k ≥ n} for n = 1, 2, . . ..

Since Xn ⊂ Qn, we obtain from (3.1), (3.2) and (3.4)

α(X1) = α(Xn) ≤ α(Qn) for each n. (3.8)

The assumption of the theorem and (3.8) together imply α(X1) = 0, hence X1 is

a relatively compact set, that is, X1 is compact. Thus the sequence (xn)
∞
n=1 has

a convergent subsequence with limit x ∈ X, say. Since Qn is closed in X, we get

x ∈ Qn for all n = 1, 2, . . ., that is, x ∈ Q∞.

The set Q∞ is a closed set being the intersection of closed sets Qn of X. Since

Q∞ ⊂ Qn for all n = 1, 2, . . ., we obtain from (3.2) that α(Q∞) ≤ α(Qn) (⋆). Now

(⋆) and limn→∞ α(Qn) = 0 together imply α(Q∞) = 0, hence Q∞ is a relatively

compact set by (3.1), that is, Q∞ is a compact set. Since Q∞ is closed, Q∞ = Q∞.

Therefore, Q∞ is compact.
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Theorem 3.3. Let X be a normed space and Q,Q1, Q2 ⊂ MX . Then we have

α(Q1 +Q2) ≤ α(Q1) + α(Q2), (3.9)

α(Q+ x) = α(Q) for each x ∈ X, (3.10)

α(λQ) = |λ|α(Q) for each λ scalar , (3.11)

α(Q) = α(co(Q)). (3.12)

Proof. (i) We prove (3.9). Let Sk ∈ MX with diam(Sk) < d for each k = 1, . . . , n

and Q1 ⊂
∪n

k=1 Sk. Similarly, let Tj ⊂ MX with diam(Tj) < s for each

j = 1, . . . ,m and Q2 ⊂
∪m

j=1 Tj . Then we have

Q1 +Q2 ⊂
n∪

k=1

m∪
j=1

(Sk + Tj) and diam(Sk + Tj) < d+ s. (3.13)

It follows from (3.13) that α(Q1 +Q2) < d+ s.

(ii) Now we prove (3.10). Let x ∈ X be given. It follows from (3.9) that

α(Q+ x) ≤ α(Q) + α({x}) = α(Q), (3.14)

and by the same argument we have

α(Q) = α((Q+ x) + (−x)) ≤ α(Q+ x) + α({−x}) = α(Q+ x). (3.15)

Now we obtain (3.10) from (3.14) and (3.15).

(iii) The equality in (3.11) is obvious for λ = 0. So let λ ̸= 0 and Sk ∈ MX

with diam(Sk) < d for k = 1, . . . , n and Q1 ⊂
∪n

k=1 Sk. Then for any scalar

λ, λQ ⊂
∪n

k=1 λSk and diam(λSk) = |λ|diam(Sk). Hence it follows that

α(λQ) ≤ |λ|α(Q). Since λ ̸= 0, analogously we have α(Q) = α(λ−1(λQ)) ≤

|λ−1|α(λ(Q)), that is |λ|α(Q) ≤ α(λQ). This proves (3.11).

(iv) SinceQ ⊂ co(Q), α(Q) ≤ α(co(Q)) is clear from (3.2). For the converse inequal-

ity, let Sk ∈ MX with diam(Sk) < d for each k = 1, . . . , n and Q =
∪n

k=1 Sk.

It follows by (1.10) that

co(Q) =

{
n∑

k=1

λkxk : λk ≥ 0 (k = 1, . . . , n),
n∑

k=1

λk = 1, xk ∈ co(Sk)

}
. (3.16)
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Let ε > 0 and

S =

{
(λ1, ..., λn) :

n∑
k=1

λk = 1, λk ≥ 0, k = 1, . . . , n

}

Since S is a closed and bounded subset of (Rn, ||.||∞), it is compact by the

Heine-Borel Theorem (Theorem 8.7 in Appendix), and the norm is defined as

follows

||(λ1, ..., λn)||∞ = sup
1≤i≤n

|λi|.

We put M = sup {||x|| : x ∈
∑n

k=1 co(Sk)}. Let

T = {(tj,1, ..., tj,n) : j = 1, . . . ,m} ⊂ S

be a finite ε/(Mn)-net for S, with respect to the ||.||∞-norm. Hence, if∑n
k=1 λkxk is a convex combination of elements of Q, where xk ⊂ co(Sk) for

k = 1, . . . , n, then there exist (tj,1, ..., tj,n) ⊂ T such that

||(λ1, ..., λn)− (tj,1, ..., tj,n)||∞ <
ε

Mn
. (3.17)

Since
n∑

k=1

λkxk =
n∑

k=1

tj,kxk +
n∑

k=1

(λk − tj,k)xk (3.18)

it follows from (3.16), (3.17) and (3.18) that

co(Q) =

{
n∑

k=1

λkxk : λk ≥ 0 (k = 1, . . . , n),
n∑

k=1

λk = 1, xk ∈ co(Sk)

}

⊂
m∪
j=1

{
n∑

k=1

(λk − tj,k + tj,k)xk : λk ≥ 0 (k = 1, . . . , n),
n∑

k=1

λk = 1, xk ∈ co(Sk)

}

=
m∪
j=1

{
n∑

k=1

tj,kxk

}
+

m∪
j=1

{
n∑

k=1

(λk − tj,k)xk

}

⊂
m∪
j=1

{
n∑

k=1

tj,kco(Sk)

}
+

m∪
j=1

{
n∑

k=1

sup
j

|λk − tj,k|xk

}

⊂
m∪
j=1

{
n∑

k=1

tj,kco(Sk)

}
+

ε

Mn

{
n∑

k=1

xk : xk ∈ co(Sk)

}
.

Therefore

co(Q) ⊂
m∪
j=1

{
n∑

k=1

tj,kco(Sk)

}
+

ε

Mn

n∑
k=1

Bk (3.19)
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where Bk = {x ∈ X : ||x|| ≤ M} for k = 1, ..., n. Now from the previous

results (1.10), (3.9), (3.19) we have

α(co(Q)) ≤ α

(
m∪
j=1

{
n∑

k=1

tj,kco(Sk)

})
+ α

(
ε

Mn

n∑
k=1

Bk

)

≤ max
1≤j≤m

α

(
n∑

k=1

tj,kco(Sk)

)
+

ε

Mn

n∑
k=1

2α (Bk)

≤ max
1≤j≤m

n∑
k=1

tj,kα (co(Sk)) +
ε

Mn
2nM

< d max
1≤j≤m

n∑
k=1

tj,k + 2ε < d+ 2ε.

3.2.2 The Hausdorff measure of noncompactness and its properties

Here we study the Hausdorff measure of noncompactness. Its basic proper-

ties are analogous to those of the Kuratowski measure of noncompactness stated

in Lemma 3.1 and Theorem 3.3 We start with the definition and then state the

properties.

Definition 3.3. The Hausdorff or ball measure of noncompactness of a bounded

set Q in a metric space X, denoted by χ(Q), is the infimum of all positive ε such

that Q can be covered by finitely many open balls of radius less than ε, that is, the

function χ : MX → [0,∞) is defined by

χ(Q) = inf

{
ε > 0 : Q ⊂

n∪
k=1

Brk(xk), xk ∈ X, rk < ε (k = 1, . . . , n;n ∈ N)

}
.

The next results are analogous to the respective one for the Kuratowski measure

of noncompactness, and their proof are similar.

Lemma 3.2. Let (X, d) be a complete metric space, and Q,Q1, Q2 ⊂ MX . Then
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we have

χ(Q) = 0 if and only if Q is relatively compact,

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),

χ(Q) = χ(Q),

χ(Q1 ∪Q2) = max {χ(Q1), χ(Q2)} ,

χ(Q1 ∩Q2) ≤ min {χ(Q1), χ(Q2)} .

Theorem 3.4. Let X be a normed space and Q,Q1, Q2 ⊂ MX . Then we have

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),

χ(Q+ x) = χ(Q) for each x ∈ X,

χ(λQ) = |λ|χ(Q) for each λ scalar ,

χ(Q) = χ(co(Q)).

Now we state a theorem from [17]:

Theorem 3.5. [17, Theorem 2.5] Let B1(0) be the unit ball in an infinite dimen-

sional Banach space X. Then χ(B1(0)) = 1.

Proof. The inequality χ(B1(0)) ≤ 1 is clear from the definition of the Hausdorff

measure of noncompactness (Definition 3.3). We assume that d = χ(B1(0)) < 1.

Let ε > 0 be chosen such that d+ ε < 1. Then there exist x1, x2, . . . , xm in X such

that

B1(0) ⊂
m∪
k=1

B(xk, (d+ ε)) =
m∪
k=1

(xk + (d+ ε)B1(0)).

It follows from the properties of Hausdorff measure of noncompactness that

d = χ(B1(0)) ≤ max
1≤k≤m

{χ(xk), (d+ ε)χ(B1(0))} = (d+ ε)χ(B1(0)) = d(d+ ε).

This implies d = χ(B1(0)) = 0 and hence B1(0) is relatively compact, that is, it

is totally bounded, which contradicts the infinite dimensionality of the space X.

Therefore χ(B1(0)) = 1.

Now we shall show how to compute the Hausdorff measure of noncompactness

in the spaces ℓp for 1 ≤ p < ∞ and c0.
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Theorem 3.6. (The Hausdorff Measure of Noncompactness in the spaces ℓp and

c0.) Let Q be a bounded subset of the normed space X where X = ℓp for 1 ≤ p < ∞

or X = c0. If Pn : X → X is the operator defined by

Pn(x) =
n∑

k=1

xke
(k) = (x1, x2, . . . , xn, 0, 0, . . .) for x = (xk)

∞
k=1 ∈ X,

then we have

χ(Q) = lim
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)
. (3.20)

Proof. We clearly have ∀n ∈ N

Q ⊂ PnQ+ (I − Pn)Q. (3.21)

It follows from Lemma 3.2 and Theorem 3.4 that

χ(Q) ≤ χ(Pn(Q) + (I − Pn)(Q))

≤ χ(Pn(Q)) + χ((I − Pn)(Q))

= χ((I − Pn)(Q))

≤ sup
x∈Q

||(I − Pn)(x)||.

Therefore

χ(Q) ≤ sup
x∈Q

||(I − Pn)(x)||. (3.22)

Since the limit in (3.20) clearly exists, we have by (3.22)

χ(Q) ≤ lim
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)
. (3.23)

We prove the converse inequality in (3.23). Let ε > 0 and {z1, . . . , zk} be a (χ(Q)+

ε)-net of Q. By (1.19)

Q ⊂ z1, . . . , zk + (χ(Q) + ε)B1(0). (3.24)

It follows from (3.24) that for any x ⊂ Q there exist z ∈ {z1, ..., zk} and s ∈ B1(0)

such that x = z + (χ(Q) + ε)s. Hence we have

sup
x∈Q

||(I − Pn)(x)|| ≤ sup
1≤j≤k

||(I − Pn)(zj)||+ (χ(Q) + ε). (3.25)

Finally, (3.25) implies

lim
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)

≤ χ(Q) + ε.
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and, since ε > 0 was arbitrary, we have

lim
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)

≤ χ(Q).

This and (3.22) imply (3.20).

Theorem 3.7. [16, Theorem 2.23] Let X be a Banach space with a Schauder basis

{e1, e2, . . .}, Q be a bounded subset of X, and Pn : X 7→ X the projector onto the

linear span of {e1, e2, . . . , en}. Then

1

a
lim sup
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)

≤ χ(Q) (3.26)

≤ inf
n
sup
x∈Q

||(I − Pn)(x)|| ≤ lim sup
n→∞

(
sup
x∈Q

||(I − Pn)(x)||
)

where a = lim supn→∞ ∥I − Pn∥.

3.2.3 Relations between the Kuratowski and the Hausdorff measures of

noncompactness

The next result shows that the functions α and χ are somehow equivalent.

Theorem 3.8. [16, Theorem 2.13] Let (X, d) be a metric space and Q ∈ MX .

Then we have

χ(Q) ≤ α(Q) ≤ 2χ(Q). (3.27)

Proof. Let ε > 0 be given.

If {x1, ..., xn} is an ε-net of Q, then {Q ∩Bε(xk) : k = 1, ..., n} is a cover of Q with

sets of diameter less than 2ε. This shows α(Q) ≤ 2χ(Q). To prove the inequality on

the left hand side of (3.27), we assume that {Sk : k = 1, . . . , n} is a cover of Q with

sets of diameter less than ε and consider yk ∈ Sk for k = 1, ..., n. Now {y1, ..., yn} is

an ε-net of Q. This proves χ(Q) ≤ α(Q).

Remark 3.1. In general, the inequalities in (3.27) can be shown to be best possible.

The geometric properties of the space are directly related to the two measures of

noncompactness and it is possible to improve the inequality χ(Q) ≤ α(Q) in certain

spaces. For example, in Hilbert space,

√
2χ(Q) ≤ α(Q) ≤ 2χ(Q),
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and in ℓp for 1 ≤ p < ∞,

p
√
2χ(Q) ≤ α(Q) ≤ 2χ(Q).

Remark 3.2. In general, α and χ are different measures of noncompactness. How-

ever, we can find a direct relation between them in some Banach spaces.



CHAPTER 4

THE CLASSICAL SEQUENCE SPACES AND

CHARACTERIZATIONS OF MATRIX

TRANSFORMATIONS

Now we establish a relationship between the β- and continuous duals of an FK

space. We use the follows notations

X♯ = {f |f : X −→ C, linear}

X
′
= {f |f : X −→ C, continuous }

Xf =
{
(f(ek))|f ∈ X

′
}

If X ⊂ ω is a linear metric space and a ∈ ω, then we write

||a||∗δ = ||a||∗X,δ = sup
x∈Bδ(0)

∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣ ;
provided the expression on the right hand exists and is finite which is the case

wheneverX is an FK space and the series
∑∞

k=0 akxk converge for all x ∈ X (Remark

2.2).

Theorem 4.1. [16, Theorem 1.23(b)] Let X be an FK space. Then we have A ∈

(X, ℓ∞) if and only if

||A||∗δ = sup
n

||An||∗δ < ∞ for some δ > 0

where An = (ank)
∞
k=0 denotes the sequence in the n-th row of the matrix A.

30
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Theorem 4.2. Let X and Y be BK spaces.

(a) [16, Theorem 1.23(a)] Then (X,Y ) ⊂ B(X, Y ), that is, every A ∈ (X, Y )

defines an operator LA ∈ B(X, Y ) by LA(x) = Ax for all x ∈ X.

(b) [24, Theorem 1.9] If X has AK then B(X,Y ) ⊂ (X, Y ), that is, for each

L ∈ B(X,Y ) there exists A ∈ (X,Y ) such that LA(x) = Ax for all x ∈ X

holds.

(c) [16, Theorem 1.23(b)] We have A ∈ (X, ℓ∞) if and only if

||A||(X,ℓ∞) = sup
n
(sup {|Anx| : ||x|| = 1}) < ∞;

if A ∈ (X, ℓ∞) then

||LA|| = ||A||(X,ℓ∞).

Proof. (a) This is Theorem 2.2

(b) Let L ∈ B(X;Y ) be given. We write Ln = PnoL for all n, and put ank =

Ln(e
(k)) for all n and k. Let x = (xk)

∞
k=0 ∈ X be given. Since X has AK, we

have x =
∑∞

k=0 xke
(k), and since Y is a BK space, it follows that Ln ∈ X

′
for

all n. Hence we obtain Ln(x) =
∑∞

k=0 xkLn(e
(k)) =

∑∞
k=0 xkank = Anx for all

n, and so L(x) = Ax.

(c) This follows immediately from Theorem 4.1 and the definition of ||A||(X,ℓ∞).

Theorem 4.3. [23, 8.3.6] Let X be an FK space with AD, and Y and Y1 be FK

spaces with Y1 a closed subspace of Y . Then A ∈ (X, Y1) if and only if A ∈ (X, Y )

and Ae(k) ∈ Y1 for all k.

Theorem 4.4. [23, Theorem 7.2.9] Let X ⊃ ϕ be an FK space. Then Xβ ⊂ X
′
;

this means that there is a linear one-to-one map T : Xβ → X
′
. If X has AK then T

is onto.

Proof. We define the map T by Ta = fa (a ∈ Xβ) where fa is the functional

with fa(x) =
∑∞

k=0 akxk for all x ∈ X, and observe that Ta = fa ∈ X
′
for all
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a ∈ Xβ by Remark 2.2. Obviously T is linear. Furthermore, if Ta = 0 then

fa(x) =
∑∞

k=0 akxk = 0 for all x ∈ X, in particular fa(e
(k)) = ak = 0 for all k,

that is, a = 0. Thus Ta = 0 implies a = 0, and consequently T is one-to-one.

Now we assume that X has AK. Let f ∈ X
′
be given. We define the sequence a by

ak = f(e(k)) for k = 0, 1, . . . . Let x ∈ X be given. Then x =
∑∞

k=0 xke
(k), since X

has AK, and f ∈ X
′
implies f(x) = f(

∑∞
k=0 xke

(k)) =
∑∞

k=0 xkf(e
(k)) =

∑∞
k=0 akxk,

hence a ∈ Xβ and Ta = f . This shows that the map T is onto.

A relation between the functional and continuous duals of an FK space is given

by

Theorem 4.5. Let X ⊃ ϕ be an FK space.

(a) Then the map q : X
′ → Xf given by q(f) = (f(e(k)))∞k=0 is onto. Moreover,

if T : Xβ → X
′
denotes the map of Theorem 4.4, then q(Ta) = a for all

a ∈ Xβ [23, Theorem 7.2.10].

(b) Then Xf = X
′
, that is, the map q of Part (a) is one-to-one, if and only if X

has AD [23, Theorem 7.2.12].

Proof. (a) Let a ∈ Xf be given. Then there is f ∈ X
′
such that ak = f(e(k)) for all

k, and so q(f) = (f(e(k)))∞k=0 = a. This shows that q is onto. Now let a ∈ Xβ

be given. We put f = Ta ∈ X
′
and obtain q(Ta) = q(f) = (f(e(k)))∞k=0 =

((Ta)(e(k)))∞k=0 = (ak)
∞
k=0 = a.

(b) First we assume that X has AD. Then q(f) = 0 implies f = 0 on ϕ, hence f = 0,

since X has AD. This shows that q is one-to-one. Conversely we assume that X

does not have AD. By the Hahn-Banach theorem (Theorem 8.8 in Appendix),

there exists an f ∈ X
′
with f ̸= 0 and f = 0 on ϕ. Then we have q(f) = 0,

and q is not one-to-one.

Theorem 4.6. [23, Theorem 4.3.15] Let X ⊃ ϕ and Y ⊃ ϕ be BK spaces. Then

Z = M(X, Y ) is a BK space with

||z|| = sup
x∈SX

||xz|| for all z ∈ Z.
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We obtain as an immediate consequence of Theorem 4.6

Corollary 4.1. [23, 4.3.16] The α−, β− and γ− duals of a BK space X are BK

spaces with

||a||α = sup
x∈SX

||ax||1 = sup
x∈SX

(
∞∑
k=0

|akxk|

)
for all x ∈ Xα

and

||a||β = sup
x∈SX

||ax||bs = sup
x∈SX

(
sup
n

∣∣∣∣∣
n∑

k=0

akxk

∣∣∣∣∣
)

for all x ∈ Xβ, Xγ.

Furthermore, Xβ is a closed subspace of Xγ.

Also, let X be any of the spaces c0, c, ℓ∞ or ℓp (1 ≤ p < ∞). Then, we have

||.||∗X = ||.||Xβ on Xβ , where ||.||Xβ denotes the natural norm on the dual space Xβ

.

Lemma 4.1. Let ‡ denote any of the symbols α, β or γ . Then, we have c‡0 = c‡ =

ℓ‡∞ = ℓ1, ℓ
‡
1 = ℓ∞ and ℓ‡p = ℓq, where 1 < p < ∞ and q = p/(p− 1).

Now, we give the following theorem without proof. You can find the proof of

the following theorem in [23]

Theorem 4.7. [10, 3.Ergebnisse] Let 1 < p, r < ∞, q = p/(p−1) and s = r/(r−1).

Then the necessary and suficient conditions for A ∈ (X, Y ) can be read from the

following table:

From/To ℓ∞ c0 c ℓ1 ℓr

ℓ∞ 1 4 9 14 17

c0 1 5 10 14 17

c 1 6 11 14 17

ℓ1 2 7 12 15 18

ℓp 3 8 13 16 unknown

where

1 A ∈ (ℓ∞, ℓ∞) = (c, ℓ∞) = (c0, ℓ∞) ⇔ (1.1).
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(1.1) sup
n

∑
k

|ank| < ∞

2 A ∈ (ℓ1, ℓ∞) ⇔ (2.1).

(2.1) sup
n,k

|ank| < ∞.

3 A ∈ (ℓp, ℓ∞) ⇔ (3.1).

(3.1) sup
n

∑
k

|ank|q < ∞.

4 A ∈ (ℓ∞, c0) ⇔ (4.1).

(4.1) lim
n

∑
k

|ank| = 0.

5 A ∈ (c0, c0) ⇔ (1.1), (5.1).

(5.1) lim
n

ank = 0 for all k.

6 A ∈ (c, c0) ⇔ (1.1), (5.1), (6.1).

(6.1) lim
n

∑
k

ank = 0.

7 A ∈ (ℓ1, c0) ⇔ (2.1), (5.1).

8 A ∈ (ℓp, c0) ⇔ (3.1), (5.1).

9 A ∈ (ℓ∞, c) ⇔ (9.1), (9.2) ⇔ (1.1), (9.1), (9.3) ⇔ (9.1), (9.4).

(9.1) lim
n

ank exists for all k,

(9.2) lim
n

∑
k

|ank| =
∑
k

∣∣∣lim
n

ank

∣∣∣,
(9.3) lim

n

∑
k

|ank − lim
n

ank| = 0,

(9.4)
∑
k

|ank| = 0 converges uniformly in n.
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10 A ∈ (c0, c) ⇔ (1.1), (9.1).

11 A ∈ (c, c) ⇔ (1.1), (9.1), (11.1). A ∈ (c, c) with lim
n
(Ax)n = lim

n
xn for all x ∈ c

⇔ (1.1), (5.1), (11.2).

(11.1) lim
n

∑
k

ank exists,

(11.2) lim
n

∑
k

ank = 1.

12 A ∈ (ℓ1, c) ⇔ (2.1), (9.1).

13 A ∈ (ℓp, c) ⇔ (3.1), (9.1).

14 A ∈ (ℓ∞, ℓ1) = (c, ℓ1) = (c0, ℓ1) ⇔ (14.1) ⇔ (14.2) ⇔ (14.3) ⇔ (14.4).

(14.1) sup
N finite

K finite

∣∣∣∣ ∑
n∈N

∑
k∈K

ank

∣∣∣∣ < ∞,

(14.2) sup
N finite

∑
k

∣∣∣∣ ∑
n∈N

ank

∣∣∣∣ < ∞,

(14.3) sup
K finite

∑
n

∣∣∣∣ ∑
k∈K

ank

∣∣∣∣ < ∞,

(14.4)
∑
n

∣∣∣∣∣∣∣
∑
k∈K

K ⊂ N0

ank

∣∣∣∣∣∣∣ < ∞ converges uniformly in K.

15 A ∈ (ℓ1, ℓ1) ⇔ (15.1).

(15.1) sup
k

∑
n

|ank| < ∞.

16 A ∈ (ℓp, ℓ1) ⇔ (16.1).

(16.1) sup
N finite

∑
k

|
∑
n∈N

ank|q < ∞.
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17 A ∈ (ℓ∞, ℓr) = (c, ℓr) = (c0, ℓr) ⇔ (17.1) ⇔ (17.2). There is r¿1,

(17.1) sup
K finite

∑
n

∣∣∣∣ ∑
k∈K

ank

∣∣∣∣r < ∞,

(17.2)
∑
n

∣∣∣∣∣∣∣
∑
k∈K
K finite

ank

∣∣∣∣∣∣∣
r

< ∞ converges uniformly in K.

18 A ∈ (ℓ1, ℓr) ⇔ (18.1).

(18.1) sup
k

∑
n

|ank|r < ∞.



CHAPTER 5

HAUSDORFF MEASURE OF NONCOMPACTNESS OF

OPERATORS

So far we measured the noncompactness of bounded subsets of metric spaces.

Now we measure the noncompactness of operators. We are also going to apply our

results to characterise the class of bounded compact linear operators from ℓ1 into

itself. Here we define the measure of noncompactness of a linear operator between

Banach spaces. The definition is similar to that of the norm of a bounded linear

operator between Banach spaces. We also study some properties of the measure of

noncompactness of operators.

Definition 5.1. Let κ1 and κ2 be measures of noncompactness on the Banach spaces

X and Y, respectively.

(a) An operator L : X → Y is said to be (κ1, κ2)-bounded if

L(Q) ∈ MY for each Q ∈ MX (5.1)

and there exists a real k with 0 ≤ k < 1 such that

κ2(L(Q)) ≤ kκ1(Q) for each Q ∈ MX . (5.2)

(b) If an operator L is (κ1, κ2)-bounded then the number ||L||(κ1,κ2) defined by

||L||(κ1,κ2) = inf {k ≥ 0 : κ2(L(Q)) ≤ kκ1(Q) for each Q ∈ MX} (5.3)

is called (κ1, κ2)-operator norm of L, or (κ1, κ2)-measure of noncompactness

of L, or simply measure of noncompactness of L. If κ1 = κ2 = κ, we write

||L||κ = ||L||(κ1,κ2), for short.
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The first theorem is related to the Hausdorff measure of noncompactness of an

operator.

Theorem 5.1. [16, Theorem 2.25] Let X and Y be Banach spaces and L ∈ B(X,Y ).

Then we have

||L||χ = χ (L (SX)) = χ(L(BX)); (5.4)

where BX = {x ∈ X : ||x|| ≤ 1} and SX = {x ∈ X : ||x|| = 1} are the closed unit

ball and unit sphere in X.

Proof. We write B = BX and S = SX , for short. Since co(S) = B and L(co(S)) =

co(L(S)), it follows from the last identity in Theorem 3.4 that

χ (L (B)) = χ (L (co (S))) = χ (co (L (S))) = χ (L (S)) , (5.5)

hence we have by (5.3) and Theorem 3.5 χ (L (B)) ≤ ||L||χ. Now we show ||L||χ ≤

χ (L (B)). Let Q ∈ M and {xk : 1 ≤ k ≤ n} be a finite r-net of Q. Then we have Q

⊂ ∪n
k=1Br(xk) and obviously

L(Q) ⊂
n∪

k=1

L (Br(xk)) . (5.6)

It follows from (5.6), Lemma 3.2 and Theorem 3.4 that

χ (L (Q)) ≤ χ

(
n∪

k=1

L (Br(xk))

)
≤ max

1≤k≤n
χ (L (Br(xk)))

= max
1≤k≤n

χ ({xk}+ L (Br(0)))

= χ (L (Br(0)))

= χ (r.L (B)) = |r|χ (L (B)) = rχ (L (B))

hence χ (L (Q)) ≤ χ(Q)χ (L (B)), and so ||L||χ ≤ χ (L (B)).

We state the next result without proof.
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Corollary 5.1. [16, Corollary 2.26] Let X, Y and Z be Banach spaces, C(X, Y )

denote the set of all compact operators from X into Y , L ∈ B(X,Y ) and L̃ ∈

B(Y, Z). Then ||.||χ is a seminorm on B(X, Y ) and

||L||χ = 0 if and only if L ∈ C(X,Y ), (5.7)

||L||χ ≤ ||L||, (5.8)

||L+K||χ = ||L||χ, for each K ∈ C(X, Y ). (5.9)

||L̃oL||χ ≤ ||L̃||χ||L||χ. (5.10)

5.1 AN APPLICATION

First, we characterise the bounded linear operators from the set of all abso-

lutely convergent series into itself and determine the norm of such operators.

Theorem 5.2. Let

ℓ1 =

{
x = (xk) ∈ ω :

∞∑
k=1

|xk| < ∞

}
denote the Banach space of all absolutely convergent series with

||x||1 =
∞∑
k=1

|xk|.

We have L ∈ B(ℓ1) = B(ℓ1, ℓ1) if and only if there exists an infinite matrix A =

(ank)
∞
n,k=1 of complex numbers such that

||A|| = sup
k

∞∑
n=0

|ank| < ∞ (5.11)

and

L(x) = A(x) for all x ∈ ℓ1. (5.12)

In this case, we have

||L|| = ||A||, (5.13)

and the operator L uniquely determines the matrix A = (ank)
∞
n,k=1. The operator L

is said to be given (defined) by the matrix A.
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Proof. (i) First we assume L ∈ B(ℓ1) = B(ℓ1, ℓ1). Since ℓ1 has AK, L ∈ B(ℓ1) is

given by a matrix A ∈ (ℓ1, ℓ1) such that L(x) = A(x) by Theorem 4.2. Since

A ∈ (ℓ1, ℓ1), we have An ∈ ℓβ1 = ℓ∞ for each n. If we choose x = e(k), then we

have

||L(e(k))||1 =
∞∑
n=1

∣∣(L(e(k)))
n

∣∣ = ∞∑
n=1

∣∣(A(e(k)))
n

∣∣ = ∞∑
n=1

|ank| ≤ ||L||||e(k)||1

that is,

||A|| = sup
k

∞∑
n=1

|ank| ≤ ||L|| < ∞ for all k (5.14)

and (5.11) holds. Furthermore, we have

||L(x)||1 =
∞∑
n=1

|An(x)| =
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

ankxk

∣∣∣∣∣
≤

∞∑
n=1

∞∑
k=1

|ank| |xk|

≤ sup
k

(
∞∑
n=1

|ank|

)
∞∑
k=1

|xk| = ||A||||x||1 for all x ∈ ℓ1,

||L(x)||1 ≤ ||A||||x||1 for all x ∈ ℓ1, (5.15)

and so ||L|| ≤ ||A||. This and (5.14) together yield (5.13).

(ii) Conversely let the condition in (5.11) hold. Then we obviously have

sup
k

|ank| < ∞ for all x ∈ N,

that is, An ∈ ℓ∞ for all n ∈ N. Let x ∈ ℓ1. Then we obtain as in (5.15)

A(x) ∈ ℓ1, whence A ∈ (ℓ1, ℓ1). We define the linear operator L : ℓ1 → ℓ1 by

(5.12). Then it follows that L ∈ B(ℓ1).

Now we evaluate the Hausdorff measure of noncompactness of an operator

L ∈ B(ℓ1).

Theorem 5.3. Let L ∈ B(ℓ1). Then L is given by an infinite matrix A, and we

have

||L||χ = lim
m→∞

(
sup
k

∞∑
n=m

|ank|

)
. (5.16)
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Proof. We write S = Sℓ1 for the unit sphere in ℓ1. It follows from Theorems 3.6, 3.5

and 5.2 that

||L||χ = χ (L (S)) = lim
m→∞

(
sup
x∈S

∞∑
n=m

∣∣ ∞∑
k=1

ankxk

∣∣) . (5.17)

The limit in (5.16) obviously exists. From

∞∑
n=m

∣∣ ∞∑
k=1

ankxk

∣∣ ≤ ∞∑
n=m

∞∑
k=1

∣∣ankxk

∣∣ = ∞∑
k=1

(
∞∑

n=m

∣∣ank∣∣) ∣∣xk

∣∣
≤

(
sup
k

∞∑
n=m

∣∣ank∣∣) ||x||1

and we obtain

sup
x∈S

∞∑
n=m

∣∣ ∞∑
k=1

ankxk

∣∣ ≤ sup
k

∞∑
n=m

|ank| for all x ∈ ℓ1. (5.18)

To prove the converse inequality, we choose x = e(k) ∈ ℓ1 for k ∈ N. Since L(e(k)) =

Ak = (ank)
∞
n=0, Theorem 3.6 implies

χ
({

L(e(k)) : k = 1, 2, . . . ,
})

= lim
m→∞

 sup
x∈{L(e(k)):k=1,2,...,}

∞∑
n=m

|ank|


= lim

m→∞

(
sup
k

∞∑
n=m

|ank|

)
≤ χ (L (S)) .

This and inequality (5.18) together yield (5.16).

Theorem 5.3 and (5.7) in Corollary 5.1 yield the characterisation of the class

C(ℓ1) = C(ℓ1, ℓ1).

Corollary 5.2. Let L ∈ B(ℓ1) be given by an infinite matrix A = (ank)
∞
n,k=1. Then

we have A ∈ C(ℓ1) if and only if

lim
m→∞

(
sup
k

∞∑
n=m

|ank|

)
= 0.



CHAPTER 6

MATRIX DOMAINS

In this chapter, We shall characterize matrix transformations between some

spaces and apply the Hausdorff measure of noncompactness to give necessary and

sufficient conditions for these matrix maps to be compact operators.

Definition 6.1. Let X be a set of sequences and A an infinite matrix. Then the set

XA = {x ∈ ω : A(x) ∈ X}

is called the (ordinary) matrix domain of A. In the special case where X = c, the

set cA is called convergence domain of A.

Lemma 6.1. [16, Lemma 3.2] Let X be a linear space, (Y, ||.||) a normed space

and T : X → Y a linear one-to-one map. Then X becomes a normed space with

||x||X = ||T (x)||. If, in addition, Y is a Banach space and T is onto Y , then

(X, ||.||X) is a Banach space.

Theorem 6.1. Let T be a triangle and (X, ||.||) be a BK space. Then XT is a BK

space with ||x||T = ||T (x)||.

Proof. We define the map LT : XT → X by LT (x) = T (x) for all x ∈ XT . Then LT

is linear, one-to-one, since T is a triangle, and onto X, since XT = L−1
T (X) and LT

is one-to-one. By Lemma 6.1, XT is a Banach space. We show that the coordinates

are continuous in XT . Let x(n) → x in XT . Then y
(n)
k = Tk(x

(n)) → yk = Tk(x),

since X is a BK space. Let S be the inverse of T, also a triangle. Then x
(n)
k =∑k

j=0 skjy
(n)
j →

∑k
j=0 skjyj = xk, that is, Pk(x

(n)) → Pk(x). This shows that the

coordinates are continuous on XT .

42
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As a special case of Theorem 6.1, we obtain,

Corollary 6.1. [23, Theorem 4.3.13] Let T be a triangle. Then cT is a BK space

with ||x||T,∞ = ||T (x)||∞.

Theorem 6.2. [23, Theorem 4.3.14] If X is a closed subspace of Y , then XA is a

closed subspace of YA.

6.1 MATRIX TRANSFORMATIONS INTO MATRIX DOMAINS

In this section, we shall show that, for triangles T, the characterizations of the

class (X,YT ) can be reduced to that of (X,Y ).

Theorem 6.3. [21, Theorem 1] Let T be a triangle.

(a) Then, for arbitrary subsets X and Y of ω, A ∈ (X, YT ) if and only if B = TA ∈

(X,Y ).

(b) Further, if X and Y are BK spaces and A ∈ (X,YT ), then

||LA|| = ||LB||. (6.1)

Proof. Let x ∈ X. Since An ∈ Xβ for all n = 0, 1, . . . , we have x ∈ ωA. Further

Tn ∈ ϕ(n = 0, 1, . . .) because T is a triangle. Therefore, (TA) (x) = T (A(x))

(cf. [23, Theorem 1.4.4, p. 8]).

(a) ⇒: Let A ∈ (X,YT ) and x ∈ X. If we consider A(x) ∈ YT and T (A(x)) =

(TA) (x), (TA) (x) ∈ Y . So TA ∈ (X,Y )

⇐: Let B = TA ∈ (X, Y ) and x ∈ X. Since (TA) (x) = T (A(x)) and the

assumption, T (A(x)) ∈ Y , that is, A(x) ∈ YT . So A ∈ (X, YT ).

(b) Let A ∈ (X, YT ). Since Y is a BK space and T a triangle, YT is a BK space

with

||y||YT
= ||T (y)||Y (y ∈ YT ) (6.2)
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by Theorem 6.1. Thus A is continuous by Theorem 2.2 and consequently

∥LA∥ = sup {∥LA(x)∥YT
: ∥x∥ = 1} = sup {∥A(x)∥YT

: ∥x∥ = 1 < ∞} . (6.3)

Further, since B is continuous,

||LB|| = sup {||LB(x)||Y : ||x|| = 1} = sup {||B(x)||Y : ||x|| = 1 < ∞} . (6.4)

If we define B(x) = (TA) (x) = T (A(x)), (6.1) follows from (6.2), (6.3) and

(6.4).

Definition 6.2. Let q = (qk) be a sequence of non-negative real numbers with q0 > 0

and write

Qn =
n∑

k=0

qk for all n ∈ N. (6.5)

Then the Riesz mean with respect to the sequence q = (qk) is defined by the matrix

N̄q = {(N̄q)nk} with

(N̄q)nk =


qk
Qn

, 0 ≤ k ≤ n,

0, k > n

for all n, k ∈ N.

It is known that ℓp is a BK space with the natural norm ∥x∥p = (
∑∞

k=0 |xk|p)1/p

(p ≥ 1), so (ℓp)Nq
is a BK space by Theorem 6.1.

We know that there exist a unique inverse of any triangle matrix. Let x ∈

(ℓp)N̄q
, so y = N̄q(x) ∈ ℓp and

yn =
(
N̄q(x)

)
n
= 1/Qn

n∑
k=0

qkxk. (6.6)

If we consider Qnyn −Qn−1yn−1, we obtain

xn = 1/qn

n∑
k=n−1

(−1)n−kQkyk. (6.7)

We can write R̄q = {(R̄q)nk}

(R̄q)nk =


(−1)n−k Qk

qn
, n− 1 ≤ k ≤ n,

0, others



45

for all n, k ∈ N. Strictly speaking, we have implicitly for all x ∈ (ℓp)N̄q(
R̄q · N̄q

)
(x) = R̄q

(
N̄q(x)

)
= R̄q

(
1/Qn

n∑
k=0

qkxk

)

=
n∑

k=n−1

(−1)n−kQk

qn

(
1/Qk

k∑
i=0

qixi

)

=
1

qn

(
n∑

i=0

qixi −
n−1∑
i=0

qixi

)
= xn = I(x),

also we have for each y ∈ ℓp(
N̄q · R̄q

)
(y) = N̄q

(
R̄q(y)

)
= N̄q

(
1/qn

n∑
k=n−1

(−1)n−kQkyk

)

=
1

Qn

n∑
k=0

qk

(
1/qk

k∑
i=k−1

(−1)k−iQiyi

)

=
1

Qn

n∑
k=0

(Qkyk −Qk−1yk−1)

= yn = I(y),

that is,

R̄q · N̄q = N̄q · R̄q = I. (6.8)

Therefore,
(
N̄q

)−1
= R̄q.

Theorem 6.4. Since ℓp is BK space with AK,
(
R̄q

(
e(n)
))∞

n=0
is a basis for (ℓp)N̄q

by [22, Theorem 2.2]. [24, Corollary 2.5(a) and (2.1)] yield a unique representation

for each x ∈ (ℓp)N̄q
.

If x and y are sequences and X and Y are subsets of ω then we write xy =

(xkyk)
∞
k=0, x

−1∗Y = {a ∈ ω : ax ∈ Y } andM(X, Y ) = {a ∈ ω : ax ∈ Y for all x ∈ X}

for the multiplier space of X and Y .

We define the matrics S, ∆+ by Snk = 1 (0 ≤ k ≤ n), Snk = 0 (k > n),

∆+
nn = 1, ∆+

n,n+1 = −1 and ∆+
nk = 0 otherwise for all n, and use the convention that

any term with a negative subscript is equal to zero.
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By U , we denote the set of all sequences u with uk ̸= 0 for all k, and we

write 1/u = (1/uk)
∞
k=0. Furthermore, we know that (u−1 ∗ ℓp)† =

(
1
u

)−1 ∗ [(ℓp)]† for

† = α, β, γ; [(ℓp)S]
α =

(
ℓαp
)
∆+ ∩ ℓαp , [(ℓp)S]

β =
(
ℓβp
)
∆+ ∩ M(ℓp, c0) and [(ℓp)S]

γ =(
ℓγp
)
∆+ ∩M(ℓp, ℓ∞). These identities are valid when we use u ∗ ℓp instead of ℓp for

u ∈ U . One can also find their general forms in [22, Lemma 2.1, Corollary 2.1 and

2.2.].

If we put u = 1/Q, v = q, hence b = Q∆+(a/q) and d = Qa/q for a ∈ ω, then

we immediately obtain the following theorem from [22, Theorem 3.1].

Theorem 6.5. Let q = (qk) be a sequence of non-negative real numbers with q0 > 0,

Q = (Qn) such that Qn =
∑n

k=0 qk for all n, 1 ≤ p < ∞ and r be the conjugate

number of p, that is, r = ∞ and r = p/p− 1 for 1 < p < ∞. Then we have[
(ℓp)N̄q

]α
= {a = (ak) ∈ ω : b ∈ ℓr and d ∈ ℓr} , (6.9)

[
(ℓp)N̄q

]β
=
[
(ℓp)N̄q

]γ
= {a = (ak) ∈ ω : b ∈ ℓr and d ∈ ℓ∞} . (6.10)

If X ⊃ ϕ is a BK-space and a = (ak) ∈ ω, then we define

∥a∥Xβ = ∥a∥∗X = sup
x∈SX

∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣ (6.11)

provided the expression on the right hand side exists and is finite. Here, ∥.∥Xβ

denotes the natural norm on the dual space Xβ.

Theorem 6.6. [22, Theorem 3.3] Let 1 ≤ p < ∞ and r = p/(p − 1). Then the

necessary and sufficient conditions for the operator A from (ℓp)N̄q
into ℓ∞ c0, c and

ℓ1 can be read from the following table:

To/From ℓ∞ c0 c ℓ1

(ℓp)N̄q
1 2 3 4

where

1 (1.1), (1.2) where
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(1.1) sup
k

|Qkank/qk| < ∞ for all n,

(1.2)


sup
n

∞∑
k=0

|Qk(ank/qk − an,k+1/qk+1)|r < ∞ (1 < p < ∞)

sup
n,k

|Qk(ank/qk − an,k+1/qk+1)| < ∞ (p = 1)

2 (1.1), (1.2), (2.1) where

(2.1) lim
n→∞

|Qk(ank/qk − an,k+1/qk+1)| = 0 for each k

3 (1.1), (1.2), (3.1) where

(3.1) lim
n→∞

|Qk(ank/qk − an,k+1/qk+1)| = αk for each k

4 (1.1), (4.1) where

(4.1)


sup
N

∞∑
k=0

∣∣∣∣Qk

∑
n∈N

(ank/qk − an,k+1/qk+1)

∣∣∣∣r < ∞ (1 < p < ∞)

sup
k

|Qk|
∑

n∈N |ank/qk − an,k+1/qk+1| < ∞ (p = 1).

where the supremum is taken over all finite subset N of N

We obtain the following Lemma as an immediate consequence of [22, Theorem

2.4(2.11)].

Lemma 6.2. Let 1 ≤ p < ∞ and r be the conjugate number. If a = (ak) ∈
[
(ℓp)N̄q

]β
,

then

∞∑
k=0

akxk =
∞∑
k=0

∆k(a/q)
k∑

j=0

qjxj

=
∞∑
k=0

[Qk∆k(a/q)] (N̄q)x

for all x = (xk) ∈ (ℓp)N̄q
.

For any infinite matrix A = (ank), we define the associated matrix Ã = (ãnk)

by
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ânk = ∆

(
ank
qk

)
Qk =

(
ank
qk

− an,k+1

qk+1

)
Qk (6.12)

∀n, k ∈ N.

We obtain the following Lemma as an immediate consequence of [25, Theorems

3.2 and 3.4].

Lemma 6.3. Let Y be an arbitrary subset of ω, 1 ≤ p < ∞ and A ∈
(
(ℓp)N̄q

, Y
)
.

Then Â ∈ (ℓp, Y ), where the entries of the matrix Â are given by (6.12), and

Ax = Â(N qx) for all x = (xk) ∈ (ℓp)N̄q
.

Futhermore, it follows by [25, Theorem 3.6], if A ∈
(
(ℓp)N̄q

, Y
)
then

∥LA∥ = ∥LÂ∥. (6.13)

Theorem 6.7. [27, Theorem 2.8] Let 1 ≤ p < ∞ and r be the conjugate number

of p, that is, r = ∞ for p = 1 and r = p/p− 1 for 0 < r < 1.

(a) Let Y = c0, c, ℓ∞. If A ∈
(
(ℓp)N̄q

, Y
)
then we put

(⋆) ∥A∥(
(ℓp)N̄q

,∞
) = sup

n
∥Ân∥ℓq =


sup
n

(
∞∑
k=0

|ânk|q
)1/q

(1 < p < ∞)

sup
n,k

|ânk| (p = 1)

Then we have

∥LA∥ = ∥A∥(
(ℓp)N̄q

,∞
).

(b) Let Y = ℓ1. If A ∈
(
(ℓp)N̄q

, ℓ1

)
then we put

∥A∥(
(ℓp)N̄q

,1
) = sup

N

∥∥∥∥∥∑
n∈N

Ân

∥∥∥∥∥
ℓq

= sup
N

(
∞∑
k=0

∣∣∣∣∣∑
n∈N

ânk

∣∣∣∣∣
q)1/q

(1 < p < ∞).

Then we have

∥A∥(
(ℓp)N̄q

,1
) ≤ ∥LA∥ ≤ 4 · ∥A∥(

(ℓp)N̄q
,1
).
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Proof. Since ℓp is a BK space with AK, A ∈
(
(ℓp)N̄q

, Y
)

implies Â ∈ (X, Y ) by

Lemma 6.3, so (⋆) holds in each case.

(a) If Y = c0, c, ℓ∞, then we have ∥LA∥ = ∥LÂ∥ = supn ∥An∥∗ℓp by [16, Theorem

1.23]. Now (⋆) follows from the definition of norms ∥.∥(
(ℓp)N̄q

,∞
) and the fact

that ∥.∥∗ℓp = ∥.∥r.

(b) Let Y = ℓ1. Then again we have ∥LA∥ = ∥LÂ∥ and by [26, Proposition 4.3],

we obtain with

∥Â∥(ℓp,ℓ1) = sup
N ⊂ N
N finite

∥∥∥∥∥∑
n∈N

Ân

∥∥∥∥∥
∗

ℓp

< ∞,

∥Â∥(ℓp,ℓ1) ≤ ∥LÂ∥ ≤ 4 · ∥Â∥(ℓp,ℓ1).

We obtain the following Theorem as an immediate consequence of [27, Corol-

lary 3.6].

Theorem 6.8. Let 1 ≤ p < ∞ and r be the conjugate number of p. Then, we have

the following

(a) If A ∈
(
(ℓp)N̄q

, c0

)
, then

∥LA∥χ = lim
r→∞

(
sup
n>r

∥Ân∥ℓr
)
. (6.14)

(b) If A ∈
(
(ℓp)N̄q

, c
)
, then

1

2
lim
r→∞

(
sup
n≥r

∥Ân − α̂∥ℓr
)

≤ ∥LA∥χ ≤ lim
r→∞

(
sup
n≥r

∥Ân − α̂∥ℓr
)
, (6.15)

where α̃ = (α̃k)
∞
k=0 with α̃k = lim

n→∞
ãnk for all k.

(c) If A ∈
(
(ℓp)N̄q

, ℓ1

)
, then

lim
m→∞

sup
Nm

∥∥∥∥∥ ∑
n∈Nm

Ân

∥∥∥∥∥
ℓr

 ≤ ∥LA∥χ ≤ 4 · lim
m→∞

sup
Nm

∥∥∥∥∥ ∑
n∈Nm

Ân

∥∥∥∥∥
ℓr

 . (6.16)
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Proof. (a) This follows from Lemma 6.3, (5.4), (3.20) and Theorem 6.7 (a).

(b) This follows from Lemma 6.3, (5.4), (3.26) and Theorem 6.7 (a).

(a) This follows from Lemma 6.3, (5.4), (3.20) and Theorem 6.7 (b).

We obtain the following theorem from (5.7) and Theorem 6.2.

Corollary 6.2. Let 1 ≤ p < ∞ and r be the conjugate number of p. Then, we have

the following

(a) If A ∈
(
(ℓp)N̄q

, c0

)
, then

LA is compact if and only if lim
r→∞

(
sup
n>r

∥Ân∥ℓr
)

= 0.

(b) If A ∈
(
(ℓp)N̄q

, c
)
, then

LA is compact if and only if lim
r→∞

(
sup
n≥r

∥Ân − α̂∥ℓr
)

= 0.

where α̃ = (α̃k)
∞
k=0 with α̃k = lim

n→∞
ãnk for all k.

(c) If A ∈
(
(ℓp)N̄q

, ℓ1

)
, then

LA is compact if lim
m→∞

sup
Nm

∥∥∥∥∥ ∑
n∈Nm

Ân

∥∥∥∥∥
ℓr

 = 0.



CHAPTER 7

CONCLUSION

As a summary, a concise, self-contained and comprehensive outline of the mod-

ern functional analytic theories of FK, BK, AK and AD spaces, and of measures of

noncompactness are examined. Some applications of the theories to the character-

izations of the classes of linear operators between the classical sequence spaces are

given. Identities or estimates for the Hausdorff measure of compactness of operator

between some sequence spaces, and characterizations of compact operators are es-

tablished. Finally, a few applications to matrix domains of triangles are considered.
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CHAPTER 8

APPENDIX

8.1 INEQUALITIES

Theorem 8.1. (Hölder’s inequality)

Let 1 < p < ∞, q = p/(p− 1) and x0, x1, . . . , xn, y0, y1, . . . , yn ∈ C . Then

n∑
k=0

|xkyk| ≤

(
n∑

k=0

|xk|p
)1/p( n∑

k=0

|yk|q
)1/q

(Hölder’s inequality) .

Or series if x ∈ ℓp and y ∈ ℓq then xy = (xkyk)
∞
k=0 ∈ ℓ1 and

||xy||1 ≤ ||x||p||y||q.

Theorem 8.2. (Minkowski’s inequality)

Let 1 ≤ p < ∞ and q = p/(p− 1) and x0, x1, . . . , xn, y0, y1, . . . , yn ∈ C . Then(
n∑

k=0

|xk + yk|p
)1/p

≤

(
n∑

k=0

|xk|p
)1/p( n∑

k=0

|yk|p
)1/p

(Minkowski’s inequality) .

Or series if x, y ∈ ℓp then x+ y ∈ ℓp and

||x+ y||p ≤ ||x||p + ||y||p.

Theorem 8.3. (Jensen’s inequality)

Let x0, x1, . . . , xn ∈ C . Then

n∑
k=0

|xk|p
′

< ∞ for some p
′
> 0,

then
n∑

k=0

|xk|p is a decreasing function in p > p
′
.
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8.2 THE CLOSEDGRAPH THEOREMAND THE BANACH-STEINHAUS

THEOREM

In this appendix, we collect the results from Functional Analysis needed in the

previous sections

Theorem 8.4. (Closed graph lemma)

Any continuous map into a Hausdorff space has closed graph ( [11, Theorem 11.1.1,

p. 195]).

Theorem 8.5. (Closed graph theorem)

If X and Y are Fréchet spaces and f : X → Y is a linear map with closed graph,

then f is continuous [11, Theorem 11.2.2, p. 200].

Theorem 8.6. (Banach-Steinhaus theorem)

Let (fn)
∞
n=0 be a pointwise convergent sequence of continuous linear functionals on

a Fréchet space X. Then f defined by

f(x) = lim
n→∞

fn(x) for all x ∈ X.

is continuous [11, Corollary 11.2.4, p. 200].

8.3 THE HEINE-BOREL THEOREM AND THEHAHN-BANACH THE-

OREM

Theorem 8.7. (Heine-Borel Theorem)

In n-dimensional Euclidean space, a subset of the space is compact if and only if it

is closed and bounded.

Theorem 8.8. [23, 3.0.1](Hahn-Banach theorem) Let X be a subspace of a linear

topological space Y and f be a linear functional on X which is continuous in the

relative topology of Y. Then f can be extended to a continuous linear functional on

Y.
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