T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

AKTİF KARBON KULLANILARAK SULU ÇÖZELTİLERDEN BOYAR MADDE UZAKLAŞTIRILMASI

DOKTORA TEZİ

HAZIRLAYAN : İlyas GENEL DANIŞMAN : Doç.Dr. Yaşar GENEL

VAN-2021

T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

AKTİF KARBON KULLANILARAK SULU ÇÖZELTİLERDEN BOYAR MADDE UZAKLAŞTIRILMASI

DOKTORA TEZİ

HAZIRLAYAN: İlyas GENEL

VAN-2021

KABUL VE ONAY SAYFASI

Kimya Anabilim Dalı'nda Doç. Dr. Yaşar GENEL danışmanlığında, İlyas GENEL tarafından sunulan "Aktif Karbon Kullanılarak Sulu Çözeltilerden Boyar Madde Uzaklaştırılması" isimli bu çalışma Lisansüstü Eğitim ve Öğretim Yönetmeliği'nin ilgili hükümleri gereğince 24/11/2021 tarihinde aşağıdaki jüri tarafından oy birliği ile başarılı bulunmuş ve doktora tezi olarak kabul edilmiştir.

Başkan: Prof.Dr. Emin ERDEM	İmza:
Üye: Prof.Dr. Salih ALKAN	İmza:
Üye: Prof.Dr. Mehmet TUNÇ	İmza:
Üye: Doç.Dr. Yaşar GENEL	İmza:
Üye: Dr.Öğr.Üyesi Ali SAVRAN	İmza:

Fen Bilimleri Enstitüsü Yönetim Kurulu'nun/..... tarih ve sayılı kararı ile onaylanmıştır.

İmza

Enstitü Müdürü

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

> İmza İlyas GENEL

ÖZET

AKTİF KARBON KULLANILARAK SULU ÇÖZELTİLERDEN BOYAR MADDE UZAKLAŞTIRILMASI

GENEL, İlyas Doktora Tezi, Kimya Anabilim Dalı Tez Danışmanı: Doç. Dr. Yaşar GENEL Aralık 2021, 227 sayfa

Bu çalışmada hammadde olarak Van yöresinde yetişebilen 4 farklı ağaç türü olan yabani kuşburnu ağacı, akasya ağacı, dişbudak ağacı ve kavak ağaçlarının talaşları aktif karbon üretiminde kullanılmıştır. Yüzey alanı yüksek, gözenek hacimleri iyi bir aktif karbon üretmek için çinko klorür (ZnCl₂), sodyum hidroksit (NaOH), borik asit (H₃BO₃) ve fosforik asit (H₃PO₄) ile ham materyaller 1:1 oranında karıştırılarak impregnasyon işlemleri yapılmıştır. İmpregnasyon işleminden sonra 800 °C de azot gazı ortamında pirolizleri sonucu aktif karbonlar üretilmiştir. Üretilen Aktif karbonların FTIR, BET, SEM ve elementel analizleri yapılmıştır. Elde edilen aktif karbonlardan çinko klorür ve sodyum hidroksit impregnasyonu ile üretilen aktif karbonların metilen mavisi adsorpsiyonunda, akasya ve yabani kuşburnu ağaçlarının sodyum hidroksit ve çinko klorür ile üretilen aktif karbonları daha geniş yüzey alanlarına sahip olduğundan dolayı kinolin sarısı boyar maddesi ile adsorpsiyonlarıda incelenmiştir. Adsorpsiyon deneylerinin, Langmuir, Freundlich, Temkin ve D-R adsorpsiyon izoterm modellerine göre uyumuna bakılmıştır. Adsorpsiyon denge verilerinin R² değerlerine göre olayın Langmuir adsorpsiyon izotermiyle uyumlu olduğu tespit edilmiştir. Kinetik verilerin yalancı birinci mertebe, yalancı ikinci mertebe, Elovich ve İnterpartiküler difüzyon kinetik modelleri ile uyumuna bakılmıştır. Verilerin yalancı ikinci mertebeden kinetik modele uyumlu oldukları bulunmuştur. Metilen mavisi boyar maddesi adsorpsiyonunda pH, sıcaklık, konsantrasyon ölçümleri yapılmıştır. Kinolin sarısının sıcaklık ve konsantrasyon ölçümleri yapılmıştır. Üretilen aktif karbonların boyar madde gideriminde kullanım potansiyelinin yüksek olduğu gözlenmiştir.

Anahtar kelimeler: Adsorpsiyon, Ağaçtalaşı, İmpregnasyon, Piroliz, Spektorfotometre

ABSTRACT

DYESTUFFS REMOVAL FROM AQUEOUS SOLUTIONS USING ACTIVATED CARBON

GENEL, İlyas Ph.D. Thesis, Deparment of Chemistry Supervisor: Assoc. Prof. Dr. Yaşar GENEL December 2021, 227 pages

In this study, sawdust of wild rosehip tree, acacia tree, ash tree and poplar trees, which are 4 different tree species that can grow in the Van region, were used in the production of activated carbon. In order to produce an activated carbon with high surface area and good pore volume, zinc chloride (ZnCl₂), sodium hydroxide (NaOH), Boric acid (H₃BO₃) and phosphoric acid (H₃PO₄) were mixed with raw materials in a 1:1 ratio and implantation processes were carried out. After the impregnation process, activated carbons were produced as a result of their pyrolysis in nitrogen gas environment at 800 °C. FTIR, BET, SEM and elemental analyzes of the produced activated carbons were made. In the methylene blue adsorption of activated carbons produced by the implantation of zinc chloride and sodium hydroxide from the obtained activated carbons, the adsorption of the activated carbons of acacia and wild rosehip trees with sodium hydroxide and zinc chloride with a quinoline yellow dyestuff, since they have larger surface areas, was also investigated. The compatibility of the adsorption experiments with Langmuir, Freundlich, Temkin and D-R adsorption isotherm models was checked. According to the R² values of the adsorption equilibrium data, it was determined that the event was compatible with the Langmuir adsorption isotherm. The compatibility of the kinetic data with pseudo-first-order, pseudo-second-order, Elovich and interparticular diffusion kinetic models was examined. The data were found to be compatible with the pseudo-second-order kinetic model. Temperature, pH, and concentration measurements were made in the adsorption of methylene blue dyestuff. Temperature and concentration measurements were made in the adsorption of quinoline yellow. It has been observed that the produced activated carbons have a high potential for use in dyestuff removal.

Keywords: Adsorption, Impregnation Spectrophotometer, Pyrolysis, Wood shavings.

ÖN SÖZ

Bu tez çalışmasında her türlü ilgi ve yardımlarını esirgemeyen danışmanım Sayın Doç. Dr Yaşar GENEL'e, aileme ve ismini yazmadığım birçok kişiye yardımlarından dolayı teşekkürlerimi sunarım.

İÇİNDEKİLER

Sayfa
ÖZETi
ABSTRACTiii
ÖN SÖZ v
İÇİNDEKİLER vii
ÇİZELGELER LİSTESİ xi
ŞEKİLLER LİSTESİ xvii
SİMGELER VE KISALTMALAR xxix
EKLER DİZİNİxxxi
1. GİRİŞ 1
2. KAYNAK BİLDİRİLİŞLERİ
2.1. Renk
2.2. Renk Teorileri
2.2.1. Oksokromlar:
2.2.2. Kromoforlar
2.3. Boya ve Boyar Madde
2.3.1. Boya
2.3.2. Boyar madde
2.3.3. Boyar maddelerin çözünürlüğüne göre sınıflandırılması 5
2.3.4. Boyar maddelerin boyama özelliklerine göre sınıflandırması
2.3.5. Boyar maddelerin kimyasal yapıya göre sınıflandırması
2.4. Aktif Karbon 10
2.4.1. Aktif karbonun molekül ve kimyasal yapısı 11
2.4.2. Aktif karbonun oksijen yüzey kompleksleri 12
2.4.3. Aktif karbonun fonksiyonel grupları 13

2.4.4. Aktif karbon üretimi
2.4.5. Aktif karbon türleri
2.4.6. Aktif karbonun uygulama alanları
2.4.7. Aktif karbonun özeliklerinin belirlenmesi için kullanılan yöntemler 24
2.5. Adsorpsiyon
2.5.1. Sıvı ve gazların adsorpsiyonu
2.5.2. Katı-sıvı adsorpsiyonu
2.5.3. Katı-gaz adsorpsiyonu
2.5.4. Adsorpsiyon çeşitleri
2.5.5. Adsorpsiyon izotermleri
2.5.6. Adsorpsiyonu etkileyen faktörler 35
2.5.7. Adsorpsiyon kinetiği
2.5.8. Adsorpsiyon termodinamiği
2.5.8. Adsorpsiyon termodinamiği
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49
2.5.8. Adsorpsiyon termodinamiği402.6. Literatür Özetleri423. MATERYAL VE METOT493.1. Aktif Karbon Üretimi Deneyleri50
2.5.8. Adsorpsiyon termodinamiği402.6. Literatür Özetleri423. MATERYAL VE METOT493.1. Aktif Karbon Üretimi Deneyleri503.1.1. Hammadde seçimi, kurutulması ve parçalanması50
2.5.8. Adsorpsiyon termodinamiği402.6. Literatür Özetleri423. MATERYAL VE METOT493.1. Aktif Karbon Üretimi Deneyleri503.1.1. Hammadde seçimi, kurutulması ve parçalanması503.1.2. Kimyasal impregnasyon50
2.5.8. Adsorpsiyon termodinamiği402.6. Literatür Özetleri423. MATERYAL VE METOT493.1. Aktif Karbon Üretimi Deneyleri503.1.1. Hammadde seçimi, kurutulması ve parçalanması503.1.2. Kimyasal impregnasyon503.1.3. Piroliz süreci51
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49 3.1. Aktif Karbon Üretimi Deneyleri. 50 3.1.1. Hammadde seçimi, kurutulması ve parçalanması 50 3.1.2. Kimyasal impregnasyon 50 3.1.3. Piroliz süreci 51 3.1.4. Kül giderimi. 52
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49 3.1. Aktif Karbon Üretimi Deneyleri. 50 3.1.1. Hammadde seçimi, kurutulması ve parçalanması 50 3.1.2. Kimyasal impregnasyon 50 3.1.3. Piroliz süreci 51 3.1.4. Kül giderimi 52 3.1.5. Süzme işlemi 52
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49 3.1. Aktif Karbon Üretimi Deneyleri 50 3.1.1. Hammadde seçimi, kurutulması ve parçalanması 50 3.1.2. Kimyasal impregnasyon 50 3.1.3. Piroliz süreci 51 3.1.4. Kül giderimi 52 3.1.5. Süzme işlemi 52 3.1.6. Kurutma ve depolama 52
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49 3.1. Aktif Karbon Üretimi Deneyleri 50 3.1.1. Hammadde seçimi, kurutulması ve parçalanması 50 3.1.2. Kimyasal impregnasyon 50 3.1.3. Piroliz süreci 51 3.1.4. Kül giderimi 52 3.1.5. Süzme işlemi 52 3.1.6. Kurutma ve depolama 52 3.2. Adsorpsiyon Deneyleri 52
2.5.8. Adsorpsiyon termodinamiği 40 2.6. Literatür Özetleri 42 3. MATERYAL VE METOT 49 3.1. Aktif Karbon Üretimi Deneyleri 50 3.1.1. Hammadde seçimi, kurutulması ve parçalanması 50 3.1.2. Kimyasal impregnasyon 50 3.1.3. Piroliz süreci 51 3.1.4. Kül giderimi 52 3.1.5. Süzme işlemi 52 3.1.6. Kurutma ve depolama 52 3.2. Adsorpsiyon Deneyleri 52 3.2.1. Konsantrasyon değişimi 52

3.2.3. pH değişimi
4. BULGULAR
4.1. Aktif Karbon Analiz Sonuçları 55
4.1.1. Elementel analiz sonuçları
4.1.2. FT-IR analizleri
4.1.3. Bet analizleri
4.1.4. SEM analizleri
4.2. Adsorpsiyon Deneyleri
4.2.1. A1-1 aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları 100
4.2.2. A1-2 aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları 116
4.2.3. A2-1 aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları 134
4.2.4. A2-2 Aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları
4.2.5. A3-1 Aktif karbonunun metilen mavisi deney sonuçları 166
4.2.6 A3-2 Aktif karbonu metilen mavisi deney sonuçları 175
4.2.7 A4-1 Aktif karbonu metilen mavisi deney sonuçları 184
4.2.8 A4-2 Aktif karbonu metilen mavisi deney sonuçları 192
5. TARTIŞMA VE SONUÇ 201
KAYNAKLAR
EKLER
ÖZ GEÇMİŞ 227

ÇİZELGELER LİSTESİ

Çizelge	Say	fa
Çizelge 2.1. F	Fiziksel ve kimyasal adsorpsiyon arasındaki ayırt edici özellikleri	3
Çizelge 4.1. A	Ağaç talaşları ve üretilen aktif karbonların elemental analiz sonuçları 55	5
Çizelge 4.2. S	Saf ham made ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri	5
Çizelge 4.2. S	Saf ham made ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri (devamı)	7
Çizelge 4.2. S	Saf ham made ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri (devamı) 58	3
Çizelge 4.2 S	Saf ham made ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri(devamı))
Çizelge 4.3. H	Ham haldeki yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının FT-IRSonuçları)
Çizelge 4.3. H	Ham haldeki yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının FT-IRsonuçları (devamı) 60)
Çizelge 4.4. S	Saf halleri ile karbonize edilmiş yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) FT-IR Sonuçları 63	3
Çizelge 4.5. Y	Yabani kuşburnu ağacı(A1), akasya ağacı(A2), dişbudak ağacı(A3) ve kavak ağacı(A4) talaşlarının çinko klorürü ile imregnasyonu sonucu oluşan karbonların FT-IR Sonuçları65	5
Çizelge 4.6. Y l	Yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının Sodyum hidroksit ile imregnasyonu sonucu oluşan karbonların FT-IR Sonuçları	7
Çizelge 4.7. Y l	Yabani kuşburnu ağacı(A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının fosforik asit ile imregnasyonu sonucu oluşan karbonların FT-IR Sonuçları 69	•
Çizelge 4.8. Y	Yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının borik asit ile imregnasyonu sonucu oluşan karbonların FT-IR Sonuçları71	l
Çizelge 4.9. A	A1, A2, A3, A4 ağaçlarının saf karbon analizleri)

Çizelge 4.10. A	A1, A2, A3, A4 ağaçlarının çinko klorür ile muamele edilerek Üretilmiş aktif karbonların BET analizleri80
Çizelge 4.11 ü	A1, A2, A3, A4 ağaçlarının sodyum hidroksit ile muamele edilerek retilmiş aktif karbonların BET analizleri
Çizelge 4.12. A il	A1, A2, A3, A4 ağaçlarının fosforik asit (H ₃ PO ₄) ile impregnasyonu le elde edilen aktif karbonların BET analizleri
Çizelge 4.12. A	A1, A2, A3, A4 ağaçlarının fosforik asit (H ₃ PO ₄) ile impregnasyonu ile elde edilen aktif karbonların BET analizleri (devamı)
Çizelge 4.14.	A1-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri 101
Çizelge 4.15. A	A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri 101
Çizelge 4.16.	A1-1 Aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo second order) kinetik, Elovich, İnterpartiküler difüzyon model sabitleri
Çizelge 4.17.	A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler
Çizelge 4.18. A	A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç ph değişiminin etkisi
Çizelge 4.19.	A1-1 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri 110
Çizelge 4.20. A	A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri 110
Çizelge 4.20.	A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri (devamı)
Çizelge 4.21. A	A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)
Çizelge 4.22.	A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler

Çizelge 4.23.	A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.23.	A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri (devamı) 118
Çizelge 4.24.	A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri 118
Çizelge 4.25.	A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon (interparticle diffusion) kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) 121
Çizelge 4.26.	A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler 123
Çizelge 4.27.	A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi
Çizelge 4.28.	A1-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri 127
Çizelge 4.29 A	A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri 127
Çizelge 4.30.	A1-2 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30°C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon (ıntraparticle diffusion) kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)
Çizelge 4.31	. A1-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler 132
Çizelge 4.32.	A2-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.33.	A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri
Çizelge 4.34.	A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30°C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, r. pH=6- 7, KH= 200 rpm)

Çizelge 4.35. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler 140
Çizelge 4.36. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi
Çizelge 4.37. A2-1 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerler
Çizelge 4.38. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitler 144
Çizelge 4.39. A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 oC,30oC ve 45 oC'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L,V=0,25L, AD= 1 g, r. pH=6-7, KH= 200 rpm). (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)
Çizelge 4.40. A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler 149
Çizelge 4.41. A2-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.42. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitler 151
Çizelge 4.43. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)
Çizelge 4.44. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri
Çizelge 4.45. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi
Çizelge 4.46. A2-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.46. A2-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri (devamı) 160
Çizelge 4.47. A2-2 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

Çizelge 4.48. A2-2 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, r. pH=6-7, KH= 200 rpm)
Çizelge 4.49. A2-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler
Çizelge 4.50. A3-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.52. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo first order) kinetik model sabitleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=7, KH= 200 rpm)
Çizelge 4.53. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler
Çizelge 4.53. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreler (devamı) 173
Çizelge 4.54. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi
Çizelge 4.55. A3-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri
Çizelge 4.56. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri
Çizelge 4.56. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri (devamı)
Çizelge 4.57. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)
Çizelge 4.58. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Sayfa

Çizelge 4.59. A3-2 aktif karbonunun n	ietilen mavisi adsorpsiyonunda başlangıç pH
değişiminin etkisi	
Çizelge 4.60. A4-1 aktif karbonunun	metilen mavisi ile adsorpsiyonu Langmuir,
Freundlich, Temkin, D-F	Lizoterm değerleri
Çizelge 4.61. A4-1 aktif karbonunun r	netilen mavisi giderimi adsorpsiyon sabitleri 185
Çizelge 4.62. A4-1 aktif karbonunun	metilen mavisi adsorpsiyonunda 25 °C,30°C
ve 45 °C'deki yalancı b	irinci mertebe (pseudo first order), yalancı
ikinci mertebe (pseudo	> second order), Elovich, intrepartiküler
difüzyon kinetik model s	abitleri (Co= 200mg/L, V=0,25L, AD= 1 g,
r. pH=6-7, KH= 200 rpm	1)
Çizelge 4.63. A4-1 aktif karbonun	ın metilen mavisi adsorpsiyonunda farklı
konsantrasyon ve sıcaklı	klarda termodinamik parametreler
Çizelge 4.64. A4-1 aktif karbonunun n	netilen mavisi adsorpsiyonunda başlangıç pH
değişiminin etkisi	
Çizelge 4.65. A4-2 aktif karbonunun	metilen mavisi ile adsorpsiyonu langmüir,
Freundlich, Temkin, D-F	Lizoterm Değerleri
Çizelge 4.66. A4-2 aktif karbonunun r	netilen mavisi giderimi adsorpsiyon sabitleri 193
Çizelge 4.66. A4-2 aktif karbonunu	n metilen mavisi giderimi adsorpsiyon sabitleri
(devamı)	194
Çizelge 4.67. A4-2 aktif karbonunun	metilen mavisi adsorpsiyonunda 25 °C,30°C
ve 45 °C'deki yalancı b	irinci mertebe (pseudo first order), yalancı
ikinci mertebe (pseudo	o second order), Elovich, intrepartiküler
difüzyon kinetik model s	abitleri (Co= 200mg/L, V=0,25L, AD= 1 g,
r. pH=6-7, KH= 200 rpm	1)
Çizelge 4.68. A4-2 aktif karbonun	ın metilen mavisi adsorpsiyonunda farklı
konsantrasyon ve sıca	klıklarda termodinamik parametreleri
Çizelge 4.69. A4-2 aktif karbonunun n	netilen mavisi adsorpsiyonunda başlangıç pH

ŞEKİLLER LİSTESİ

Şekil	Sayfa
Şekil 2.1. Aktif karbonlarda başlıca fonksiyonel gruplar (Mattson ve Mark 1971)	13
Şekil 2.2. Aktif karbonun genel üretim şeması (Smisek ve Cerny, 1970)	14
Şekil 2.3. Bir adsorban taneciğinde adsorpsiyon çeşitleri	26
Şekil 2.4. İzoterm tipleri	32
Şekil 3.1. Karbonizasyon işleminde kullanılan fırın	49
Şekil 3.2. Yıkama sitemi	49
Şekil 4.1. A1-0, A2-0, A3-0, A4-0 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri	74
Şekil 4.2. A1-1, A2-1, A3-1, A4-1 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikler	75
Şekil 4.3. A1-2, A2-2, A3-2, A4-2 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri	76
Şekil 4.4. A1-3, A2-3, A3-3, A4-3 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri	77
Şekil 4.5. A1-4, A2-4, A3-4, A4-4 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri	78
Şekil 4.6. A1-0, A1-1, A1-2, A1-3, A1-4 gözenek dağılım grafiği	87
Şekil 4.7. A2-0, A2-1, A2-2, A2-3, A2-4 gözenek dağılım grafiği	87
Şekil 4.8. A3-0, A3-1, A3-2, A3-3, A3-4 gözenek dağılım grafiği	88
Şekil 4.9. A4-0, A4-1, A4-2, A4-3, A4-4 gözenek dağılım grafiği	88
Şekil 4.10. Ham haldeki A1 ağaç talaşlarının SEM görüntüsü	89
Şekil 4.11. Ham haldeki A2 ağaç talaşlarının SEM görüntüsü 2.00 kx çekim	90
Şekil 4.12. Ham haldeki A3 ağaç talaşlarının SEM görüntüsü	91
Şekil 4.13. Ham haldeki A3 ağaç talaşlarının SEM görüntüsü	91

Şekil 4.14.	Ham haldeki A1 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü 2.00 kx çekim	92
Şekil 4.14.	Ham haldeki A1 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü 10.00 kx çekim (devamı)	92
Şekil 4.15.	Ham haldeki A2 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü	93
Şekil 4.16.	Ham haldeki A3 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü	93
Şekil 4.17.	Ham haldeki A4 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü	ւ 94
Şekil 4.18.	A1 ağaç talaşlarının ZnCl ₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A1-1 Aktif karbonu).	94
Şekil 4.19.	A2 ağaç talaşlarının ZnCl ₂ (Çinko klorü) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A2-1 Aktif karbonu)	95
Şekil 4.20.	A3 ağaç talaşlarının ZnCl ₂ (Çinko klorü) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 2.00 kx çekim (A2-1 Aktif karbonu)	95
Şekil 4.20.	A3 ağaç talaşlarının ZnCl ₂ (Çinko klorü) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 10.00 kx çekim (A3-1 Aktif karbonu) (devamı).	96
Şekil 4.21.	A4 ağaç talaşlarının ZnCl2 (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 2.00 kx çekim (A4-1 Aktif karbonu)	96
Şekil 4.21.	A4 ağaç talaşlarının ZnCl ₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 10.00 kx çekim (A4-1 Aktif karbonu) (devamı).	97
Şekil 4.22.	A1 ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A1-2 Aktif karbonu)	97
Şekil 4.23.	A2 ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A2-2 Aktif karbonu)	98
Şekil 4.24.	A3 ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A3-2 Aktif karbonu)	98
Şekil 4.25.	A4 ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A4-2 Aktif karbonu)	99

Şekil 4.26. Al kons	-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık antrasyon zaman grafiği10	00
Şekil 4.27. A1-1 ve 4	aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25°C,30°C 5 °C'deki Langmuir izotermleri grafiği10	02
Şekil 4.28. A1 °C,3	-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 0°C ve 45 °C'deki Freundlich izotermleri grafiği10	03
Şekil 4.29. A1 °C,3	-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 0°C ve 45 °C'deki Temkin izotermleri grafiği10	03
Şekil 4.30. A1- 30°C	1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, C ve 45 °C'deki D-R izotermleri grafiği 10	04
Şekil 4.31. Al sical mert grafi	-1 aktif karbonunun metilen mavisi adsorpsiyonunda farkli kliklarda yalancı birinci mertebe (pseudo first order), yalancı ikinci ebe (pseudo first order), Elovich, İnterpartiküler difüzyon kinetik ikleri	05
Şekil 4.32. Al sical mert grafi	-1 aktif karbonunun metilen mavisi adsorpsiyonunda farkli kliklarda yalancı birinci mertebe (pseudo first order), yalancı ikinci ebe (pseudo first order), Elovich, İnterpartiküler difüzyon kinetik ikleri (devamı)	05
Şekil 4.33. Al kons	-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı santrasyon ve sıcaklıklarda termodinamik grafiği10	06
Şekil 4.34. A1-1 deği	Aktif karbonunun Metilen mavisi Adsorpsiyonunda başlangıç pH şiminin etkisi grafiği	08
Şekil 4.35. Meti	len mavisi ve NaOH 24 saat süredeki etkileşimi 10	09
Şekil 4.36. Al kons	-1 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık antrasyon zaman grafiği10	09
Şekil 4.37. A1- °C v 600	l aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 e 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, ppm, V=0,25 AD= 1 g, pH=6, KH=200 rpm 1	12
Şekil 4.38. A1-1 °C v 600	l aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 e 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)1	12

Şekil 4.39.	A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm 113
Şekil 4.40.	A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)
Şekil 4.41.	A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)
Şekil 4.42.	A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki Elovich, intrepartiküler difüzyon kinetik (intraparticle diffusion) grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)
Şekil 4.43	. A1-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği 116
Şekil 4.44.	A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği
Şekil 4.45.	A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 119
Şekil 4.46.	A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (, Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 120
Şekil 4.47.	A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm
Şekil 4.48.	A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,30°C ve 45 °C'deki D-R izotermleri grafiği (, Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.49.	A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)

Şekil 4.50. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafikleri 123
Şekil 4.51. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç ph değişiminin etkisi grafiği
Şekil 4.52. A1-2 Aktif Karbonunun Kinolin Sarısı ile Adsorpsiyonu Sıcaklık Konsantrasyon Grafiği 126
Şekil 4.53. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Langmuir izotermleri grafiği (, Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm)
Şekil 4.54. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)
Şekil 4.55. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm) 129
Şekil 4.56. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)
Şekil 4.57. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)
Şekil 4.58. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C,30°C ve 45 °C'deki Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)
Şekil 4.59. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği
Şekil 4.60. A2-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği
Şekil 4.61. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)

 Şekil 4.62. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu25 °C,30°C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)	6
Şekil 4.63. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)	7
Şekil 4.64. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)	7
Şekil 4.65. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) 139	9
Şekil 4.66. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği	1
Şekil 4.67. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği	2
Şekil 4.68. A2-1 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği	3
Şekil 4.69. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm) 145	5
Şekil 4.70. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)	6
Şekil 4.71. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm) 146	6
Şekil 4.72. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm) 147	7
Şekil 4.73. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo first order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)	8

Şekil 4.73. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo second order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm) (devamı) 148
Şekil 4.74. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği 149
Şekil 4.75. A2-2 aktif karbonunun Metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği 150
Şekil 4.76. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 152
Şekil 4.77. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (, Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 153
Şekil 4.78. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.79. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
 Şekil 4.80. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm).
 Şekil 4.80. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) (devamı)
Şekil 4.81. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği 156
Şekil 4.82. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği

Şekil 4.83. A2-2 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği
Şekil 4.84. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm)
Şekil 4.85. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm) 162
Şekil 4.86. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm
Şekil 4.87. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm)
Şekil 4.88. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (C ₀ =200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm).
Şekil 4.88. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (C ₀ =200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)(devamı)
Şekil 4.89. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği 165
Şekil 4.90. A3-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği
Şekil 4.91. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.92. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)

Şekil 4.93. A3 °	 B-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 PC ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 500 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm
Şekil 4.94. A3 °	8-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 170
Şekil 4.95	A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı
s	sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı
i	kinci mertebe (pseudo first order) kinetik model sabitleri ve grafikleri
((Co= 200mg/L, V=0,25L AD= 1 g, pH=7, KH= 200 rpm)
Şekil 4.95. 4	A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı
s	sıcaklıklarda Elovich ve İnterpartiküler kinetik model sabitleri ve
g	grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=7, KH= 200 rpm)
((devamı)
Şekil 4.96	A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı
k	konsantrasyon ve sıcaklıklarda termodinamik grafiği 173
Şekil 4.97. A	3-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç ph değişiminin etkisi grafiği 174
Şekil 4.98. A	A3-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve
k	konsantrasyon etkisi
Şekil 4.99 A3 °	-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.100. A	A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,
3	30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200,
4	400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm) 178
Şekil 4.101. A	A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,
3	30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200,
4	400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm
Şekil 4.102. A	A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,
3	30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400,
6	500 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)

Şekil 4.103. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)
Şekil 4.103. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6- 7, KH= 200 rpm) (devamı)
Şekil 4.104. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği
Şekil 4.105. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği
Şekil 4.106. A4-1 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi
Şekil 4.107. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.108. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.109. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.110. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.111. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)

Şekil 4.111. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)(devamı)
Şekil 4.112 A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklar da termodinamik grafiği 190
Şekil 4.113. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği
Şekil 4.114. A4-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi
Şekil 4.115. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.116. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm 195
Şekil 4.117. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm 196
Şekil 4.118. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)
Şekil 4.119. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6- 7, KH= 200 rpm).
Şekil 4.120. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği 199
Şekil 4.121.A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
Α	Adsorbentin yüzey alanı (m²/g)
Å	Angström
AT	Temkin izoterm sabiti (l/mmol)
b	Langmuir izoterminde adsorban ve
	adsorplanan madde ile sıcaklığa bağlı sabit
bT	Temkin izoterm sabiti
C ₀	Adsorbat çözeltisinin başlangıç
	konsantrasyonu
Ce	Adsorbatin denge konsantrasyonu
e	Elektronun yükü (C)
80	Boşluğun geçirgenliği
3	Ortamın geçirgenliği
k	D-R izoterminde adsorbanın gözenek boyut
	dağılımı karakterizasyon parametresi
ka	Adsorpsiyon hız sabiti
k _d	Desorpsiyon hız sabiti
Кс	Adsorpsiyon denge sabiti (g/mol)
Kf	Freundlich sabiti mol/g
n	Freundlich izoterminde adsorban ve
	adsorplanan madde ile sıcaklığa bağlı sabit
NA	Avagadro sabiti (Molekül/mol)
n	Freundlich sabiti
Р	D-R izoterminde adsorban etki katsayısı
qe	Adsorbentin gramı başına adsorplanan
	adsorbatın mg/g

Simgeler	Açıklama	
Qm	Adsorbentin tek tabaka kapasitesi (mol/g)	
q ₀	Adsorbentin gramı basına baslangıctaki	
-	adsorbatın konsantrasyonu (mol/g)	
R ²	Korelasyon katsayısı	
Т	Mutlak sıcaklık (K)	
W	Adsorbentin kütlesi (g)	
W0	D-R izoterminde toplam mikro gözenek	
	hacmi	
w	D-R izoterminde relatif basınc P/P0'da	
	gözenekte adsorplanan hacim	
X'm	Dubinin-Radushkevich sabitini (mg g ⁻¹)	
v	Sulu çözeltinin hacmi (L)	
θ	Adsorbat tarafından adsorbent vüzevinin	
	kaplanan kesri	
АН	Adsorpsiyon 1s1s1 (kJ/mol)	
Term.	Termodinamik	
AD	Adsorban değeri (g)	
A1	Yabani kusburnu ağacı	
A2	Akasva ağacı	
A3	Disbudak ağacı	
A4	Kavak ağacı	
A1-0	Yabani kuşburnu ağacından elde edilen ham	
	aktif karbon	
A2-0	Akasya ağacı kusburnu ağacından elde	
	edilen ham aktif karbon	
A3-0	Dişbudak ağacı kusburnu ağacından elde	
	edilen ham aktif karbon	
A4-0	Kavak ağacı kuşburnu ağacından elde edilen	
	ham aktif karbon	

Kısaltmalar	Açıklama
A1-1	Yabani kuşburnu ZnCl ₂ ile elde edilen aktif
	karbon
A2-1	Akasya ağacı ZnCl ₂ ile elde edilen aktif
	karbon
A3-1	Dişbudak ağacı ZnCl ₂ ile elde edilen aktif
	karbon
A4-1	Kavak ağacı ZnCl2 ile elde edilen aktif
	karbon
A1-2	Yabani kuşburnu NaOH ile elde edilen aktif
	karbon
A2-2	Akasya ağacı NaOH ile elde edilen aktif
	karbon
A3-2	Dişbudak ağacından NaOH ile elde edilen
	aktif karbon
A4-2	Kavak ağacından NaOH ile elde edilen aktif
	karbon
A1-3	Yabani kuşburnu ağacından H ₃ PO ₄ ile elde
	edilen aktif karbon
A2-3	Akasya ağacından H ₃ PO ₄ ile elde edilen
	aktif karbon
A3-3	Dişbudak ağacından H ₃ PO ₄ ile elde edilen
	aktif karbon
A4-3	Kavak ağacından H ₃ PO4 ile elde edilen aktif
	karbon
A1-4	Yabani kuşburnu ağacından H ₃ BO ₃ ile elde
	edilen aktif karbon
A2-4	Akasya ağacından H ₃ BO ₃ ile elde edilen
	aktif karbon
A3-4	Dişbudak ağacından H ₃ BO ₃ ile elde edilen
	aktif karbon

Kısaltmalar	Açıklama	
A4-4	Kavak ağacından H ₃ BO ₃ ile elde edilen aktif	
	karbon	
A1S	Yabani kuşburnu ağacı talaşı	
A2S	Akasya ağacı talaşı	
A3S	Dişbudak ağacı talaşı	
A4S	Kavak ağacı ağacı talaşı	
KS	Kinolin sarısı	
MM	Metilen mavisi	

EKLER DİZİNİ

	Sayfa
Ek 1. Üretilen Aktif karbonların FT-IRanaliz sonuçları grafikleri	208
Ek.1.1. A1 talaşı FT-IR analiz grafiği	208
Ek.1.2. A2 talaşı FT-IR analiz grafiği	208
Ek.1.3. A3 Talaşı FT-IR Analiz grafiği	209
Ek.1.4. A4 Talaşi FT-IR Analiz grafiği	209
Ek.1.5. A1 Karbonu FT-IR Analiz grafiği	210
Ek.1.6. A2 karbonu FT-IR analiz grafiği	210
Ek.1.7. A3 karbonu FT-IR analiz grafiği	211
Ek.1.8. A4 karbonu FT-IR analiz grafiği	211
Ek.1.9. A1-1 Aktif karbonu FT-IR analiz grafiği	212
Ek.1.10. A2-1 Aktif karbonu FT-IR analiz grafiği	212
Ek.1.11. A3-1 Aktif karbonu FT-IR analiz grafiği	213
Ek.1.12. A4-1 Aktif karbonu FT-IR analiz grafiği	213
Ek.1.13. A1-2 Aktif karbonu FT-IR analiz grafiği	214
Ek.1.14. A2-2 Aktif karbonu FT-IR analiz grafiği	214
Ek.1.15. A3-2 Aktif karbonu FT-IR analiz grafiği	215
Ek.1.16. A4-2 Aktif karbonu FT-IR analiz grafiği	215
Ek.1.17. A1-3 Aktif karbonu FT-IR analiz grafiği	216
Ek.1.18. A2-3 Aktif karbonu FT-IR analiz grafiği	216
Ek.1.19. A3-3 Aktif karbonu FT-IR analiz grafiği	217
Ek.1.20 A4-3 Aktif karbonu FT-IR analiz grafiği	217
Ek.1.21. A1-4 Aktif karbonu FT-IR analiz grafiği	218

Sayfa

Ek.1.22. A2-4 Aktif karbonu FT-IR analiz grafiği	. 218
Ek.1.23. A3-4 Aktif karbonu FT-IR analiz grafiği	. 219
Ek.1.24. A4-4 Aktif karbonu FT-IR analiz grafiği	. 219
Ek.1.25. Metilen mavisi yapısı ve özellikleri	. 220
Ek.1.26. Kinolin sarısı yapısı ve özellikleri	. 220

1. GİRİŞ

Bügünlerde insanlık süratle medeniyetlerce ilerlemekte, lakin limiti aşan hızı ile rekabet ruhu aşırı harcayan, maddi açıdan nedense ilerici, rakipsiz, rahat adımlarla hayattaki isteklerinin merkezindedir. Fakat bu merkezileşme isteklerin giderimi yapılırken evrensel atıkların artışına dünyaya zararını düşünmeden üretime sunulmasına ve tüketimin artmasına sebep olmaktadır. Arz talep doğrultusunda kurulan bütün isletmeler kimyasal olarak zararlı atıklar ortaya cıkarmakta ve bu atıkları toplanması geri dönüştürülmesi hayli zor olmaktadır. Özellikle hayatımızın odak noktalarından biri olan su gün geçtikçe azalmakta ve kirletilmektedir. İnsanlık olarak gerekli gereksiz ihtiyaçlardan kaynaklı ilerlemenin önüne geçemeyeceğimiz için atıkların toplanması ve suların temizlenerek tekrar kullanılması gerekmektedir. Birçok alanda su kirliliğine sebep olan nedenlerden biri de boya kullanımıdır. Tekstilden sanayisinde, hatta gıdalarda dahil kullanımı artmış durumdadır. Doğal olarak bu atıklar üretilen madde ve malzemelerin tüketilmesi ya da kullanılmasının son bulmasıyla doğaya bırakılmakta ve belli bir süre sonra dolaylı ya da direkt olarak su ile karışmaktadır. Bu karışma milyarda birlik hatta daha az bir artışla başladığı için çoğu kez gözle fark edilmeden yavaş yavaş kirlilik artmaya başlar. Bu nedenle suyun kirlilikten arındırılması gerekmektedir. Aktif kabon bu arıtım işlemlerinde en çok kullanılan maddelerden biridir. Aktif karbon yanlızca arıtmada değil, kozmetikte, altın üretiminde, kompozit malzemede ve bunun gibi birçok alanda kullanılmaktadır. Tarımsal atıklardan, endüstriyel atıklardan, bitkisel yan ürünlerden üretilen aktif karbonların kullanımı çok yaygındır. Özellikle endüstriyel sular, içme suyu arıtımında, yeraltı sularının arıtımında, kimyevi arıtma işlemlerinde, gazlarda, çözücülerin geri alınmasında, gaz maskelerinde, hava temizlemesinde, boyar madde giderme işlemlerinde ve bunun gibi çok fazla sayıda farklı süreclerde kullanılabilmektedir. Çeşitli alanlarda aktif karbon ihtiyacı arttıkça, üretim biçimleri de farklılık göstermeye başladı. Kaliteli aktif karbon üretimi için birçok çalışma yapıldı ve yapılmaya devam edilmektedir. Aktif karbonun kalitesi yüzey özelliklerine bağlıdır. Bu yüzden aktif karbonun elde edilmesinde yararlanılacak ham madde oldukça önemlidir. Aktif karbon üretiminde en önemli malzemelerden biri ağaçlardan elde edilen odun talaşlarıdır. Ağaçlar dekarosyandan evdeki birçok malzemeye kadar sürekli işlenerek

kullanılmaktadır. Doğal enereji kaynakları kıtlığı nedeniyle enerji kaynağı olarak da kullanılmaktadır. Bu ve bunun gibi nedenlerden dolayı kuru ağaç atığı ve talaş sürekli olarak bulunması kolay bir malzemedir. Aktif karbon üretiminde aktif karbonun yüzey alanın geniş olması ve adsorpsiyon özelliğinin iyi derecede olması istenmektedir. Bu nedenle ağaçlardan elde edilen talaşın özellikleri önem taşır. Aktif karbon üretimini ve boyar maddelerin giderimini daha iyi açıklayabilmek için boyar maddelerin ve aktif karbonun yapısının bilinmesi ve su içerisinden boyar maddelerin alınma süreçlerinin bilinmesi gerekir.

2. KAYNAK BİLDİRİLİŞLERİ

2.1. Renk

Cisim, beyaz ışının bazı dalga boyundaki ışıkları ya da ışığı absorplayarak kalanları yansıtması ve yansıyan ışıkların dalga boyuna bağlı olarak görülmesiyle renk görülür. Dalga boyu 400-750 nm arası cisimde sırasıyla adsorplanan renkler mor, mavi, yeşilimsi mavi, mavimsi yeşil, yeşil, sarımsı yeşil, sarı, turuncu, kırmızı cismin rengi sırasıyla yeşilimsi sarı-sarı, turuncu, kırmızı, magenta, mor, mavi, yeşilimsi mavi, mavimsi yeşil olarak görülür (Başer, 1990)

2.2. Renk Teorileri

Bir teoriye göre; bir bileşiğin renkliliği, molekülünde doymamış yapıda, C = O karbonil, -N = N - (azo), -N = O nitrozo veya nitro gibi grupların -OH (hidroksil), zayıf bazik ya da zayıf asidik özellikte -NH₂ (amino) gibi grupların olması ve bunların etkileşiminden kaynaklanmaktaydı. Doymamış yapıdaki gruplara, renk verici anlamına gelen (chroma: renk, phoron: verici, taşıyıcı), "kromofor" diğer kısmına ise renk arttırıcı (auxesis: arttırıcı) anlamında "oksokrom"), bu grupların olduğu bileşiklere de "kromojen" denildi. Mesela nitrobenzen de -OH oksokrom, hidroksil grupsuz kısım kromojen, ----NO2 kromofordur. Buna göre, renkliliğin asıl nedeni, aynı cins olan oksokrom gruplarına sahip olan benzoid ve kinoid halkaların yan yana gelmesidir. Rengin oluşumunu açıklayan teorilerden diğeri de moleküler orbital (MO) teorisidir. Bir molekül orbitali (MO) iki atomda tam olarak doldurulmamış en dış atomik orbitallerin (AO) girişimi sonucunda meydana gelir. Atomik orbitallerin girişimi ile daima iki molekül orbitali meydana gelir. Bunlardan düşük enerjili olanı bağ orbitalidir. Organik molekülün ışık absorbsiyonu yapması ile, elektronik geçişler olur. Böylece molekül, farklı enerji seviyelerinde olan orbitallerin elektronlarını daha üst seviyelere geçmesini sağlayarak uyarmış olur. Boyar madde moleküllerinde ise anlatılan elektronik geçişler karmaşıktır. Örneğin alkanlar ile difenil-polienleri kıyaslayarak elektronlarının renkliliğe nasıl neden

olduğu görülebilir. Alkanlar renksizdir. Fakat difenil-polienler n=3 de açık sarı olmakta ve n' sırasıyla artarak farklı değerlerde de yeşilden siyaha kadar renklenebilmektedir.

$$C_nH_{2n+2}$$
 $C_6 H_{5-} (CH = CH)_{n-} C_6 H_5$

Difenil-polien

Çift bağlı sisteme π - elektronları alkanların σ - elektronları gibi zor uyarılır. UV bölgesinde görünmeyen kısmında absorbsiyon olur. Bileşikte π - elektronu sayısı artarsa absorbsiyon büyük dalga boyuna doğru kayar. Bu şekilde görünür bölgede absorpiyon meydana gelebilir ve madde renkli görünür (Başer, 1990).

2.2.1. Oksokromlar:

Alkan

Moleküldeki -COOH, -SO₃H, -OH, -NH₂, gibi gruplar, π - elektronlarının delokalizasyonunu güçlendirirler. Bu şekilde absorbsiyon bandları daha büyük dalga boyu olan bölgeye kayar ve renklilik kazanılır. Örneğin: nitrobenzen-açık sarı, nitrofenol-sarı (Başer ve İnanıcı, 1990).

2.2.2. Kromoforlar

Bir mezomer ya da birden fazla mezomer oluşturabilen moleküllerde π - elektronlu doymamış atom grupları (> C=0, -N = N-,> C = C <, -NO₂, >C = NH, -N = O) kolay uyartılarak karşılıklı etkileşime sokulur. Bu etkileşim ile görünebilir olan bölgeye taraf absorbsiyon kayması görülür (Başer ve İnanıcı, 1990).

2.3. Boya ve Boyar madde

2.3.1. Boya

Cisimlerin yüzeylerini renklendirmek ve dış etkilerden korumak için kullanılan maddelerdir. Boya bir bağlayıcı ile bağlanmış fakat çözünmemiş karışımlardır.

2.3.2. Boyar madde

Cisimlerin tamamını renkli yapabilmek için kullanılan organik maddelere boyar madde denir. Boyar maddeler süspansiyon veya çözelti yapılarak kullanılırlar. Cismin yüzeyi ile kimyasal etkileşimde bulunur. Boyar maddeler daha önceleri doğal yollardan elde edilirken daha sonra sentetik boyar maddeler elde edilmiştir. Boyar maddeler çeşitli şekillerde sınıflandırılmaktadır (Başer ve İnanıcı, 1990).

2.3.3. Boyar maddelerin çözünürlüğüne göre sınıflandırılması

Suda çözünen boyar maddeler

Suda çözünen boyar madde molekülünde tuz oluşturabilecek bir grup bulunmalıdır. Bu boyar maddeler yapısındaki tuz grubunun karakterine göre üçe ayrılır.

Zwitter iyon karakterli boyar maddeler

Molekül yapsında hem bazik hem asidik grupları bulunur. Bu gruplar iç tuz oluşturup, boyama esnasında bazik ya da nötral bir ortamda anyonik boyar maddeler gibi davranırlar.

Suda Katyonik çözünen boyar maddeler

Çözünürlüğünün nedeni olan grup olarak bir bazik grup (- NH₂) asitlerle tuz oluşturmuş halde bulunurlar. Asit için (COOH)₂ organik asit ya da (HC1) gibi anorganik asitler kullanılır.

Suda Anyonik çözünen boyar maddeler

Suda çözünen grup olarak en çok sülfonik (- SO₃), kısmi olarak karboksilik (- COO --) asitlerin sodyum tuzlarını bulundururlar. Örneğin: (-COONa ve -SO₃Na).

2.3.4. Boyar maddelerin boyama özelliklerine göre sınıflandırması

Bazik(katyonik) boyar maddeler

Pozitif yük taşıyıcısı N veya S atomunu içeren organik bazların hidroklorürleri olup, katyonik grubu renkli kısımda taşıyan, kimyasal yapısından dolayı proton alan bazik olan anyonik grup içeren maddelere bağlanan boyar maddelerdir.

Asit boyar maddeler

Molekülünde bir veya birden fazla -SO₃H sülfonik asid grubu veya -COOH karboksili asit grubu içeren, -SO₃H gurubunu renk veren gurup olarak taşıyan boyar maddelerdir.

Direkt boyar maddeler (Substantif boyar maddeler)

Genelde sülfonik asit, kısmen de karboksilik asitlerin sodyum tuzlarıdır. Yapı olarak direkt ve asit boyar maddelerin karşılaştırılmasında kesin bir ayırım bulunmamaktadır.

Mordan boyar maddeler

Bazik ya da asidik fonksiyonel gruplar içeren elyafa hem de boyar maddelere karşı aynı kimyasal ilgiyi duyan (mordan) boyar maddelerdir. Suda çözünürlüğü az olan hidroksidleri oluşturan Sn, Al, Cr, Fe, tuzları mordan olarak kullanılır.

Reaktif boyar maddeler

Elyaf yapısı içinde olan fonksiyonel gruplarla gerçek kovalent bağ yapabilen ve reaktif gruplar içeren boyar maddelerdir. Reaktif olan grup molekülün renkli olan kısmına bağlı konumdadır. Bu boyar maddelerde ortak karakter tamamında kromofor grup ile birlikte reaktif grup ayrıca reaktif moleküle çözünürlük sağlayabilen bir grup içermelidir.

Küpe boyar maddeleri

Karbonil grubu olan ve suda çözünmeyen boyar maddelerdir. İndirgemeyle (sodyum ditiyonit (Na₂S₂O₄ ile) suda çözünür hale getirilirler.

İnkişaf boyar maddeleri

Azoik boyar maddeler olarak da adlandırılan Naftol-AS boyar maddeleri ile ftalosiyanin boyar maddeleri bu sınıftandır.

Metal-kompleks boyar maddeler

Belirli grupları olan bir kısım azo boyar maddelerle metal iyonlarının kompleks oluşturmasıyla oluşmuş boyar maddelerdir. Kompleksleşmede azo grubu rol alırken metal katyon olarak Cr, Co, Ni ve Cu iyonları kullanılır.

Dispersiyon boyar maddeleri

Suda yok denecek kadar az miktarda çözünebilen, bundan dolayı su ile boyanacak madde içinde küçük parçacıklar halinde homojen olarak yayılarak uygulanabilen boyar maddelerdir. Boyar madde, boyama esnasında hidrofob elyafın üstüne dispersiyon ortamından boyar madde difüzyon yoluyla alınır.

Pigment boyar maddeleri

Bağlayıcı madde denilen sentetik reçineler ile elyaf yüzeyine bağlanabilen boyar maddelerdir.

2.3.5. Boyar maddelerin kimyasal yapıya göre sınıflandırması

Aşağıda boyar maddelerin sentez ve pratik uygulamalara göre kimyasal sınıflandırma yapılmıştır. Buna göre boyar maddeler, Azo boyar maddeleri, Nitro ve nitrozo boyar maddeleri, Polimetin boyar maddeleri, Arilmetin boyar maddeleri, Aza [18] annulen boyar maddeleri, Karbonil boyar maddeleri, Kükürt boyar maddeleri olmak üzere yedi gruba ayrılır. Bu boyar maddelerin bazı özellikleri aşağıdaki gibi açıklanmaktadır.

Azo boyar maddeleri

Organik boyar maddelerde önemli yere sahip sınıf olup azo grubu bulunduran yani yapı içeriğinde kromofor grup azo (-N=N-) grubu ile karakterizasyonu yapılan boyar maddelerdir. Azo gruba bağlı karbon atomlarından bir tanesi aromatik (naftalen, benzen ve türevleri) veya heterosiklik halka, diğeri alifatik zincire bağlı olan enolleşebilen bir grup olabilir. Molekülde en az bir aril grubu olur. Azo boyar maddeleri genel olarak şöyle formüllendirilebilir. Ar-N=N-R, R:Aril, heteroaril veya enolleşebilen alkildir. Alifatik grup bulunduran azo boyar maddelerinin renk şiddetleri düşük, geniş bir spektrumda renk tonları bulunmaktadır. Doğal boyar maddelerin kesinlikle azo grubu olmaz. Boyar maddelerin tamamı sentetiktir. Sulu çözelti içinde sentezlenebilen ve başlangıç maddelerinin istenildiği şekilde sınırsız sayıda olması çok sayıda azo boyar maddesinin oluşturulabilmesini sağlar.

Nitro ve nitrozo boyar maddeleri

Bu boyar maddelerin yapılarında nitro (-NO₂) veya nitrozo (-N=O) grubuyla beraber elektrondonör grup (-OH, -NR₂) bulunur. Boyar maddelerde nitro ya da nitrozo grupları ile elektrondonör grup olan gruplar birbirine göre orto yerinde bulunurlar. Bu gurubun boyar maddeleri fenol ya da naftollerin HNO₂ ile muamelesiyle nitrozolanır. Nitrozo bileşikleri çoğunlukla başka boyar maddelerin sentezinde kullanılmalarına rağmen tek başlarına hiç boyar madde karakterleri yoktur. Orto-nitrozo bileşikleri kompleks oluşturma özelliğine sahiptir. Bu nedenle ağır metal tuzlarıyla yaptıkları kompleksler boyar madde özelliğini gösterirler. Hidroksinitrozo ve ağır metal tuzlarının oluşturduğu kompleks bileşikler ya pigment ya da başlangıç maddesi sulfon grubu(O=S=O) bulunduruyorsa asit boyar madde özelliğindedir.

Polimetin boyar maddeleri

Polimetin boyar maddeleri yapıları aşağıdaki mezomer sistemiyle açıklanabilir. (Formül)

$$\left[x = c - (-c) = c - (-c) = c - (-c) = c - (-c) = c - (-c) = ($$

Bu yapıdaki X ve Y, konjuge zincirlerle tek sayıdaki metin gruplarına bağlı ve bunlardan bir tanesi elektron-akseptör olarak işlev görürken diğeri de elektron donördür. Yapısındaki a yüküne bakılarak polimetin boyar maddeleri: a yüksüz ise nötral, pozitif ise katyonik, negatif ise anyonik polimetin boyar maddeleri şeklinde adlandırılabilir. Hatta zincirde sayısına göre n=0 ise monometin boyar maddesi n=l ise trimetin (veya karbo), n=2 ise pentametin (veya dikarbo) boyar maddeleri şeklinde isim verilir.

Arilmetin boyar maddeleri

Genel formülleri Ar-X=Ar olan arilmetin ve poli (aza)metin boyar maddeleridir. Formüldeki X, -CH= veya -N= şeklinde olabilir. X'in -CH= olduğu bileşiklere diarilkarbonyum, -C (Ar) = olduğunda ise triarilkarbonyum bileşikleri oluşur. Bu grup — N= olursa aza türevidir. Bu boyar maddelerin tamamında ve bunların aza analoglarında X ile gösterilen grup absorbsiyonu ana parçasıdır. Bu boyar maddelerin çok fazla sayıdaki özel reaksiyonları X'in elektrofil özelliğinden kaynaklanmaktadır.

Aza [18] annulen boyar maddeleri

Bir bileşiğin aromatik yapıya sahip olup olmadığı molekül orbital teorisinde Huckel kuralına göre (4n+2) π elektronlarının sayısıyla bulunabilir. n tam sayı olacak şekilde 1 den başlayarak 6,10... elektron sayılarındakiler aromatik olabilir.Fakat aromatiklik için bu sayıdaki elektronların bulunduğu sistemde elektronlar bir düzlemde bulunmalı ve delokalize olmalıdır. Ardarda C=C ve C-C bağlarından oluşan bir monosiklik halka [n] Annulen olarak da isimlendirilebilir. Örneğin benzen= [6] Annullen, [n] π elektronlarının sayısıdır. Bu boyar madde sınıfı, 18 π elektronlu ve konjuge durumda çift bağları olan siklik renk verici bir yapısı vardır. [18] Annulen tipi boyar maddelerine örnek olarak kan ve yeşil yaprakların boyar maddeleri verilebilir.

Karbonil boyar maddeleri

Bileşiminde konjuge çift bağ bulunan ve bunlara konjuge olan en az iki karbonil grubu içeren bileşiklerdir.

Kükürt boyar maddeleri

Fenollerin ve aromatik aminlerin, kükürt ve sodyum sülfür ya da sodyum polisülfür ile reaksiyonundan oluşan, suda çözünmeyen, makromolekül yapılı organik bileşikler kükürt boyar maddeleri olarak isimlendirilir (Başer ve İnanıcı, 1990).

Boya ve boyarmadelerin yapılarının bilinmesi çözeltilerden adsorpsiyonları için gerekli bir ön bilgidir.

2.4. Aktif Karbon

Aktif karbon, kimyasal analiz veya yapısal formül ile karakterizasyonu yapılamayan, yüksek gözenek ve alanına sahip karbon içeren malzemeler şeklinde tanımlanabilmektedir. Gözenek çapları 3Å ile birkaç bin angstrom arasında değişebilmektedir. Birçok maddeden aktif karbon üretilebilmektedir. Ancak ticari aktif karbon üretiminde hammadde olarak kömür, odun, turba, hindistan cevizi kabuğu ve linyit kullanılmaktadır. Diğer adsorbentlerden ayıran özellikler olarak Aktif karbonun özellikleri şöyle yazılabilir; Nem giderilmesine gerek yoktur, geniş iç yüzey alanı ve farklı gözenekleri ile polar olmayan veya çok az polar olan molekülleri adsorplaması, adsorpsiyonun van der waals bağlarına kaynaklanması ve bunun bir sonucu olarak yenilenmesi için gerekli olan enerji ihtiyacının diğer adsorbentlere oranla az olmasıdır. (Noll ve ark., 1992). Aktif karbonun diğer adsorplayıcılardan farklı olarak, gözenek

yapısı makro gözenek (r > 500 Å), mezo gözenek (20 Å < r < 500 Å) ve mikro gözenek (r < 20 Å) olmak üzere 3 bölüme ayrılır (Sing ev Everet 1987). Gözenekleri etkili yarıçapı 500-1000 Å'dan büyük olanları makro gözenek olarak tanımlamakta, yüzey alanı 0.5-2 m²/g ve özgül hacmi 0.2-0.8 cm³/g arasında olmaktadır. Makro gözeneklerin, genellikle büyük moleküllerin adsorpsiyonunda işlev görmektedir. Adsorpsiyonun gerçekleşmesi için karbon içine geçiş gözeneklerinin ya da kanallarının olması gerekmektedir. Dubinin'e göre geçiş gözenek yarıçaplarının 16 Å – 2000 Å aralığında olması, geçiş gözenekleri orta büyüklüğe sahip moleküllerin adsorpsiyonunda görev görmektedir. Özgül hacimleri 0.02-0.1 cm³/g, gözenek ya da kanalların yüzey alanları 20-70 m²/g arasındadır. Geçiş gözenek ya da kanalları çok olan aktif karbonun, özgül yüzey alanları genellikle 200-450 m²/g, etkin yarıçapları ise 40 Å -200 Å ve özgül hacmi 0.7 cm³/g civarında olabilmektedir. Mikro gözeneklerin ise etkin yarıçapları 20 Å'dan daha da azdır. Yaklaşık olarak özgül hacimleri 0.15-0.5 cm³/g ve özgül yüzey alanları genellikle toplam yüzey alanının en az %95'ini oluşturmaktadır (Dubinin ve ark.,1964). Makro gözenekler dış yüzeye doğrudan açılmış, mezo gözenekler makro gözeneklerin, mikro gözenekler de mezo gözeneklerin dalı şeklindedir (Orbak, 2002).

2.4.1. Aktif karbonun molekül ve kimyasal yapısı

Aktif karbonun molekül ve kristal yapısını algılamak için maddenin yüzey kimyası ile ilgili bilgilerin bilinmesi gerekir. Aktif karbonla karbon siyahı arasındaki bir fark, karbon siyahının iç yüzey alanı aktif karbonunu iç yüzey alanından daha küçük olmasıdır. Aktif karbon yapısı, karbon siyahından elde edilen verilerle açıklanmaktadır. Karbon siyahı ve aktif karbonun ana yapısı saf grafitin yapısına benzemektedir. Karbon siyahı renk pigmentidir (Cheremisinoff ve Ellerbusch, 1978).

Doğada bulunan karbonun 3 izotopu ¹¹C, ¹²C, ¹³C olmasının yanında bir de üç allotropu elmas, grafit ve kömürdür. Grafitte, her karbon atomu komşu üç atoma bağlı iken; Elmasta dört atoma bağlıdır. Grafit, tabaka halinde moleküllerden meydana gelmektedir. Tabakalar arası 3.4 Å' uzunluğundadır. Her karbon atomunun üç elektronu tabaka üzerinde bağ yapmakta kullanılırken dördüncü elektron serbestçe hareket edebilmektedir. Başka bir deyişle karbonun üç elektronu komşu atomlarla düzenli

kovalent bağlar yapmakta, geriye kalan bir elektron ise yapılar arasında salınmaktadır. Bu şekilde karbon atomları arasında çift bağ oluşumunu sağlamaktadır. Bu oluşum grafit için baskın bir yapıdır. Fakat aktif karbonun yapısı grafitten biraz farklıdır. Aktif karbon oluşum sürecinde birçok aromatik çekirdek oluşmaktadır. Karbonun kristal yüzeyinde kimyasal reaktivite kenarlarındaki kimyasal reaktiviteden yüksektir. Kristal ve gözenek yüzeyleri haricinde aktif karbon yüzeyinin de kimyasal özelliği vardır. Aktif karbonların adsorpsiyonunu gözenek ve yüzey alanı etkilerken bir başka etken yüzey reaktivitesidir. Aktif karbonlarda fonksiyonel grup veya tek atom halinde veya fazlaca heteroatom bulunur. Bunlar hammaddeden, karbonizasyondan veya aktivasyon ve sonraki işlemlerde yüzeye kimyasal bağlarla bağlanmalarındandır (Bansal and Goyal, 2005). Ayrıca X-ışını kırınımı ile yapılan incelemelerde aktif karbonların altıgen olarak bağlanmış karbon atomlarını içeren mikrokristalin yapısında olduğunu ve mikrokristaller arasının 20-50 Å, düzlemlerin yarıçapı ise 150 Å'dur (skim, 2000). Aktif karbonun hazırlanış yöntemlerinden kaynaklı olarak bazı safsızlıkların olması mikrokristalin yapısında bazı boşluklar oluşmaktadır (Valsamakis ve Simitzis, 2000). Aktif karbon üretim sürecinde düzlemin kenarındaki yapılar heterosikliktir. Bu gruplar, adsorpsiyona, desorpsiyona etki etmektedir (Skim ve ark., 2000). Genellikle aktif karbonların kenarlarında oksijen içeren organik fonksiyonel gruplar karbonun yüzeyinde bulunmaktadır (Boehm ve Voll, 1970).

2.4.2. Aktif karbonun oksijen yüzey kompleksleri

Aktif karbonda, karbonun daha çok oksijen içeren hidrofilik yüzeye sahip olması için karbon yüzeyi oksidasyona maruz brakılmaktadır. Fonksiyonel grupların oluşumu, aktivasyon sürecinde ya da karbonizasyon esnasında safsızlıkların hammadde ile olan etkileşiminden kaynaklanmaktadır (Skim ve ark., 2000).

Oksitleyici gazla veya oksitleyici çözeltiler kullanılarak oksijen içerikli yüzey komplekslerini oluşturabilmenin farklı yöntemleri bulunmaktadır. Oksitleyici gaz ya da çözeltiler oksijenin karbonla C_xO_y kompleksler oluşturmasını sağlar. Oluşan kompleksler yeter derecede yüksek sıcaklıklara kadar ısıtıldıklarında karbon monoksit (CO) ve karbondioksit (CO₂) meydana gelecek şekilde bozunmaktadır. Asidik ve bazik yüzey oksitleri olmak üzere yüzey oksitleri incelenebilir. Asidik yüzey oksitleri, genellikle

473K-773 K sıcaklıkları arasında karbonun oksijenle yanma reaksiyonu ya da sulu çözeltilerin oksidasyonuyla gerçekleşir. Bazik yüzey oksitleri ise, inert atmosferik ortamda ya da vakumda ısıtıldıktan sonra oksijen etkileşiminin sağlanması ve soğutulması gerçekleşir. Ayrıca asidik yüzey oksidi oluşmuş karbonlara L- karbonlar, bazik yüzey oksidi oluşmuş karbonlara H-karbonlar denmektedir. H-karbonların pozitif, L-karbonların ise negatif yüzey potansiyeline sahip oldukları elektrokinetik araştırmalarda tespit edilmiştir (Skimm ve ark., 2000).

2.4.3. Aktif karbonun fonksiyonel grupları

Aktif karbon; paralel hekzagonal yığınlar, tabakalar ve çapraz bağlı tetrahedral yapı oluşturan karbon atomlarından oluşur. Karbon içeriğinde birçok heteroatomu (hidrojen, oksijen, v.b.) yapısında tek atom ya da fonksiyonel gruplar halinde bulundurur. Oksijen, karbon yapısı içerisinde baskın heteroatomdur ve fonksiyonel grupların karbonil, karboksilik, fenol, enoller, laktonlar ve kinonları barındırdığı varsayılır. Yüzey fonksiyonel grupları; metilasyon, nötralizasyon, titrasyon ve çeşitli spektrometrik yöntemler ile tespit edilmektedir. Aktif karbonun yüzey grupları "Quinone" tipi karbonil gruplar, fenolik hidroksilik gruplar, Karboksilik gruplar, karboksilik asit anhidritler, normal laktonlar ve siklik peroksitler ve "Fluorescein" tip laktanlardır. Aktif karbonun yapısı fonksiyonel grupları Şekil 2.1'de görülmektedir (Mattson ve Mark 1971).

Şekil 2.1. Aktif karbonlarda başlıca fonksiyonel gruplar (Mattson ve Mark, 1971).

2.4.4. Aktif karbon üretimi

Aktif karbonun genel üretimi Şekil 2.2'de görülmektedir. Bu üretim hammaddenin özelliklerine veya uygulanan aktivasyon işlemine göre değişiklikler gösterebilmektedir.

Şekil 2.2. Aktif karbonun genel üretim şeması (Smisek ve Cerny, 1970).

Hammadde, yapısına bağlı olarak karbonizasyon ve aktivasyon yapılmadan çeşitli süreçlerden geçebilmektedir.

Aktif Karbon Üretiminde Kullanılan Ham Materyaller

Aktif karbon üretiminde kullanılacak hammaddelerin karbon içeriğinin yüksek olması, maliyetinin az olması, safsızlığının olmaması ya da çok az olması üretim için önemli etkenlerden biridir. Aktif karbon üretiminde birçok farlı materyaller kullanılmıştır. Bunlardan bazıları; Mısır koçanı, hindistan cevizi kabuğu, pirinç kabuğu, fındık kabuğu, deniz yosunları, şeker kamışı, kösele atığı, meyve atıkları, kauçuk, petrol, turba, linyit, balık, kan gibi birçok farklı maddedir (Özdemir, 2008). Kullanılacak hammadde aktif karbonun özelliklerini etkilemektedir. Hammadde yapısında ya da içinde bulunan uçucu madde ve yoğunluğu, elde edilen aktif karbonun özelliklerini etkilemektedir. Bazı hammaddeler yüksek yoğunluğa ve uçucu madde içeriğine sahiptir (Amin, 2009). Odun ve lignin gibi düşük yoğunluklu maddeler yüksek uçucu maddeye sahiptirler. Üretilen aktif karbon, düşük yoğunluklu ve büyük gözenek hacimli olması nedeniyle adsorpsiyon için uygun olmaktadır. Karbonizasyon sürecinde daha az karbon kaybı olmaktadır (Türkyılmaz, 2011).

Hammadde olarak ağaç ve yapısı

Ağaç malzemenin ceşitli kullanım yerlerinde karşılaştığı etkilerden dolayı fiziksel ve mekanik özellikler için çok değişik sınıflandırmalar söz konusudur. Yoğunluk, elastikiyet modülü, liflere parelel basınç direnci, eğilme direnci, Brinell sertlik, dinamik eğilme direncidir. Ayrıca bu direnç türleri, ağaç malzemenin kullanılmasında dış faktörlere karşı gösterdiği direncin bir ölçüsüdür. Bunun yanı sıra yapılan çalışmalarda ağaçlar genellikle hemiselüloz, selüloz, lignin, ekstraktif maddeler (çeşitli çözücülerde çözünen maddeler) gibi maddelerden oluşmasına rağmen anatomik mekanik, fiziksel, kimyasal yapılarının farklı değerlere sahip olduğu belirlenmiştir (Özan, 2017). Diğer bir çalışmada ağaçlardaki selüloz yapısının ağacın ana dayanıklı yapısında rol oynadığı ve yanma sonucu karbon yapısının oluşumunda etkisi olduğunu belirlemiştir (Aydemir ve Gündüz, 2009).

Ağaçların genel yapısındaki maddeler; Selüloz $(C_6H_{10}O_5)_n$, bitkilerde hücre duvarının ana yapıtaşlarından ve bu yapının yaklaşık 1/3-1/2'lik kısmını oluşturmaktadır. Selüloz, glikoz moleküllerinin birleşmesiyle meydana gelir. Bu oluşum esnasında genelde su molekülleri ayrılır. Bu şekilde uzun ve düz zincirli selüloz polimeri oluşur. Selüloz zincirleri hidrojen bağlarından kaynaklı olarak dayanıklılığı yüksektir. Kristal yapısıda düzgün bir yapıya sahiptir. Ağacın ağırlıkça yaklaşık %40'ını oluşturur (Gümüşkaya, 2005).

Hemiselüloz $(C_5H_8O_4)_n$, bitki hücrelerinin kompleks polisakkaritlerdir. Selülozdan farkı, seyreltik alkali çözeltilerde çözünebilme ve dallanma yapabiliyor olmasıdır (Yaman, 2004).

Lignin, selüloz ile bitkideki sert ve odunsu olan yapının oluşumunu sağlar (Kök ve gövdede selüloz fiberleri birarada tutarak). Lignin, karbondihidrat değildir. Aromatik guruplardan oluşan karmaşık ve büyük bir polimerdir. Selülozla birleşek lignosellülozik kompleksin oluşumunu sağlar. Hemiselüloz ve selüloz ile çapraz polimerik hidrojen bağları oluşturur. Amorf yapısı, kimyasallara karşı direnci yüksek, çözünürlüğü düşüktür (Ozmak, 2010).

Ağaçtaki kimyasal maddeler

Ağaçlarda birçok kimyasal madde bulunmakla birlikte genellikle dikkate almaya değer miktarlarda olan bileşikler aşağıdaki gibi sıralanabilir;

Fenolik maddeler; odun kısmının %20 ile %30 arasındaki kısmını oluşturmakta, lignin ise fenolik (benzen halkasına farklı yapı ve OH⁻ molekülünün bağlanması ile oluşan maddeler) maddelerin olduğu kısım olarak bilinmektedir. Fenolik maddeler organik çözücülerde ve suda çözünebilmektedir. Aromatik halka taşıyan ve fenol halka yapısındaki bileşikler; tanenler, renkli maddeler, lobafenler ve liganlardır.

Karbonhidrat; ağaçtaki karbonhidratlar, selüloz, hemiselüloz, pektik maddeler, suda çözünen polisakkaritlerdir. Ağacın odun olacak kısmının ³/₄' ünü oluştururlar ve bu kısmın neredeyse yarısı selülozdur.

Alifatik Bileşikler; ağaçlarda yüksek yağ asitleri $((C_nH_{2n}O)_2$ genel formülüne sahip alkil ve karboksil gurubu birleşimi) ve esterler (RCOOR1 formüllü R ve R1 alkil grupları) yer alır. Asetik asit poliesterleri %1-5 arasında bulunmaktadır.

Alkoller; Alifatik alkoller (yağ alkolleri), steroller (C₁₇H₂₈O) ve terpen alkoller girmektedir. Esterleşmiş biçimde ağaçta bulunabildiği gibi serbest olarakda bulunabilmektdir.

Terpenler; $(C_5H_8)_n$ n birleştirilmiş izopren birimlerinin sayısıdır) ve terpenoik bileşikler hem uçucu hem de uçucu olamayan bileşikleri içerir.

Aldehitler; karbonil grubu olan aldehitler çok düşük miktarda bulunurlar.

Alkaloitler; bazı ağaçlarda yüksek miktarlara ulaşmaktadır.

Proteinler; odunlaşmış bölgelerde yaklaşık %1 kadar bulunur.

Hidrokarbonlar; alifatik hidrokarbonlardır. Çok düşük oranda bulunular.

İnorganik Bileşenler; ağaç türlerinde farlıklık göstermekle birlikte bazı türlerinde %0.5'den daha azdır. Yanma sonucu oluşan kül içeriği inorganik bileşiklerden kaynaklanmaktadır.

İki Değerlikli Asitler, Kalsiyum tuzları şeklinde var olurlar. Kalsiyum karbonat CaCO₃ gibi (Fengel ve Wegener 2011).

Karbonizasyon

Karbonizasyon, inert bir ortamda (N₂ gazı gibi) hammaddedeki uçucu maddenin önemli bir bölümünün giderilmesi ve nemin uzaklaştırılması ile gözeneklerin oluşturulduğu bir işlemdir. Gözeneklerin bir kısmı piroliz ürünlerinden dolayı başlangıçta kullanılamaz duruma gelmekte, fakat yüksek sıcaklık uygulanarak tekrardan kullanılabilir duruma getirilebilmektedir. Bunun gibi etkenler ürünün aktivasyonunu ve kalitesini değiştirebilmektedir. Karbonizasyonda, karbonun içeriği ve hammadde içerisinde bulunan mineral maddenin özelliğine göre kül içeriği değişmektedir (Örkün 2011).

Karbonizasyon sürecinde şu özellikler dikkate alınır (Oğuz, 2013);

• Uçucu olan maddelerin ve heteroatomların giderimi ile zengin karbon içeriği eldesi,

• Yüzey alanın artırılması veya uçucu bileşenlerin uzaklaştırılması ile alan oluşturulması,

• Karbonca zengin olan aktif karbonda çapraz bağların oluşarak maddenin şeklini kaybetmeyen (rijitleşen) bir yapı oluşması.

Aktivasyon

Aktivasyon, karbonizasyonda oluşmuş gözeneklerin yarıçapı, hacmi artarken yeni gözenekler meydana gelir. Gözenek yapısı ve boyutunu karbonizasyon esnasındaki şartlar ve kullanılan hammaddenin yapısı etkiler. Düzgün bir yapıda bulunan karbon tabakaları, aktivasyonda aktive edici kimyasal maddelerce formu değiştirilerek karbonda gözenek oluşumu, aktivasyon sürecince gözeneklerin gelişmesi ve yan yana olan gözenekler arasındaki bölümlerin yıkılmasıyla daha büyük gözeneklerin meydana gelmesi sağlanmaktadır. Aktivasyon; Kullanılan hammaddeye, kullanılan aktive edici kimyasal maddeye, aktivasyon sıcaklığına ve süresine göre oluşan aktif karbonun, mikro, mezo ve makro gözenek yapısında değişikliklere sebep olur. Kütle azalması (aktivasyon derecesi), aktivasyon sırasında, karbonize olmuş maddenin kütlesindeki yüzde azalımı olarak tanımlanabilmektedir. Aktivasyon işlemi iki şekilde olmaktadır; Fiziksel ve kimyasal aktivasyon (Küçükgül, 2004).

Fiziksel Aktivasyon

Fiziksel aktivasyon, aktivasyonda kullanılacak hammaddenin karbonizasyonu (termal bozunması) ve bu yapının aktivasyonu olmak üzere iki süreçten oluşmaktadır. Aktivasyon sürecinde termal bozunan malzemenin oksidan ortamda işlem görmesiyle karbonun yanması sonucu oluşan uçucu maddelerin oksijenle birleşerek uzaklaşması ve bunun sonucu olarak gözenek yüzey alanının ve hacminin artmasını sağlanmakta, oksijen ve hidrojenin hammaddeden uzaklaştırılmasıyla gözenekli yapısı olan karbon iskeleti oluşmaktadır. Fiziksel aktivasyonda aktive edici maddeler olarak genellikle buhar, CO₂ ya da yanma gazı ürünleri; Amonyak, klor, SO₂, kükürt buharları ve daha farklı bazı gazlar çok azda olsa aktivasyonda kullanılabilmektedir. Endüstride buhar ve CO₂ aktive edici madde olarak fiziksel aktivasyonda en çok kullanılan maddelerdir.

Buharla yapılan aktivasyonda, su buharı ve karbonun tepkime denklemi aşağıdaki gibi yazılabilmektedir (Marsh 1987):

$$C(kat_1) + H_2O(buhar) \rightarrow H_2(gaz) + CO(gaz) -129.7 \text{ kJ/mol}$$
 (2.2)

Buharla aktivasyon, oksijen olmayan ortamda ve 1023-1223 K (750°C-950°C) arası sıcaklıklarda yapılmaktadır. Ortamda oksijenin istenmemesi bu sıcaklıklarda oksijenin karbon yüzeyine hücum etmesi ve yüzey kütle azalımı sonucu ürün miktarını azaltmasıdır. Karbondioksitle yapılan aktivasyonda ise, karbon ve karbondioksit arasındaki tepkime endotermik ve stokiometrik tepkime denklemi aşağıdaki gibidir (Smisek ve Cerny, 1970):

$$C(kat_1) + CO_2(gaz) \rightarrow 2 CO(gaz) - 163.2kJ/mol$$
 (2.3)

Bu reaksiyon iki farklı reaksiyon mekanızması şeklinde gerçekleşmektedir.

1.Reaksiyon mekanizması	
$C + CO_2 \rightarrow C(O) + CO$	(2.4)
$C(0) \rightarrow CO$	(2.5)
$CO + C \rightarrow C(CO)$	(2.6)
2.Reaksiyon mekanizması	

 $C(O) \rightarrow CO$ (2.8)

(2.7)

 $C + CO_2 \rightarrow C(O) + CO$

Reaksiyon mekanizmaları arasındaki farklılık, karbonmonoksitin (CO)'in etkisinin aydınlatılmasından kaynaklanmaktadır. CO, karbonun aktif merkezleri tarafından adsorplanmakta (kimyasal adsorpsiyon ile), ayrıca geri reaksiyonun hızını yükseltmektedir. Reaksiyon hızını, karbonun serbest aktif yerlerin çok ya da az olması önemli derecede etkiler. Aktif merkezlerin CO ile kimyasal bağ oluşturması olumsuz yönde etki yapmaktadır. 1.mekanizmada (2.4) nolu denklemde, CO'in olumsuz etkisinin geri reaksiyon hızına etki düzeyi ihmal edilebilir durumda, aktif kısımların ise denklem (2.6)'de olduğu gibi, adsorplanmış CO ile bloke olmasından kaynaklandığı söylenmektedir. 2. mekanizmaya göre, (2.4) nolu denklemdeki reaksiyonunun geri tepkime hızının (2.7) nolu denkleme göre CO'in etkisinin ihmal edilmesi reaksiyonun denge durumu ile açıklanmaktadır. (2.5) nolu reaksiyonun ise çok yavaş yürüdüğü konu ile ilgili araştırma yapan neredeyse bütün araştırmacılar tarafından kabul edilmiş bir durumdur.

Ayrıca karbonun 1123-1223 K (kelvin) sıcaklıkları arasındaki kızgın buhar ve CO₂ karışımının birlikte aktivasyonu gözenekli yapının gelişimine yardımcı olmaktadır. Bu anda endotermik olarak meydana gelen reaksiyonlar aşağıda verilmiştir.

$$C + H_2O \rightarrow CO + H_2$$
 $\Delta H = + 117 \text{ kJ}$ (2.9)

$$C + 2H_2O \rightarrow CO_2 + 2H_2 \quad \Delta H = +75 \text{ kJ}$$
 (2.10)

$$C + CO_2 \rightarrow 2CO$$
 $\Delta H = +159 \text{ kJ}$ (2.11)

Yukarıdaki reaksiyonlarda C(O), karbon yüzeyine adsorbe olan oksijeni göstermektedir. Sadece oksijen veya hava olması, aktivasyon için yeterli değildir. Su buharı ya da inert gaz karışımın içinde az miktarda olması, geniş gözenekli aktif karbon oluşumunu sağlamaktadır. Aktivasyon esnasında oksijenin karbon ile reaksiyonu, CO₂'nin karbon ile reaksiyonundan 100 kat daha hızlıdır. Ayrıca karbon yüzeyinde karboksil (COO)- ve karbonil (CO)X gruplarının olması, katalizör işlevi görmeleri ve aktif karbonun adsorpsiyon özelliklerini belirlenmesine katkı sağlamaktadır (Skim ve Ark., 2000).

Kimyasal Aktivasyon

Kimyasal aktivasyon işlemi, genel olarak, kimyasal aktifleyici bir madde ile hammaddenin belirli bir sıcaklıkta bozundurulması esasına dayanmaktadır. Kimyasal aktivasyon işleminde önemli bir faktör, impregnasyon derecesidir (susuz aktivasyon maddesinin, başlangıç kuru maddeye ağırlıkça oranı). Hammadde ile aktive edici madde, karbonizasyon sürecinden önce aşağıdaki şekillerde muamele edilebilmektedir; Hammadde ile aktive edici maddenin fiziksel olarak doğrudan karıştırılması, hammadde ile aktive edici maddenin belirli bir derişimdeki çözeltisinin karıştırılması, hammadde ile aktive edici maddenin birlikte yoğurularak hamur haline getirilmesinden sonra 383 K'de kurutulması (Mcdougall, 1991).

Kimyasal aktivasyon işlemini etkileyen faktörler

Karbonizasyon sıcaklığı, genel olarak 400°C-800°C (673-1073°K) arasında ve aktifleştirilecek hammaddenin özelliklerine göre değişmektedir. Karbonizasyon sıcaklığı, yüzey alanı ve gözenek hacmini etkilemektedir. Ham maddenin tane boyutu, elde edilecek aktif karbonun gözenek hacmini etkilemektedir. Küçük tanecik boyutu ile çalışıldığında yüzey alanı ve gözenek hacmi daha büyük olan aktif karbonlar elde edilmektedir. Aktive edici maddenin oranı, ağırlık olarak aktive edecek madde, ham maddenin 4 katına kadar kullanılabilmektedir. Aktivasyon yapıldığı esnada aktive edici madde oranı hammaddeye bağlı olarak artmaktadır. Karbonizasyon süresi, genelde 15-120 dakika arasındadır. Karbonizasyon süresi uzaması ya da kısalması ısıtma hızını artış süresine göre değişmektedir (Gülbayır, 2008).

Ham madde ve aktive edici maddenin karıştırılma yöntemi

Genelde iki farklı karıştırma yöntemi kullanılmaktadır. İlki impregnasyon (maddenin emerek doygun hale gelmesi) ve ikincisi fizikseldir. Yapılan çalışmalarda, impregnasyonun, fiziksel yönteme göre daha etkili olduğu görülmüştür (Karacan ve Karacan, 2014). Çünkü imregnasyonda aktifleyici madde karbon tanecikleri içerisinde iyi bir dağılım göstermektedir. Büyük por hacimli aktif karbon elde etmenin diğer bir yolu da kimyasal aktivasyon işlemidir. Kimyasal aktivasyon yöntemleri farklılık göstermekle birlikte, uygun tanecik boyutuna sahip hammadde ile kimyasal maddenin, 773-1273 K arasındaki sıcaklıklardan birinde reaksiyona girmesiyle gerçekleşen ya da belli bir sıcaklıkta karbonizasyonu gerçekleşmiş olan başlangıç maddesinin kimyasal maddeyle reaksiyonu sonucunda gerçekleştirilebilir (Ustabaş, 2016).

Kimyasal aktivasyonda, ZnCl₂, NaCl, K₂CO₃, NaOH, KOH, H₃PO₄, NH₄Cl, H₂SO₄ gibi birçok aktifleştirici maddeler çeşitli şartlarda uygulanabilmektedir. Geçmiş yıllardan beri kimyasal aktivasyonda kullanılan en yaygın kimyasal aktivasyon, çinko klorür ile yapılan aktifleştirmedir. Çinko klorür, hammaddeye sulu çözelti olarak eklenmekte ve düşük sıcaklıkta karıştırılmaktadır. Karışım kurutulup, döner fırında 873K-973K'e (600 0 C – 700 0 C) kadar ısıtılmakta ve ısıtma sonundaki ürün, su ve asit ile yıkanıp çinko tuzları giderilmektedir. Kimi zamanda, daha küçük gözenekler oluşturmak için kimyasal aktivasyondan sonra buhar aktivasyonu uygulanabilmektedir (Açışlı ve Doum, 2019).

Aktifleştirici maddelerin kimyasal aktivasyona etkisi

Aktifleştirici madde, kimyasal aktivasyonda önemli bir yere sahiptir. Nitekim yapılan bir çalışmada aktifleştirici maddenin etkilerini ortaya koymak için hammadde olarak tropikal bölgelerde bulunan Casurina equisetifolia (demir ağacı)'nın yapraklarında üç ayrı kimyasal aktifleştirici kullanmışlardır. Aktifleştirme sırasında, hammadde ve aktive edici madde oranı 1:1 oranında H₂SO₄ ve %10'luk Na₃PO₄ ve %10'luk ZnCI₂ çözeltileri kullanılmıştır. 24 saatlik impregnasyon işlemini takiben H₂SO₄ ve Na₃PO₄'lü karışımlar 425±25 °C'de 1 saat hava ortamında ısıtılmış ve daha sonra soğutulmuştur. Ayrıca tuzların ve asitin aktif karbonda kalmaması için su ile yıkandıktan sonra 110±2 °C'de 3 saat kurutulmuş ve öğütülmüştür. Çinko klorürlü aktif karbondan çinko tuzlarının ortamdan uzaklaştırılabilmesi için %10'luk HCI çözeltisiyle yıkanmıştır. 110±2 °C'de 3 saat kurutulduktan sonra öğütülmüştür (El Nemr, 2007).

Kimyasal aktifleştiriciler por boyutlarında değişim meydana getirmektedir, lignoselulozik malzemelerle (şeftali çekirdeği, zeytin çekirdeği gibi) yapılan bir çalışmada ZnCI₂, KOH ve H₃PO₄ kimyasalları ile granüler aktif karbon elde edilerek, mikro gözenekler oluşmasına rağmen aktivasyon sıcaklığının artışıyla por boyut ve sayılarında farklar oluştuğu belirlenmiştir. KOH aktivasyonunda mikro gözenek oluşumuna, ZnCl₂ az sayıda mezopor oluşumuna, H₃PO₄ ise heterojen porların oluşmasına yardımcı olduğu gözlenmiştir. Bu şekilde fark edilmiştirki herbir farklı aktive edici maddenin por genişliği ve sayısına etki ettiği belirlenmiştir (Molina-Sabio ve Rodrıguez-Reinoso, 2004).

2.4.5. Aktif karbon türleri

Aktif karbonlar 3 farklı yapıda üretilir. Bunlar; toz, granüler ve pellettir. Toz aktif karbonlar, tanecikleri 0,18 mm'den daha az olan, öğütülmüş, genelde gaz ve sıvı fazlı maddelerde kullanılan, renk, tat ve kokunun adsorplanmasını sağlayan ve mekanik karıştırıcılarla homojen bir karışım oluşturulan karbon türü olarak tanımlanabilir. Granüler aktif karbonlar ise tanecikleri 0.2-5 mm arasında, şekli düzensiz olan aktif karbonlardır. Pelletlerin tanecikleri 0.8-5 mm arasında olan, basınçla silindirik hale getirilen genelde gaz fazı uygulamalarında ve gazların saflaştırılmasında işlev gören aktif karbon türüdür (Küçükgül, 2004).

2.4.6. Aktif karbonun uygulama alanları

Aktif karbonun en önemli uygulama alanı sudan tat, koku, boyar madde ve organik kirliliklerin uzaklaştırılmasında, kimya ürünlerinin rafinesinde, gaz faz uygulaması gibi birçok alanda kullanılmaktadır.

Sıvı faz uygulamaları

İlaç ve gıda sanayileri olmak üzere, aktif karbonun sıvı fazdaki uygulamaları altının geri kazanımında (sodyum siyanitte çözünmüş altının geri kazanımı) için, içilebilir su işlemlerinde organik bileşiklerin uzaklaştırılması, kötü koku ve tadın giderilmesinde, petrokimyada yağ ve hidrokarbonların uzaklaştırılmasında, endüstriyel atık sularında, biyolojik oksijen içeriğinin kimyasal oksijen içeriğinin ve toplam organik halojenlerin giderilmesinde, yarı iletken yüksek saflıkta su üretiminde ve buna benzer bir çok alanlarda kullanılmaktadır (Akyıldız, 2007). Aktif karbonlar, hava kirliliği kontrolünde, baca gazları, sigara filtrelerinde, gazların saflaştırılmasında, SO_x, NO_x gazlarının tutulmasında da kullanılmaktadır. Havanın filitrelenmesi için, 10 ppm'in aşağısındaki kirlilik derişimini azaltmak için levha karbon fiberler kullanılmaktadır. Bu filtrelerle uzun süre kullanılabilmesine rağmen yenilenmeleri pahalıdır. Havanın temizlenmesinde işlev gören aktif karbonlarda 10-150 ppm arasındaki derişimlerde, mezo ve süpermezo gözenek dağılımı olan aktif karbonların kullanımı daha uygundur (Kazemipour ve ark., 2008).

2.4.7. Aktif karbonun özeliklerinin belirlenmesi için kullanılan yöntemler

Gözenek yapısının belirlenmesi amacıyla uygulanan yöntemler

Karbon, kil gibi gözenekli yapıların mikro, mezo ve makro gibi farklı hacim ve yapıda gözeneklerin olması nedeniyle, gözenek yapılarının tespit edilmesinde çeşitli yöntemler uygulanmaktadır. Bu yöntemlerin hesaplamaları ayrıntılı olarak literatürde verilmektedir (Webb ve Orr 1997).

T-plot yöntemi

Bu yöntem, katıların mikro gözenek hacminin tespiti için uygulanabilecek bir yöntemdir. Adsorpsiyon olayı, öncelikle mikro gözeneklerin dolduğu, sonrasında ise daha yüksek relatif basınçlarda mezo gözeneklerin dolmaya başladığı bir olaydır.

T-plot eğrisi, her bir relatif basınç değerine karşılık gelen t istatistiksel kalınlık değerine karşılık, relatif basınçtaki adsorplanan gaz miktarının (cm³/g) grafik gösterimidir. T-plot yönteminde minimum ve maksimum t kalınlık değerlerinin seçilerek gerekli analizin yapılması, elde edilen sonucun güvenilirliği bakımından oldukça önemlidir (Galarneau ve ark., 2014).

Dubinin Radushkevich (D-R) denklemi

Dubinin Radushkevich denklemi, mikro gözeneklerin genellikle düşük basınç izoterm verilerinin uygulandığı, gözenek boyut dağılımı ve mikro gözenek hacminin hesaplanmasında kullanılmaktadır. Genel D-R eşitliği matematiksel olarak şu şekilde ifade edilebilmektedir.

$$\log W = \log W_0 - \frac{R^2 T^2 k}{2.303\beta^2} \log^2 \left(\frac{P_0}{P}\right)$$
(2.12)

Burada W₀, toplam mikro gözenek hacmi; W, relatif basınç P/P₀'da gözenekte adsorplanan hacim; k, adsorbanın gözenek boyut dağılımı karakterizasyon parametresi ve P, adsorban etki katsayısıdır (Marsh, 1987).

Barrett, Joyner ve Halenda (BJH) yöntemi

Bu yöntem çoğunlukla mezo gözeneklerin boyut dağılımı tespiti amacıyla desorpsiyon izoterm verilerinden elde edilir. Yöntemin uygulanması çok karmaşık olduğundan bilgisayar çözümlemesiyle gözenek boyut dağılımı bulunabilmektedir. Yöntemin uygulanması ayrıntılı olarak farklı kaynaklarda bulunmaktadır (Webb ve Orr, 1997).

2.5. Adsorpsiyon

Gaz, sıvı veya katı taneciklerinin (atom, iyon veya moleküllerin) temasta bulunduğu katı veya sıvı yüzeyde konsantrasyon artışına adsorpsiyon denir. Başka bir deyişle adsorpsiyon, maddenin sınır yüzeyinde moleküller arasındaki kuvvetlerin denkleşmemiş olmasından ileri gelmektedir. Şekil 2.3, bir sıvı veya gaz'ın katı tanecik tarafından adsorpsiyon mekanizmasını göstermektedir (Perry ve Green, 1984).

Şekil 2.3. Bir adsorban taneciğinde adsorpsiyon çeşitleri.

Yüzeyde konsantrasyonu artan maddeye "adsorplanan", adsorplanan maddeyi yüzeyinde tutan maddeye "adsorban" denir. Adsorplanan ve adsorbandan oluşan heterojen karışıma ise "adsorpsiyon sistemi" adı verilir. Adsorpsiyonda, adsorplanan madde katının sınır yüzeyinde birikir. Çözünen madde veya gaz molekülleri katının içine doğru ilerlediğinde olay absorpsiyon adını alır. Adsorpsiyon ve absorpsiyon olaylarının aynı süreçte meydana gelmesine "sorpsiyon" denir (Volyutsky, 1978). Adsorpsiyon olayında meydana gelen derişim değişimi ters yönde gerçeklesirse yani katı fazdan sıvı veya gaz faza doğru gerçekleşirse "desorpsiyon" adını alır (Treybal, 1981). Şekil 2.3'de taşınım mekanizmasındaki bağımsız kademelerin fiziksel yapısını ve yerlerini göstermektedir. Şekildeki numaralar kütle transfer mekanizmalarını göstermektedir. Her bir kademe, farklı bir sürücü güç içermektedir ve bu yüzden her bir kademe farklı sekilde matematiksel olarak incelenebilir. Bu bağımsız kademeler şu şekilde ifade edilebilir; bu kademeler, adsorplanmış durumda difüzyon (Bu kısım tanecik faz difüzyonu olarak da ifade edilmektedir) (1), faz sınır tabakalarında tepkime (2), tanecikler içinde sıvı fazda gözenek difüzyonu (3), Sorbent taneciklerin dış yüzeyleri ve onu çevreleyen akışkan faz arasındaki kütle transferi anlamına gelir (4) (Arriagada ve ark., 1997).

2.5.1. Sıvı ve gazların adsorpsiyonu

Aktif karbon üzerinde bir maddenin adsorpsiyonu, 3 temel süreçte gerçekleşmektedir:

- Maddenin aktif karbonun dış yüzeyine adsorplanması,
- Maddenin aktif karbonun gözenekleri içerisine hareketi
- Maddenin aktif karbonun iç duvarında adsorplanması.

2.5.2. Katı-sıvı adsorpsiyonu

Bir katı-sıvı adsorpsiyonu; sorpsiyon, makro taşınım ve mikro taşınım olmak üzere üç kademede gerçekleşmektedir (Berkem ark., 1994). Bunlar Makro taşınım, adsorplanacak maddenin sıvı fazdan, sıvı-katı ara yüzeyine doğru olan adveksiyon (maddenin sıcaklık nem gibi özelliklerinin sıvı ya da hava ile taşınımı) ve difüzyon ile gerçekleşen hareketi kapsamaktadır. Mikro taşınım, adsorplanacak maddenin mikro ve mikro altı gözeneklerindeki adsorpsiyon noktalarına doğru olan difüzyonu içermektedir. Adsorpsiyon, adsorban taneciğinin yüzeyinde, makro ve mezo gözeneklerde gerçekleşmektedir. Sorpsiyon, adsorplanacak maddenin adsorban üzerindeki mekanizmasını tanımlamak için kullanılan bir terimdir. Sorpsiyon terimi, kimyasal ve fiziksel adsorpsiyonu birbirinden ayırt etmenin zorluğundan dolayı kullanılmaktadır. Sorpsiyon hızı desorpsiyon hızına eşit olduğunda, denge gerçekleşmekte ve adsorbanın kapasitesinin tamamlandığını göstermektedir. Adsorpsiyon olayında, adsorplanan maddenin derişimi, işlemin gerçekleştirildiği sıcaklık ve katı-sıvı adsorpsiyonu durumunda ortamın pH değeri, denge adsorpsiyon kapasitesini etkileyen faktörlerdir. Katı-sıvı adsorpsiyonu olayında ortamın pH etkisi, kullanılan adsorbe edici maddenin yapısına ve adsorplanan maddenin özelliğine bağlı olarak farklılıklar gösterebilmektedir.

2.5.3. Katı-gaz adsorpsiyonu

Gaz adsorpsiyonu, gaz/katı ara yüzeyinde gerçekleşmektedir. Gaz içerisinde bulunan bir veya daha çok bileşenin katının yüzeyinde tutulması işlemine, gaz adsorpsiyonu adı verilmektedir. Adsorplanan gazın miktarı basınç, sıcaklık ve katı yüzeyinin yapısına bağlıdır. Eğer, sıcaklık ve basınç sabit tutulursa, adsorplanan gazın miktarı katı yüzeyinin yapısına yani yüzey alanı, gözeneklilik ve katı yüzeyinin kimyasal yapısına bağlı olacaktır. Gözenekli yüzeylerin adsorplayıcı özellikleri daha fazladır. Gaz adsorpsiyonu olayı, adsorplanan maddenin temasta olduğu adsorplayıcı maddenin gözeneklerinde yoğunlaşması esasına dayanmaktadır. Dolayısıyla adsorplayıcı maddenin gözenek hacminin büyüklüğü ile adsorplama kapasitesi arasında doğrudan bir ilişki bulunmaktadır. Adsorpsiyon, özellikle mikro gözeneklerde gerçekleşmektedir.

2.5.4. Adsorpsiyon çeşitleri

Adsorpsiyon olayı üç şekilde gerçekleşebilmektedir: Fiziksel adsorpsiyon (veya van der Waals adsorpsiyonu), kimyasal adsorpsiyon ve değişim adsorpsiyonu. Fiziksel ve kimyasal adsorpsiyonun başlıca ayırt edici özellikleri Çizelge 2.1'de görülmektedir (Duran-Valle ve ark., 2005).

Özellikler	Fiziksel	Kimyasal
Adsorpsiyon Is1s1, kJ/mol	20-40	>80
Adsorpsiyon hızı	273 K'de hızlı	273 K'de yavaş
Desorpsiyon	Kolay	Zor
Bağ kuvvetleri	Moleküller içinde	Moleküller arasında
Spesifik olma	Spesifik değil	Çok spesifik
Entalpi etkisi	Ekzotermik reaksiyon ısıları	Ekzotermik buharlaşma ısısı
	mertebesinde	mertebesinde
Kaplanma	Çoklu tabaka	Tek tabaka
Adsorplanan	Kritik sıcaklığın altındaki tüm gazlar	Kimyasal reaktifler

Çizelge 2.1. Fiziksel ve kimyasal adsorpsiyon arasındaki ayırt edici özellikleri

Fiziksel adsorpsiyon

Fiziksel adsorpsiyonda, adsorplanmış molekülleri adsorban yüzeyine bağlı tutan kuvvetler, gaz molekülleri arasındaki van der waals kuvvetleridir. Bu tip adsorpsiyonu pek çok madde, özellikle düşük sıcaklıklarda göstermektedir. Van der waals adsorpsiyonu veya fiziksel adsorpsiyon tersinir bir olay olup, basıncın azalmasıyla desorpsiyon meydana gelmektedir. Yani gaz, katı yüzeyinden ayrılıp tekrar gaz fazına geçmektedir.

Bu durum, adsorpsiyon eğrisinin tersi yönünde gerçekleşmektedir. Fiziksel adsorpsiyon hızları ölçülerek, yüzey alanı ve yüzeyin gözeneklilik derecesinin hesaplanması mümkün olabilmektedir. Fiziksel adsorpsiyon, karışımdaki bileşenlerin bir fazdan diğer faza aktarılmasında, adsorbanların yüzey alanlarını, gözenek büyüklüğünü, gözeneklerin dağılımını belirleme ve heterojen katalizli reaksiyonlarda önem kazanır. Fiziksel adsorpsiyon 15151 düşük olup, çoğu gazlarda sıvılaşma 15151 seviyesindedir. Bu tür adsorpsiyonda, adsorplanmış tabaka birden fazla molekül kalınlığındadır. Fiziksel adsorpsiyon genellikle çok hızlı olduğundan gözlenen hız, adsorpsiyon süreci yerine moleküllerin yüzeye aktarım hızı ile kontrol edilir. Fiziksel adsorpsiyon, kritik sıcaklığın üstündeki sıcaklıklarda önemli miktarda gözlenmez (Özdemir, 1981). Adsorpsiyon olayında adsorbent, belli bir sıcaklıkta adsorbatın artan konsantrasyonlarını içeren çözeltiler ile temasa getirilir ve denge olayından sonra çözelti fazında kalan adsorbatın miktarı ölçülür. Adsorpsiyondan önceki ve sonraki çözelti konsantrasyonu farkından adsorbent yüzeyinde adsorplanmış adsorbatın miktarı bulunur. Adsorpsiyon izotermi desorpsiyon izotermi ile aynı ise dengeye erişildiği farz edilir. Örneğin renkli bir adsorbatın adsorpsiyonu, görünür absorpsiyon spektrofotometresi yardımıyla adsorbatın çözeltiye ilavesinden önceki ve sonraki derişimleri ölçülerek tayin edilebilir. Adsorpsiyon miktarının belirlenebilmesi için ilk önce belli bir dalga boyunda adsorbatın farklı konsantrasyonları için kalibrasyon eğrisi hazırlanır. Renksiz organik maddeler için UV veya IR'de uygun absorpsiyon pikinin ölçülmesi ile adsorpsiyon miktarları tayin edilebilir. Ayrıca asit ya da bazın bilinen miktarının her ilavesinden sonra H⁺ ve OH⁻ iyonlarının katı yüzeyi tarafından tutulan miktarını belirlemek için pH ölçülür. Aynı zamanda pH, çözeltide kalan H⁺ ve OH⁻ iyonlarının denge konsantrasyonlarını da verir (Başer ve İnanıcı, 1990).

Fiziksel ve kimyasal olmak üzere iki tip adsorpsiyon vardır ve fiziksel adsorpsiyon kimyasal adsorpsiyondan çoğu zaman aşağıdaki kriterlerin birine veya daha fazlasına bakılarak ayırt edilebilir (Soto and Machuca, 1989).

 Fiziksel adsorpsiyon elektron paylaşımını veya transferini içermez ve böylece etkileşen moleküllerin etkinliği korunur. Etkileşmeler tamamen tersinirdir. Kimyasal adsorpsiyon kimyasal bağ oluşumunu içerir ve tersinmezdir. 2. Fiziksel adsorpsiyonda adsorbat-adsorbent yüzeyindeki aktif noktalara karşı özel bir ilgiye sahip değildir. Aksine kimyasal adsorpsiyonda adsorbat, adsorpsiyon için gerekli aktif noktalara karşı özel bir ilgiye sahiptir.

3. Fiziksel adsorpsiyon 15151 kimyasal adsorpsiyon 15151ndan daha düşüktür. Bununla birlikte çoğu zaman adsorpsiyon 15151 tam bir kriter değildir. Fiziksel adsorpsiyon için üst sınır çok küçük (dar) gözenekli adsorbentler üzerindeki adsorpsiyon için 88 kJ mol⁻¹'den daha düşüktür. Kimyasal adsorpsiyon için adsorpsiyon 15151 88 kJ mol⁻¹'den 400 kJ mol⁻¹'aralığında değişir. Böylece ancak adsorpsiyon 15151nın çok yüksek ve çok düşük değerleri adsorpsiyon türü için bir kriter olarak kullanılabilir.

4. Fiziksel adsorpsiyon sıcaklık düştüğünde artarken kimyasal adsorpsiyon normal olarak düşük sıcaklıklarda azalır. Çünkü kimyasal bağları parçalamak için gerekli olan aktivasyon enerjisi düşük sıcaklıklarda mevcut değildir.

5. Fiziksel adsorpsiyon tek tabakalı ya da çok tabakalı olabilirken kimyasal adsorpsiyon tek tabakalıdır

Kimyasal Adsorpsiyon

Kimyasal adsorpsiyonda, adsorbe olan moleküller yüzeyde valans kuvvetleri tarafından tutulmaktadır ve bu kuvvetler, fiziksel adsorpsiyon kuvvetlerinden daha büyüktür. Kimyasal adsorpsiyon, adsorplanan moleküllerle adsorbanın yüzey molekülleri ya da atomları arasındaki gerçek bir reaksiyondan ileri gelmektedir. Aktiflenmiş adsorpsiyon veya kimyasal adsorpsiyon olayı, fiziksel adsorpsiyon kadar sık karşılaşılan bir durum değildir ve adsorplanma sonunda yayılan ısılar da fiziksel adsorplanma ısılarına göre çok daha büyüktür. Kimyasal adsorpsiyon sıcaklıkla artmaktadır. Adsorplanan tabaka, monomoleküler bir tabaka şeklinde meydana gelmektedir (Orbak, 2002).

Birçok adsorpsiyon hallerinde bu iki tip adsorpsiyon birlikte gerçekleşmektedir. Bazı sistemler düşük sıcaklıklarda fiziksel, yüksek sıcaklıklarda ise kimyasal adsorpsiyon göstermektedirler. Kimyasal adsorpsiyon, genellikle gaz ile katı arasında bir reaksiyon eğiliminin bulunduğu hallerde kendini göstermektedir (Orbak, 2002).
Değişim adsorpsiyonu

Değişim adsorpsiyonu, adsorplanan madde ile adsorban yüzeyi arasındaki elektriksel çekim ile meydana gelmektedir. İyon değişimi bu sınıfa dahil edilebilir. Burada, zıt elektrik yüklerine sahip olan adsorplanan madde ile adsorban yüzeyinin birbirlerini çekmesi önemlidir. Elektrik yükü fazla olan iyonlar ile küçük çaplı iyonlar daha iyi adsorplanırlar (Hamutoğlu ve Ark., 2012).

2.5.5. Adsorpsiyon izotermleri

Sabit sıcaklıkta adsorban tarafından adsorplanan madde miktarı ile denge basıncı veya derişimi arasındaki bağıntıya adsorpsiyon izotermi adı verilmektedir. Adsorpsiyon izotermleri, adsorbanın bir maddeyi ne kadar adsorplayabileceği konusunda bilgi vermektedir. Adsorplanan maddenin derişimi ya da miktarı, adsorplanacak maddenin kimyasal ve fiziksel özelliklerine, konsantrasyonuna ve sıcaklığına bağlıdır. Adsorpsiyon izotermlerinin belirlenmesi, gözenek boyutu, yüzey alanı ve dağılımı gibi hesaplamaların yapılması birçok kaynakta ayrıntılı bir şekilde verilmiştir (Akyıldız, 2007; Webb ve Orr, 1997). Gazların katılar tarafından adsorpsiyonuna ait altı genel izoterm mevcuttur. Bu izoterm tipleri şekil 2.4' de gösterilmiştir. Bu izoterm tiplerinden Tip 1 izoterm; Monomoleküler, yani tek tabakalı olan kimyasal adsorpsiyon izotermidir. k: Mikrogözenekli katılardaki adsorpsiyon izotermi, m: mezo gözenekli katılardaki adsorpsiyon izotermi, n: Makrogözenekli katılardaki adsorpsiyon izotermidir. Mikro gözenekleri adsorplama gücü makro gözeneklerden daha büyüktür. Tip 2 izoterm; Birinci tabakanın adsorpsiyon ısısı yoğunlaşma ısısından daha büyük olan ve kılcal yoğunlaşmanın az olduğu adsorpsiyon izotermleri bu eğriye benzer. Sıvıların yüzeydeki mikroskopi çatlaklarda ve gözeneklerde yoğunlaşmasına kılcal adsorpsiyon denir. ab: Tek tabakalı adsorpsiyon bc: Çok tabakalı adsorpsiyon ve kılcal yoğunlaşma ef: Doygunluk noktası, madde sıvı yada katı olarak yığın halde ayrılır. İzotermin b noktasından sonraki doğrusal kısmının uzantısından tek tabaka kapasitesi (n_m) grafikten yaklaşık olarak okunabilir. Tip3; Birinci tabakanın adsorpsiyon ısısı yoğunlaşma ısısından daha küçük olan ve kılcal yoğunlaşmanın az olduğu adsorpsiyon izotemleri bu eğriye benzer. Adsorplama gücü çok düşük olan katılardaki adsorpsiyon izotermleri bu

tipe uymaktadır. Eğrinin gidişinden tek tabaka kapasitesini bulmak zordur. Tip 4: Birinci tabakanın adsorpsiyon ısısı yoğunlaşma ısısından daha büyük olan ve kılcal yoğunlaşmanın çok olduğu adsorpsiyon izotermleri bu eğriye benzemektedir. Adsorpsiyon ve desorpsiyon izotermlerinin farklı yollar izlemesine adsorpsiyon histerezisi denir. Genellikle mikro ve mezo gözenek ab: Tek tabakalı adsorpsiyon içeren katılardaki adsorpsiyon izotermleri bc; çok tabakalı adsorpsiyon bu tipe uymaktadır. cd; kılcal yoğunlaşma ef: madde yığın olarak ayrılmaktadır. Tek tabaka kapasitesi (n_m) yaklaşık olarak bulunmaktadır. Tip 5; Birinci tabakanın adsorpsiyon ısısı yoğunlaşma ısısından daha küçük olan ve kılcal yoğunlaşmanın çok olduğu adsorpsiyon izotermi bu eğriye benzer. Adsorplama gücü düşük olan mezogözenekli katılarda adsorpsiyon izotermleri bu tipe benzemektedir. Bu izoterm tipinde ac: Tek veya çok tabakalı adsorpsiyon cd: Kılcal yoğunlaşma olmaktadır. Adsorplama gücü düşük olan mezogözenekli katılardaki adsorpsiyon izotermleri bu tipe benzemektedir. Tip 6; Basamaklı olan bu izoterm tipine çok az rastlanır. Mikrogözenekler yanında farklı boyutlarda mezogözenek grupları içeren katılardaki adsorpsiyon izotermleri bu tipe benzemektedir. Bunlar Şekil 2.4'de görülmektedir (Berkem ve Ark 1994).

Adsorpsiyon izotermlerinin, Şekil2.4'de anlatılan çeşidinin yanı sıra, çözelti adsorpsiyonu için de kullanılan sınıflandırılması yapılmıştır (Tien,1994). Buna göre 4 çeşit izoterm tipi vardır: S konveks, L konkav, H düşük konsantrasyonlar için önerilen tip

ve C doğrusal. Sıvı faz adsorpsiyonunda adsorplanan moleküllerin ideal dağılım göstermesi zorunlu olmadığından bu sınıflandırma önem arz etmektedir.

Freundlich izotermi

Bu tip izotermde, belli miktarda adsorban tarafından adsorplanan madde miktarı önce basınçla (veya derişimle) hızla artmakta ve daha sonra katı yüzeyinin gaz molekülleri ile doymasıyla daha yavaş bir artış göstermektedir. Freundlich izotermi, suda ve atık suyun işlenmesinde kullanılan adsorbanların adsorpsiyon karakteristiklerini tanımlamak için sıkça kullanılmaktadır. Freundlich izotermi aşağıdaki şekilde matematiksel olarak ifade edilebilmektedir:

$$q_e = K_f \cdot C_e^{1/n}$$
 (2.13)

Burada, q_e, m kütlesinin adsorpladığı madde miktarı; C_e, adsorplanan maddenin derişimi; K_f, ve n adsorban ve adsorplanan madde ile sıcaklığa bağlı sabitlerdir (El-Khaiary, 2008).

Langmuir izotermi

Birçok hallerde ve özellikle bir kimyasal adsorpsiyonda, bir doymuşluğa varılmaktadır. x/m oranı, bütün katı yüzeyini kaplayan adsorplanmış gazın bir monomoleküler tabaka oluşturmasına karşılık gelen bir sınır değeri gösterir. Freundlich izotermi bu durumu açıklayamamaktadır. Yüzeydeki kimyasal adsorplanmanın tek moleküllü tabaka halinde olduğun ve yüzeydeki dinamik denge halini göz önüne alarak, Langmuir izotermi türetilmiştir. Gaz molekülleri katıyla elastik olarak çarpışmaz, bu yüzden tekrar gaz faza dönmeden önce katı yüzeyi ile temas eder ve doğal adsorpsiyon gerçekleşir. Langmuir izotermi aşağıdaki şekilde ifade edilmektedir:

 $q_{e} = q_{m}.b.C_{e}/(1+b.C_{e})$

(2.14)

Burada qe, m kütlesinin adsorpladığı madde miktarı, q_m, m kütlesinin adsorpladığı maksimum madde miktarı; C_e, adsorplanan maddenin denge derişimi; b, adsorban ve adsorplanan madde ile sıcaklığa bağlı sabittir (Langmuir, 1916).

Brunauer, Emmett ve Teller (B.E.T.) izotermi

Brunauer, Emmett ve Teller izoterminde; Katının yüzeyi bir tek moleküler bir tabaka tarafından kaplanmadan önce bir takım çoklu moleküler tabakalar oluşturmakta, Adsorpsiyonda dengesi noktasında tabakalardan her biri için bir denge hali meydana gelmekte, birinci tabaka dışında, bağ enerjisinin kuvvetleri, gazın sıvılaşmasındaki kuvvetlerin aynısıdır. Bu varsayımlardan hareket ederek şekil 2.4 de 2 ve 4 izotermleri için şu bağıntıyı önermişlerdir:

$$V = V_{m} [c.p/(P_0-P).(1+(c-1).P/P_0)]$$
(2.15)

Bu eşitlikte V; P basıncında ve T sıcaklığında adsorplanmış olan gazın standart koşullara göre hesaplanmış hacmini, Po; T sıcaklığında adsorplanmış gazın doymuş buhar basıncı, Vm; yüzeyin tek bir moleküler tabaka tarafından kaplanması durumundaki adsorplanmış gaz hacminin standart koşullardaki değeri, c; verilen herhangi bir sıcaklıktaki sabittir (Brunauner ve Ark., 1972).

Temkin izotermi

Temkin izotermi, adsorpsiyon enerjisindeki düşüşün üstel olmayıp, doğrusal olduğu varsayımı yapılarak türetilmiştir. Temkin izotermi şu şekilde ifade edilmektedir

$$q_e = [R.T/b_t].[ln(A_T.C_e)]$$
 (2.16)

 $qe = BlnA_T + BlnC_e \tag{2.17}$

Burada, A_T, Temkin izoterm sabiti (l/mmol); b_T, Temkin izoterm sabiti; R, gaz sabiti (J/mol K) ve T, mutlak sıcaklık (K), B=RT/b_T dir. (Redlich ve Peterson, 1959). Dubinin-Radushkevich (D-R) izotermi

Dubinin-Radushkevich (D-R) izoterm modeli hem homojen hem heterojen yüzeylerdeki adsorpsiyon için kullanılan ve daha çok gözeneklerin adsorpsiyonunu açıklayan bir modeldir (Dubinin ve Radushkevich, 1947). D-R izoterm modelinin doğrusal olmayan denklemleri

$$q_e = X'm.e^{-K'^2}(\text{Lineer olmayan form})$$
(2.18)

$$\varepsilon = RT ln(1 + 1/Ce) \qquad lnq_e = lnXm - K'\varepsilon^2 \text{ (Lineer)} \tag{2.19}$$

$$E = (2 \text{ K}')^{-1/2} \tag{2.20}$$

Burada, X'm, Dubinin-Radushkevich (D-R) sabitini (mg g⁻¹); K', adsorpsiyonun ortalama serbest enerjisi ile ilgili bir sabiti (mol² kJ⁻²); ε , Polany potansiyelini, R, evrensel gaz sabitini (J mol⁻¹ K⁻¹) ve T, mutlak sıcaklığı (K) göstermektedir (Eren ve ark., 2020). Dubinin Radushkevich (D-R) izotermindeki E (kJmol⁻¹), adsorpsiyonun fiziksel veya kimyasal karakteristiği hakkında bilgi veren adsorpsiyon enerjisini göstermektedir. E değeri, E < 8 kjmol⁻¹ ise adsorpsiyon fiziksel, 20 < E< 40 kjmol⁻¹ ise adsorpsiyon kimyasal olarak düşünülebilir. (Altun ve Parlayıcı, 2018)

2.5.6. Adsorpsiyonu etkileyen faktörler

Adsorban özellikleri

Adsorpsiyonu etkileyen faktörlerden biri adsorbanın yapısıdır. Adsorbanın yüzey alanı ve gözenek dağılımı adsorpsiyon ile doğru orantılı olup yüzey alanının ve gözeneklerin artmasıyla adsorpsiyon da artmaktadır. Fakat gözenek çapı adsorplanan maddenin molekül çapıyla uymalıdır. Gözenek difüzyonu eğer adsorpsiyon hızına etki ederse, gözenekliliğinin çok olası direnci arttıracağından adsorpsiyonu sınırlayabilir (Demirbaş ve ark., 2004).

Adsorplanan maddenin özellikleri

Adsorplanan maddenin çözünürlüğü ile adsorpsiyon arasındaki genelde ters orantılı bir durum vardır. Hidrofilik bir madde, hidrofobik maddeye göre daha az adsorbe olmaktadır. Ayrıca hem hidrofilik hem de hidrofobik özelliğe sahip bir molekülün ise hidrofobik ucu tutunmayı sağlar. Adsorplanan bir maddenin molekülünün çapı da adsorpsiyonu etki eder. Adsorplanan maddenin molekül çapı, adsorbanın gözenek çapına göre büyük olursa, gözenekler tıkanabilir ve bu gözeneklerde bulunun aktif merkezler işlev göremeyebilir. Böylece adsorpsiyon miktarı düşer. Bir diğer durum ise adsorplanan maddenin polaritesidir. Adsorpsiyon esnasında polar bir madde polar bir fazı tercih edecektir. Polar adsorbanın polar olmayan çözeltiden polar bir adsorbatı daha kuvvetli bir şekilde adsorplar (Işık, 2012).

Adsorpsiyonda pH

Adsorpsiyon ortamının pH'ı adsorplanan maddenin iyonunun tipini belirler. Adsorbandaki aktif merkezlerde hidrojen ya da hidroksil iyonlarının adsorbe olması adsorpsiyonu etkiler. Bir maddenin adsorpsiyonu, belirli bir pH veya pH aralığında en yüksek değerine ulaşır. Adorplanan maddelerin farklı bir adsorban üzerinde tutunması pH değeri ile değişmektedir (Sayıner 2013).

Adsorpsiyonda sıcaklık

Adsorpsiyonun 1s1 alan (endotermik) veya 1s1 veren (ekzotermik) olması, adsorpsiyonda ekzotermik davranım gösteren adsorpsiyon reaksiyonları sıcaklık ile ters orantılıdır. Adsorpsiyonun kimyasal ya da fiziksel adsorpsiyon olması da sıcaklık faktöründen etkilenmesine neden olur. Fiziksel adsorpsiyonda sıcaklık arttıkça adsorpsiyon kapasitesi düşerken kimyasal adsorpsiyonda artış meydana gelebilmektedir. Ortamdaki iyonların varlığı

Çözücüde birlikte olan maddeler adsorbe olma yarışıyla birlikte birbirleri ile etkileşimde de bulunmaktadırlar. Bu ve buna benzer nedenlerle çok bileşenli çözeltilerde bulunan madde, tek bileşen olarak bulunduğu çözeltideki durumuna göre daha fazla miktarda veya daha az miktarda adsorbe olabilmektedir.

2.5.7. Adsorpsiyon kinetiği

Adsorpsiyon kinetiği ile, etkin adsorplanan madde-adsorban temas süresi, adsorpsiyon işleminin hızı, adsorpsiyonun hangi basamağı tarafından belirlendiği anlaşılabilir. Adsorpsiyon 4 temel basamaktan oluşur. İlk kademede gaz veya sıvı fazdaki adsorplanan madde, adsorbanı kaplayan bir film tabakası sınırına doğru difüze olur. Bu kademe yığın akışkan difüzyonu olarak adlandırılır. Adsorpsiyonun gerçekleştiği ortam genellikle karıştırıldığından bu kademe çoğunlukla hızlıdır ve adsorpsiyonda belirleyici değildir. Ancak eğer adsorbanın bulunduğu faz hareketsiz ise, bu basamak en yavaş ve adsorpsiyon hızını belirleyen basamak olabilmektedir. Film tabakasına ulaşan adsorplanacak madde, buradaki durgun kısımdan geçerek adsorbanın gözeneklerine doğru hareket eder. Bu hareket, film kütle transferi veya sınır tabaka difüzyonu olarak adlandırılır. Adsorplanan madde adsorbanın gözenek boşluklarında hareket ederek adsorpsiyonun gerçekleşeceği yüzeye doğru ilerler. Buna gözenek difüzyonu adı verilmektedir. Adsorpsiyon hızına genellikle sınır tabaka ve gözenek difüzyonu kademeleri birlikte etki etmektedir.

En son olarak adsorplanan madde, adsorbanın gözenek yüzeyinde fiziksel ve/veya kimyasal olarak adsorplanır. Bu adsorpsiyonun en hızlı kademesidir.

Zamana bağlı kinetik modeller incelendiğinde genel olarak aşağıdaki modellerin sıvı adsorpsiyon çalışmalarında uygulandığı görülmüştür:

1. Birinci Derece Denklem

- 2. Yalancı Birinci Derece Denklem (Lagergen Denklemi)
- 3. İkinci Derece Denklem
- 4. Yalancı İkinci Derece Denklem

- 5. Elovich
- 6. İnterpartiküler difüzyon

Birinci derece kinetik model

Birinci dereceden kinetik model şu şekilde ifade edilebilmektedir:

$-\ln(C/C_0) = K_1.t$	(2.21)

Burada C, t zamanındaki derişim; C₀, başlangıç derişim; t, süredir.

Yalancı birinci derece kinetik model

Adsorpsiyon süresini Lagergren, basit bir kinetik model olan psödo birinci derece kinetik model şeklinde ifade etmiştir:

$$(dq_1/dt) = k_1.(q_e-q_t)$$
 (2.22)

Burada k_1 (dak⁻¹) adsorpsiyonun birinci derece hız sabiti; q_e , dengede adsorplanan madde miktarı ve q_t , t süre sonunda adsorplanan madde miktarını ifade etmektedir. Buna göre *t*' ye karşı log (qe-qt) grafiği çizilerek incelemeler yapıldı.

İkinci derece kinetik model

İkinci dereceden kinetik model şu şekilde ifade ifade edilmektedir.

$$[(1/C)-(1/C_0)] = K_2.t$$
(2.23)

Burada C, t zamanındaki derişim; C₀, başlangıç derişim; t, süredir.

Yalancı ikinci mertebe kinetik model

Adsorpsiyon prosesi için Ho ve Mckay tarafından geliştirilen denklem şu şekildedir:

$$(d[S]_t/dt) = k_2.(d[S]_0 - d[S]_t)$$
(2.24)

Burada $[S]_0$ ve $[S]_t$, t = 0 başlangıç ve t zamanlarında adsorbantda bulunan aktif kısım sayısını göstermektedir. Adsorpsiyon kapasitesinin aktif bölge sayısı ile orantılı olduğu düşünüldüğünde (2.24) eşitliği şu hale gelir:

$$(dq_1/dt)) = k_2 (q_e - q_t)^2$$
 (2.25)

Burada k₂ (g mg⁻¹ h⁻¹), yalancı ikinci mertebe adsorpsiyon hız sabiti; q_e, denge durumunda adsorplanan madde miktarı ve qt, t süre sonunda adsorplanan madde miktarını ifade etmektedir. (2.24) eşitliğinin yeniden düzenlenip, t = 0 anında q₀= 0 ve t = t anında q_t = q_t koşulları için integrali alınırsa, aşağıdaki eşitlik elde edilir:

$$(t/q_t) = (1/k_2.q_e^2) + (t/q_e)$$
(2.26)

Denklemdeki k₂qe² ifadesi başlangıç adsorpsiyon hızını göstermektedir. (Ho ve McKay, 1999).

Elovich Kinetic Model

$$q_t = \frac{1}{\beta} \ln(\alpha, \beta) + \frac{1}{\beta} lnt$$
(2.27)

qt, t süre sonunda adsorplanan madde miktarını ifade etmektedir. α , ilk adsorpsiyon hızıdır (gg⁻¹ dak ⁻¹) ve β , desorpsiyon sabiti (gg⁻¹)dir (Cagnon ve ark., 2011).

İnterpartiküler Difüzyon Kinetik Model

$$q_t = k_{id} t^{1/2} + C$$
 (2.28)

Burada q_t, t süresi sonunda adsorplanan miktar; k_{id}, intrapartiküler difüzyon hız sabiti (mg/gdak^{1/2}), C ise kayma noktasıdır

Gözenekli bir adsorplayıcı madde için, en hızlı aşama yüzey adsorpsiyonunun gerçekleştiği ilk aşamadır. Sonraki aşama hızını belirleyen partikül içi difüzyonun olduğu basamaktır. En son aşama partikül içi difüzyon hızının azaldığı ve en yüksek adsorpsiyon değerine ulaşıldığı aşamadır (Gümüş ve Gümüş, 2018).

2.5.8. Adsorpsiyon termodinamiği

Literatürde adsorpsiyonun gerçekleşebilmesi için gerekli enerjilerin iki farklı yolla hesaplanabildiği ifade edilmektedir:

1. Adsorpsiyonda, adsorplanan madde birikim ile daha düzenli hale geçtiği için entropi azalmaktadır. Adsorpsiyonun kendiliğinden gerçekleşebilmesi için aşağıdaki temel termodinamik eşitliğe göre adsorpsiyon olayının ekzotermik olması gerekmektedir.

$$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} \quad \text{veya lnk}_{e} = (\Delta S^{0}/R) - (\Delta H^{0}/R.T)$$
(2.29)

Burada ΔG° , Gibbs serbest enerji değişimi (kJ/mol); ΔH° , entalpi değişimi (kJ/mol); ΔS° , entropi değişimi (kJ/mol K); T, mutlak sıcaklık (K); R gaz sabiti; k_e denge sabitidir. (2.29) no'lu eşitlikten yararlanlarak ln k_e'ye karşı 1/T grafiği çizilirerek eğimden ΔH° ve kaymadan ΔS^{0} değeri elde edilir. Çizilen bu grafiğe Van't Hoff grafiği ismi verilmektedir.

2. Adsorplanan maddenin adsorpsiyon davranımı Langmuir adsorpsiyon izoterminden de hesaplanabilmektedir. Entalpi değişimi ΔH° , Gibbs serbest enerji

değişimi ΔG° ve entropi değişimi ΔS° aşağıdaki şu denklemlerden hesaplanabilmektedir (Liu ve ark., 2001).

$\ln b = \ln b' - (\Delta H^{\circ}/R.T)$	(2.30)

 $\ln \mathbf{b}' = -(\Delta \mathbf{G}^{\circ}/\mathbf{R}.\mathbf{T}) \tag{2.31}$

$$\Delta S = (\Delta H^{\circ} - \Delta G^{\circ}) / T$$
(2.32)

 $b = \Delta S^{\circ}/R \tag{2.33}$

Burada b, Langmuir sabiti (l/mg)'dir. Δ H°'ın negatif değeri adsorpsiyonun ekzotermik bir davranım gösterdiği ve Δ G°'nin negatif değerleri adsorpsiyonun kendiliğinden gerçekleştiğini göstermektedir. Δ S°'in negatif değeri ise çözünen-çözelti (bir başka deyişle adsorban-sıvı faz) arayüz adsorplanan derişiminde azalmayı göstermekte olup aynı zamanda katı faz üzerinde adsorplanan derişimin arttığını belirtmektedir. Δ S°'in pozitif değeri ise katı-çözelti ara yüzeyindeki rastlantısallığın arttığını işaret etmektedir (Goswami, S.ve Ghosh, U. C., 2005). Adsorpsiyon ısılarının belirlenmesinde önemli hesaplamalardan birisi de izosterler ve izosterik ısılardır. İzosterik adsorpsiyon ısılarının hesaplanması için önce 1/T'ye karşı lnCe değerleri çizilerek izosterler elde edilmektedir. İzosterik adsorpsiyon ısısının hesabı için temel Clasius-Clapeyron denklemi kullanılmaktadır (Srivastava ve ark., 2006).

$$(d.\ln C_e/dT) = (\Delta H/R.T^2)$$
(2.34)

Burada ΔH izosterik 1s1, T adsorpsiyon sıcaklığı ve C_e adsorplanan maddenin denge derişimidir.

2.6. Literatür Özetleri

Suya bir çok madde doğal veya yapay olan kimyasal maddeler karışmaktadır. Kirlilik olarak adlandırılan, kontrollü veya kontrolsüz olarak doğaya bırakılan bu kimyasal maddelerin bir kısmının canlıların RNA veya DNA gibi hücresel yönetim ve bilgi zincirlerinin moleküler yapısına etki edebileceği veya kansere neden olabileceği düşünülmektedir (Baytar ve ark., 2021). Bu maddeler birçok hastalığa sebep olmaktadır. Bu hastalıklardan bazıları; kalp hastalıkları, erken yaşlanma, katarakt, kalıtımsal ve gelişimsel doğum bozuklukları gibi hatalıklardır. Bu hastalıklar ve benzeri hastalıkların yanısıra, kanserin ana sebepleri olduklarını destekleyen hipotezler gün geçtikçe artmaktadır (Şenel ve Ark., 2012). Kimyasal maddeler genel olarak suda çözündükten sonra canlı organizmalar içine alınmaktadır (Güner, 2012). Bu nedenle sulu çözeltilerde farklı yöntemlerle birçok kimyasal maddenin giderimi için çalışmalar yapılmıştır. Yöntemlerden bir tanesi de adsorpsiyondur. Adsorpsiyon yoluyla ağır metallerin sulu çözeltilerden kaolin ile giderimi (Genel ve Ark.2014). Adsorpsiyon yoluyla ağır metallerin sulu çözeltilerden bentonit ile giderimi yapılmıştır (Genel ve ark., 2014). Ayrıca doğal ve sentetik kimyasallar olan boyar maddeler üzerinde adsorpsiyon çalışmaları yapılmıştır. Toor ve Jin (2012)'de aktifleştirilmiş bentonit üzerine congo red boyar maddesi adsorpsiyon çalışması yapmış 50mg/g-75mg/g aralığında adsorpsiyon elde etmiştir. Benguella ve Yacouta-Nour (2019)'da red bezanyl ve green nylamine boyar maddelerinin doğal bentonit üzerinde adsorpsiyonunu incelemiş 39.11 mg/g ve 23.58 mg/g adsorplanma kapasitesi belirlenmiştir. Tsai ve arkadaşlarının (2005) yılında bacid violet 4, basic violet 3 ve basic red 9 boyar maddelerinin kil (ağartma toprağı) üzerine yapılan adsorpsiyonlarında her üç boyada da 83.2mg/g'lık adsorpsiyon tespit edilmiştir. Tehrani-Bagha ve arkadaşlarının (2011)'de metilen blue ve malachite green boyar maddelerinin kaolin üzerine adsorpsiyonları incelenmiş 29.85 mg/g ve 52.91 mg/g adsorplanma kapasitesinin olduğu belirlenmiştir, Adsorpsiyon işlemleride birçok adsorbe edici madde kullanılmaktadır.

Endüstride çok sayıda farklı adsorbent çeşidi kullanılmaktadır. Genelde adsorbentler iki grupta incelenebilir. Bunlar doğal adsorbentler; Doğadan kolayca elde edilebilen, maliyeti masrafları az olan maddelerdir. Örnek olarak kitosan, zeolit, kömür, kil, selüloz, kül, atık çamur, talaş gibi maddeler doğal adsorbentlere örnek verilebilir. Yapay adsorbentler ise doğal adsorbentlere göre biraz daha maliyet miktarları fazla olan maddelerdir. Aktif alümina, silika jel, katalizörler, aktif karbon gibi maddeler yapay adsorbentlere örnek verilebilir (Gürten, 2008). Yapay adsorbentlerden aktif karbon, karışımların ayrımında, gazların saflaştırma ve arıtımında, gıda sanayisinde saflaştırma işlemlerinde, su ve atık su arıtımında, savunma sanayisinde koruyucu giysi yapımında, metal sanayisinde karbon katkısı, silah sanayisinde patlayıcı ve elektronik sistemleri susturmak için bomba yapımında ve sağlık sektöründe birçok alanda aktif karbon üretilip kullanılmaktadır (Küçükgül, 2004).

Üretilen aktif karbonların, temelinde iki yöntem ile elde edilmektedir. Bunlar fiziksel ve kimyasal aktivasyondur. Fiziksel aktivasyon ile hammadde 600-1100 °C aralığında, azot gazı, su buharı, hava veya karbondioksit atmosferinde ısıl işleme maruz bırakılmaktadır. Kimyasal aktivasyonda ise; materyal H₃BO₃, KOH, K₂CO₃, ZnCl₂, H₃PO₄, H₂SO₄ vb. kimyasal maddeler ile etkileştirilir. Daha sonra, 500-900 °C aralığında azot, karbondioksit, argon atmosferi altında ısıl işleme maruz bırakılır. Bu yöntemler uygulanarak, çeşitli yüzey alanına ve gözenek yapısına sahip farklı aktif karbonlar elde edilir. Endüstride en çok kullanılan aktif karbonlar ise toz aktif karbonlar ve granüler aktif karbonlardır (Patrick 1995; Bansal ve Goyal, 2005). Granüler aktif karbonlar (GAC) 0.2-5 mm boyutlardaki düzensiz şekilde partikülleri olan, sıvı ve gaz fazı uygulamalarında kullanılmakta, toz aktif karbonlar (PAC), genelde 0.18 mm (US. 45 mesh)'den küçük boyutlarda öğütülerek üretilen, sıvı faz uygulamalarında ve baca gazı arıtımında kullanılan aktif karbonlardır. Bunların dışında pellet aktif karbon (Pellet AC) basınçla sıkıştırılmış ve 0.8-5 mm çapında silindirik yapıda, düşük basınç sağlamasından, yüksek mekanik dayanıklılığından ve düşük toz içeriğinden dolayı başlıca gaz fazı uygulamalarında kullanılmaktadır.

Aktif karbon üretimi üzerine yapılan birçok çalışma bulunmaktadır. Bu çalışmalarda aktif karbondaki mikro gözenekliliği optimize etme denemelerinde, sakaroz karakterlerinin kontrollü ısıtılması ve diğer öncü malzemeler, fazla potasyum veya sodyum hidroksit içeren etkisiz bir ortamda gerçekleştirilmiştir. Başlangıçta, öncü malzemeler düzenlenmiş bir sıcaklık-zaman profiline, yükseltilmiş sıcaklıklara tabi tutulmuş (400–900 ° C) ve ardından soğutulmuştur. Ürünler daha sonra bir atmosfer

metanol buharı ya da havaya maruz bırakılmıştır. Sakarozdan üretilen karbonlar için 750 ile 800 °C arasındaki sıcaklıklarda 1.0 mL g⁻¹'i aşan mikro gözenek hacimleri elde edilmiştir. 540 °C kadar düşük aktivasyon sıcaklıklarında yüksek verimler iyi mikro gözenekli aktif karbonlar yapılmıştır (Işık, 2012).

Literatürde birçok farklı ham maddeden aktif karbon üretilmiştir. Yapılan bir çalışmada aktif karbonlar, mısır koçanının potasyum hidroksit ile kimyasal aktivasyonu sonucu üretilmiş, partikül büyüklüğü, karışım metodu, kimyasal / mısır koçanı oran gibi farklı parametrelerin etkisi, BET yüzey alanı, aktivasyon süresi ve aktivasyon sıcaklığı, kilo kaybı, üretilen aktif karbonların oran kayıpları ve aktif karbonun azot gazı ile gözenek yapıları incelenmiştir. Ayrıca kimyasalla mısırın koçanının karıştırılması üç süreçte yapılmıştır. Bunlardan biri kurutulmuş mısır koçanı, doymuş bir potasyum çözeltisi ile 1 saat boyunca karıştırılıp daha sonra filtrelendikten sonra kurutularak aktifleştirilmiştir. İkinci süreçte kurutulmuş mısır koçanı katı KOH ile karıştırılarak aktive edilmiştir. Son yöntemde ise kurutulmuş mısır koçanı, KOH doymuş çözeltisi ve homojen bulamaç gece boyunca 110 ° C'de kurutulmuştur. Bu süreçlerden son süreçten iyi BET yüzey alan 1320 m²/g bulunmuştur (Otowa ve ark., 1997). Ananas (Ananas comosus) pirolizinden hazırlanan başka bir aktif karbon üretim çalışmasında ZnCl₂ ile ananas atık biyokütlesinin (yaprakları, gövdeleri, taçları) 1:1 oranında impregnasyonu yapılmış ve yüksek yüzey alanına sahip aktif karbon üretilerek, bu aktif karbonun yüzey alanı, yüzeyinin kimyasal özellikleri, fonksiyonel grupları, gözenekliliği incelenmiştir. Ayrıca üretilen aktif karbonun metilen mavisi (MB) boyar maddesi kullanılarak boyar madde adsorplama özelliğine bakılmıştır. Adsorpsiyon sonuçlarında yüksek yüzey alanı (914.67 m²/g) olan aktif karbonun 288.34 mg/g'de adsorpsiyon kapasitesi olduğu bulunmuştur (Ahmadpour ve Do, 1997). Hurma çekirdeği ile ilgili olarak bir çalışmada ZnCl₂ ile impregnasyonu ve 700°C'de 3 saat karbonizasyonu ile yüzey alanı 951 m², por hacmi 0,456 cm³ olan aktif karbon üretilmiştir (Alhamed, 2009). Diğer bir çalışmada % 30-%70 arasında derişimlere sahip H₃PO₄ ile 24 saat impregnasyon ve 300-700^oC de 2 saat süreyle pirolizi ile yüzey alanı 28-945 m²/g arasında değişen aktif karbonlar üretilmiştir (Girgis and El-Hendawy, 2002). Hurma ağacından ise 519-806 ⁰C'de 1.0-3.5 saat kireçtaşı yakılarak elde edilen karbondioksit (CO₂) ve su (H₂O) piroliz ürününün aktivasyon için kullanılmış 350- 420 °C'de 3-6 saat pirolizi sonucu yüzey alanı 1084 m²/g

olan aktif karbon üretilmiştir (Ahmad ve ark., 2007). Hurma dışında zeytin ve zeytin çekirdeği de üretimde kullanılmıştır. Yapılan çalışmalarda zeytin atıkları 946 ^oC'de azot ortamında 1 saat pirolizi ve 1296-1396 ^oC'de 30 ile 70 dakika arasında su buharıyla aktivasyonu sonucu yüzey alanı 514-1271 m²/g arasında değişen aktif karbonlar üretmiştir (Baçaoui ve Ark., 2001). Bir başka çalışmada ise meşe palamudu ve zeytin küspesinin %85'lik fosforik asit (H₃PO₄) 48 saatlik imregnasyonu sonunda 400- 800 ^oC de 1 saat karbonizasyonu sonucu BET yüzey alanı 1000-1200 arsında aktif karbolar üretilmiştir (Lafi, 2001). Zeytin çekirdekleri ve ceviz kabuğu kullanılarak 600^oC'de 1 saat karbonizasyon ve kütlece 1'e 1 oranda %50 ve %75'lik potasyum hidroksit (KOH) çözeltisi ile impregnasyon sonucu 300 ^oC'de 3 saat dehitratasyon yapıldıktan sonra 900 ^oC'de kimyasal aktivasyon yapılarak aktif karbon üretilmiştir (López-González ve Ark., 1980).

Su kamışının %40'lık H₃PO₄ ile 6-12 saat arasında impregnasyonu ve 400° C ve 500° C arasında 40-80 dakika aralığında karbonizasyonu sonucu yüzey alanları 419 m²/g-1279 m²/g arasında değişen aktif karbonlar üretmişlerdir (Shi ve ark., 2010).

Ananas (Ananas comosus) pirolizden hazırlanan başka bir aktif karbon üretim çalışmasında ZnCl₂ ile ananas atık biyokütlesinin (yaprakları, gövdeleri, taçları) 1:1 oranında impregnasyonu yapılmış ve yüksek yüzey alanına sahip aktif karbon üretilerek, bu aktif karbonun yüzey alanı, yüzeyinin kimyasal özellikleri, fonksiyonel grupları, gözenekliliği incelenmiştir. Ayrıca üretilen aktif karbonun metilen mavisi (MB) boyar maddesi kullanılarak boya adsorplama özelliğine bakılmıştır. Adsorpsiyon sonuçlarında yüksek yüzey alanı (914.67 m² / g) olan aktif karbonun 288.34 mg / g adsorpsiyon kapasitesi olduğu bulunmuştur (Mahamad ve ark., 2015).

Biyokütle-piroliz kömürünün adsorpsiyon amaçları için kullanılması, atık su arıtımı için çeşitli küçük ölçekli endüstriler için ucuz bir karbon adsorban kaynağı için her yerde bulunan ihtiyaç göz önüne alındığında, ekstra avantaj ve önem taşımaktadır. Bu bağlamda deneysel çalışmalar, biyokütle-piroliz kömürünü, bireysel adsorptif özelliklerine göre şartlandırılmış özgüllüğünü açıklamak ve karakterize etmek için gerçekleştirilmiştir (Raveendran ve Ganesh, 1998).

Aktif karbon gözenek gelişimi ile kimyasal aktivasyondaki emdirme oranı arasında doğrudan bir ilişki bulunmaktadır. Farklı emdirme oranlarının etkisini inceleyebilmek amacıyla bir çalışma yapılmıştır. Bu çalışmaya göre; süs baklası meyveleri, 110 °C'de 24 saat kurutulmuş daha sonra 500 °C'de 1.5 saat ısıtılmıştır. Elde edilen kömürümsü malzeme çeşitli miktarlarda sodyum hidroksit ile 130 °C'de 4 saat süresince karıştırmaya tabi tutulmuştur. Daha sonra örnekler 700 °C'de azot gazı altında 1,5 saat süre ile karbonize edilerek, soğutulmuş ve 0,1 M HCI ile yıkanmıştır. Bunu takiben sıcak su ile yıkanarak pH 6,5'e getirilen örnekler 110 °C'de 24 saat kurutulmuştur (Vargas ve ark., 2011).

Bazen de iki aktifleştirici kimyasal birbiri ardı sıra kullanılabilmektedir. Örneğin Marı'n ve arkadaşlarının yaptığı bir çalışmada, önce lignoselülozik bir madde olan kiraz çekirdeğinden inorganik bileşiklerin uzaklaştırılmasına katkı sağlayabilmek amacıyla 1-2 mm büyüklüğünde öğütülen çekirdekler 24 saat süresince H₂SO4'de bekletilmiş daha sonra ise süzüntü suyunun pH'i 6 oluncaya kadar yıkanmıştır. İkinci aşama da ise 25 gram kiraz çekirdeği 100 ml KOH çözeltisi (KOH: kiraz çekirdeği oranı ağırlıkça 3:1) ile 85 °C'de iki saat süresince temas ettirilmiştir. Bu zaman sonunda üste kalan sıvı kısım vakumla süzülerek uzaklaştırılmış, katı kısım 120 °C'de 24 saat kurutulmuştur. KOH emdirilmiş maddeler 400-900 °C'de azot gazı altında 2 saat süre ile pirolizlenmiştir. Yapılan çalışmada ısı ile beraber BET yüzey alanının önemli farklar gösterdiği tespit edilmiştir. Buna göre 400 °C'de üretilen aktif karbonun BET yüzey alanı 7 m²/g iken 900 °C'de üretilen aktif karbonun yüzey alanı 1624 m²/g'dır. Yüksek sıcaklık KOH kimyasalı ile aktifleştirilen aktif karbonun BET yüzey alanı ile mikro ve makro gözenek alanlarının artmasına sebep olmuştur (Marin ve ark., 2006). Sodyum alüminat aktivasyonu yoluyla mikro-mezogözenekli aktif karbonun adsorptif özelliklerinin hazırlanması ve değerlendirilmesi adlı bir çalışmada yeni bir aktive edici ajan, sodyum alüminat (Na [Al (OH)₄]), denizde bulunan Enteromorpha Prolifera biyokütle atıklarından mikro gözenekli ve mezogözenekli yapıya sahip aktif karbon üretetimi yapmışlardır. Langmuir modeli ile daha iyi uyan ve tek tabakalı adsorpsiyon kapasitesinin 1000 mgg⁻¹ olduğunu bulmuşlardır. Klorella bazlı mikroalgal kalıntısı, 800-1000 °C aktivasyon sıcaklıklarında ve 0-30 dk kalma sürelerinde, N₂ ve CO₂ gazları ile kombine bir karbonizasyonaktivasyon süreci hazırlanmış, 30 dakika kalma süresi ile 950 ⁰C aktivasyon sıcaklığında üretilen ortaya çıkan aktif karbonun maksimum Brunauer-Emmett-Teller (BET) yüzey

alanı 840 m² / g ve toplam gözenek hacmi ve 0,46 cm³ /g bulmuşlardır. Üretilen aktif karbonlar farklı alanlarda adsorpsiyon için kullanılmaktadır.

Pirinç kabuğunun fosforik asit ile impregnasyonu ve 400-700^oC arasında 180 dk karbonizasyonu sonucu üretilen 376 m²/g yüzey alanına sahip aktif karbona hümik asit adsorpsiyonu incelenmiş ve 45 mg/g olduğu görülmüştür. Kızılcık çekirdeği, badem kabuğu ve kaysı çekirdeklerinin H₂SO₄ ile 24 saat imregnasyonu, 200 ^oC'de ısıl işlem uygulanarak yüzey alanı 369 m²/g ve 449 m²/g arasında değişen aktif karbonları krom iyonlarının (Cr⁺⁶) adsorbe edilmesinde kullanılmıştır (Demirbaş ve ark, 2004).

Yapılan bir çalışmada şeker kamışı atıkları ile %70'lik H₃PO₄ ile impregnasyonu ve 500⁰C'de 80 dakika karbonizasyonu sonucunda elde edilen 523 m²/g yüzey alanına sahip aktif karbon, metilen mavisi ve Rodamin-B boyar maddelerinin adsorpsiyonu incelenmiş adsorbe edilen metilen mavisi miktarı 280 mg/g, Rodamin-B boyar maddesinin ise 190,8 mg/g olarak bulunmuştur (Gad ve El-Sayed, 2009).

Metan üretim atığı sığır gübresinin çinko klorür ile impregnasyonu ve 400 ^oC -900 ^oC arasında yarım saat ile beş saat arası pirolizi sonucu yüzey alanı 2170 m²/g olan aktif karbonlarına fenol adsorpsiyonu incelenmiş 150-350 mg/g olduğu bulunmuştur (Qian ve ark., 2007).

Yukarıdaki literatürler ışığında hammadde olarak çeşitli ağaç türlerinin farklı kimyasallarla impregnasyonu ve pirolizi sonucu aktif karbon üretimi yapılmış ve boyar madde adsorpsiyonu incelenmiştir. Materyal ve yöntem literatürde yapılmış olan çalışmalara göre oluşturulmuştur.

3. MATERYAL VE METOT

Bu çalışmada, Ağaç talaşlarının öğütülme işlemleri Şimşek laborteknik Ltd.Şti tarafından üretilen HD-702 modelli öğütücüsü ile yapılmıştır. Karbonizasyon için Proterm furnaces markalı fırın ve N₂ gazı ve çelik reaktör kullanılmıştır (Şekil 3.1).

Şekil 3.1. Karbonizasyon işleminde kullanılan fırın.

Aktif karbonların HCl (1M Hidroklorik asit) ile kül giderimi ve karbonun asitten arındırılması için kullanılan yıkama sitemi kurulmuştur (Şekil 3.2).

Şekil 3.2. Yıkama sitemi.

Aktif karbon üretimi deneylerinde, hammadde ve aktif karbon karakterizasyonu belirlenmesi için Elementel analiz, FT-IR analizi, BET analizi ve SEM analizleri yapılmıştır. Elementel analiz için Thermo scientific markalı flash 2000 modelili cihazı, FT-IRanaliz Thermo scientific markalı Nicoleti S10 FT-IRsipektro spectrometer cihazı kullanılmıştır. Deneylerin pH ölçümleri MeterLab markalı PHM210 Stadart pH Meter modelli cihaz ile, adsorpsiyon deneyleri Heidolph Mr Hei-End markalı ısıtıcı ayarlı tek gözlü manyetik karıştırıcı ve konsantrasyon ölçümleri Shimadzu UV -1240 markalı spektrofotometre ile yapılmıştır. Adsorpsiyon deneylerinde spektrofotometrede Metilen mavisi (Ek.1.25) 640 nm'de kinolin sarısı (Ek.1.26) 437 nm'de 5 farklı konsatrasyonda ortak pik olarak görülmüş ve deneyler bu nanometre dalga boylarında ölçülmüştür. Ölçülebilir en uygun karıştırma hızı 200 rpm olarak belirlenmiştir.

3.1. Aktif Karbon Üretimi Deneyleri

Yapılan üretim deneyleri 6 aşamada gerçekleştirilmiştir.

3.1.1. Hammadde seçimi, kurutulması ve parçalanması

Hammadde olarak Van yöresinde yetişebilen 4 farklı ağaç türü seçilmiştir. Bu ağaçlar yabani kuşburnu ağacı(A1), akasya ağacı(A2), dişbudak ağacı(A3) ve kavak ağacı (A4)dır. Hammadde olarak seçilen ağaçlar daha önce kesilmiş ya da budanmış ağaç gövdelerinden alınarak 3 ay boyunca direkt olarak güneş görmeyen bir ortamda kurutulmuştur. Ağaçlar motorlu testere yardımıyla 0.1 cm-0.9 cm arasındaki boyut ve 1mm-3mm arası kalınlığında talaş olarak parçalanmıştır. Parçalan bu talaşlar 200 mesh ölçüsünde eleği olan labaratuar değirmeninde öğütülerek kimyasal impregnasyon için hazır hale getirilmiştir.

3.1.2. Kimyasal impregnasyon

Bu aşamada 4 faklı kimyasal kullanılmıştır. Bu kimyasallar çinko klorür (ZnCl₂), sodyum hidroksit (NaOH), Borik asit(H₃BO₃) ve fosforik asit (H₃PO₄) kullanılmıştır.

Karışımlarda kimyasal maddenin ve hammaddeye ağırlık oranları 1:1 oranında olacak şekilde hazırlanmıştır. Çözeltilerin saf su miktarları kimyasal maddenin çözünürlüklerine göre ayarlanmıştır.

a) 200 mesh boyutundaki A1, A2, A3 ve A4 talaşlardan 30'ar g alınarak 100 ml'lik
 30 g çinko klorür (ZnCl₂) çözeltisiyle ayrı ayrı karıştırılmış ve 48 saat impregnasyon için
 bekletilmiştir. Daha sonra 50 °C derecedeki etüvde 48 saat süreyle içindeki çözücü %90 %95 arasındaki oranda buharlaştırılmıştır.

b) 200 mesh boyutundaki A1, A2, A3 ve A4 talaşlardan 30'ar g alınarak 100 ml'lik çözeltide 30 g sodyum hidroksit çözeltisiyle ayrı ayrı karıştırılmış ve 48 saat impregnasyon için bekletilmiştir. Daha sonra 50 ^oC derecedeki etüvde 48 saat süreyle içindeki çözücü %90-%95 arasındaki oranda buharlaştırılmıştır.

c) 200 mesh boyutundaki A1, A2, A3 ve A4 talaşlardan 30'ar g alınarak, çözeltide 30 g olacak şekilde %85'lik fosforik asitten (H₃PO₄) alınarak çözelti hazırlanmış ayrı ayrı talaşlarla karıştırılmış ve 48 saat impregnasyon için bekletilmiştir. Daha sonra 50 ^oC derecedeki etüvde 48 saat süreyle içindeki çözücü %90-%95 arasındaki oranda buharlaştırılmıştır.

d) 200 mesh boyutundaki A1, A2, A3 ve A4 talaşlardan 30'ar g alınarak 800 ml'lik çözeltide 30 g Borik asit(H₃BO₃) çözeltisiyle ayrı ayrı karıştırılmış ve 48 saat impregnasyon için bekletilmiştir. Daha sonra 50 ⁰C derecedeki etüvde 48 saat süreyle içindeki çözücü %90-%95 arasındaki oranda buharlaştırılmıştır.

3.1.3. Piroliz süreci

İmpregnasyonu tamamlanan hammadde ve aktive edici maddeler N₂ gazının 500cm^3 /dk hızla geçtiği reaktörün içine bırakılmış ve fırına yerleştirilmiştir. Fırın 1saatte $800\ ^0$ C ye çıkıp 1saat $800\ ^0$ C de bekletildi. Daha sonra azot ortamında soğumaya alınarak $25\ ^0$ C'ye getirildikten sonra azot gazı kapatıldı ve aktif karbon alındı. Bu karbonizasyon

işlemi sırasında reaktörün iç sıcaklığı ölçümü de alındı. Farklı karışımlarda reaktör iç sıcaklığında farklılıklar tesbit edilmiştir. Reaktör iç sıcaklığının 723-753 ⁰C arasında değiştiği belirlenmiştir.

3.1.4. Kül giderimi

Oluşabilecek kül ve diğer bileşiklerin giderimi için 1M hidroklorik asit (HCl) çözeltisiyle ile 10 dk karıştırılak süzme işlemine hazırlandı.

3.1.5. Süzme işlemi

Bu işlem aktif karbonun saf su geçirgenliğine göre ayarlanabilen 10 L'lik bir depoya sahip basit bir sistemle (şekil 3.2) HCl varlığı tamamen son buluncaya kadar süzülmüştür. HCl varlığı AgNO₃ (Gümüş nitrat) ile ve pH metre ile tespit edilmiştir.

3.1.6. Kurutma ve depolama

Süzme işlemi tamamlanan aktif karbon 50⁰C lik etüvde kurutmaya bırakılmış 24 saat sonunda 50 ml'lik kapaklı hava geçirgenliği olmayan kapalı kaplarda depolanmıştır.

3.2. Adsorpsiyon Deneyleri

Adsorpsiyon deneyleri metilen mavisi (MM) ve kinolin sarısı (KS) olmak üzere iki farklı boyar maddenin konsantrasyon değişimi etkisi, sıcaklık değişimi etkisi, başlangıç pH faktörü etkisi gibi üç farklı parametre kullanılarak yapılmıştır.

3.2.1. Konsantrasyon değişimi

Hazırlanan aktif karbonun boyar madde adsorpsiyonu için 1000 ppm'lik metilen mavisi ve 1000 ppm'lik kinolin sarısı çözeltileri hazırlanmış, hazırlanan bu stok çözeltilerden her bir konsantrasyon için ayrı ayrı 250 ml'lik 600 ppm, 400 ppm, 200 ppm, 100 ppm ve 50 ppm'lik çözeltiler hazırlanmıştır. 0,1g'lık sabit ağırlıkta aktif karbon (adsorban), bu çözeltilere ayrı ayrı eklendikten sonra, işlemler oda şartlarında (sabit basınçta), 25 ^oC sabit sıcaklıta ve 200 rpm'lik sabit hızda yapılmıştır.

3.2.2. Sıcaklık Değişimi

Bu kısımda üretilen bütün aktif karbonlar 25 °C, 30 °C ve 45 °C'lik sıcaklıklarında 250 ml ve 200 ppm'lik sabit konsatrasyondaki adsorbat, 0,1g'lık sabit ağırlıkta aktif karbon (adsorban) kullanılarak, oda şartlarında (sabit basınçta), 200 rpm'lik sabit hızda yapılmıştır.

3.2.3. pH değişimi

Başlangıç pH'ı asidik ortamda pH 3, pH 4, pH 5, pH 6'da, bazik ortamda pH 8, pH 9, pH 10, pH 11 ve pH 7 ortamlarında 0,1g'lık sabit ağırlıkta aktif karbon (adsorban) kullanılarak, oda şartlarında (sabit basınçta), 25^oC sabit sıcaklıkta, 250 ml ve 200 ppm'lik sabit konsatrasyondaki adsorbat ve 200 rpm'lik sabit hızda yapılmıştır. Metilen mavisi boyar maddesi ölçüm için pH değişiminden etkilenmezken, kinolin sarısı boyar maddesi gıda boyası olduğundan ve asidik ortamda parçalanmaktadır. Bazik ortamda renk değişimi yapmaktadır. Bu nedenden dolayı sadece pH =7 ortamda deneyleri yapılmıştır.

4. BULGULAR

4.1. Aktif Karbon Analiz Sonuçları

Aktif karbon analiz sonucları elementel analiz, FTIR analizi, BET analizi ve SEM analizi olarak 4 bölümde incelenmiştir.

4.1.1. Elementel analiz sonuçları

Hammadde/ aktif karbon	Azot oranı	Karbon oranı	Hidrojen oranı	Sülfür oranı	Toplam
A1-S	0,6001	41,5562	5,4066	0	47,563
A1-0	1,2574	71,6577	1,4913	0	74,4063
A1-1	0,8097	75,8521	0,8891	0	77,5508
A1-2	0,9069	77,9076	0,5558	-	79,3703
A1-3	0,4311	53,7762	1,221	0,5291	55,9575
A1-4	0,6046	74,3651	1,1098	0,8321	76,9115
A2-S	0,6356	45,123	5,8996	0	51,6582
A2-0	0,7553	68,6756	0,5988	0,6329	70,6626
A2-1	1,2456	69,4208	0,9836	0	71,6501
A2-2	-	75,7117	0,5654	0	76,2771
A2-3	0,7325	45,4117	1,6002	0	47,7443
A2-4	1,1511	60,7953	0,9557	0	62,9021
A3-S	0,625	47,1976	5,7499	0	53,5725
A3-0	-	64,3261	0,8086	0	77,2456
A3-1	1,2322	74,7267	1,2867	0	77,2456
A3-2	-	52,474	0,5674	-	53,0414
A3-3	0,4501	60,9722	1,306	0	62,7282
A3-4	0,8423	71,9689	1,1285	0	73,9397
A4-S	0,5042	46,1099	5,6045	-	52,2187
A4-0	0,5905	87,0921	0,7707	-	88,4533
A4-1	0,4088	66,2564	0,9496		67,6148
A4-2	0,3452	57,3898	0,429	-	58,164
A4-3	0,2894	31,4131	1,5379		33,2404
A4-4	0,4761	64,0897	1,1356		65,7013

Çizelge 4.1. Ağaç talaşları ve üretilen aktif karbonların elemental analiz sonuçları

Ham madde olarak kullanılan ağaçların ham hallerinde karbon oranları A1 ağacında %41,5562 A2 ağacında 45.123, A3 ağacında 47.1976, A4 ağacında 46.1099

oranında bulunması aktif karbon için uygun olduklarını göstermektedir. Bütün ağaçlarda saf haldeki H (Hidrojen) oranlarının %5 in üzerinde olduğu karbonizasyonda sonra bu değerlerin %1.5 altında olduğu görülmektedir. Saf halde karbonizasyonda en yüksek karbon miktarı A4 ağacında (A4-0), en düşük karbon miktarı A3 ağacında (A3-0), çinko klorür ile impregnasyonu sonucu oluşturulan karbonlarda ise en yüksek karbon miktarı A1 ağacında (A1-1), en düşük karbon miktarı A4 ağacında (A4-1), sodyum hidroksit ile impregnasyon sonucu üretilen aktif karbonlarda en yüksek karbon miktarı A2 ağacında (A2-2) en düşük A3 ağacında (A3-2), fosforik asit ile empregnasyonu sonucu oluşan karbonlarda ise en yüksek karbon miktarı A3 ağacında(A3-3) en düşük karbon miktarı A4 ağacında(A4-3), borik asit ile impregnasyonu sonucu oluşan karbonlarda en yüksek karbon miktarı A4 ağacında (A2-4) görülmektedir. Genel olarak A4-3 aktif karbonu hariç diğer karbonlar karbonizasyon sonucu % C oranlarının arttığı belirlenmiştir.

4.1.2. FT-IR analizleri

Peak numarası	Dalga boyu cm ⁻¹	Özellik	
1	3850-3600	O-H bükülme titreşimleri	Ge ve Ark,2017
2	3337	OH gerilme (alkoller, asitler, H bağı)	(Beşergil, 2015)
3	3300	Hemi selüloz-lignin-selüloz H bağları	(Yargıç ve Ark., 2021)
4	3300-3000	C-H gerilme (doymammış)	(Beşergil, 2015)
5	3010-3095	C-H gerilme >C=C<(alken) orta şiddet	(Pir, 2008)
6	3010-3100	Aromatik halka orta kuvvette C-H	(Pir, 2008)
7	3650-3590	Monomerik alkol fenol O-H bağı d	(Pir, 2008)
8	3650-3500	Monomerik karboksilik asit	(Pir, 2008)
9	3600-3200	H- bağlı alkol fenol d	(Pir, 2008)
10	2917	C-H gerilme titreşimi	(Gupta ve Ark., 2003)
11	2970-2850	C-H gerilme (alkan)	(Kholodkov ve Ark., 2003)
12	2700-2500	H-bağlı karboksilik asit	(Beşergil, B. 2015.)
13	2359	C-O bağı	(Corazzari ve Ark.,2015)
14	2250-2225	-C≡N gerilme	Beşergil, B. 2015.)

Çizelge 4.2. Saf ham madde ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri

Peak numarası	Dalga boyu cm ⁻¹	Ozellik	
15	2260-2090	-C≡C- gerilme	(Beşergil, 2015)
16	2180-2120	-C ⁻ ≡N ⁺ gerilme	(Skoog ve ark., 1998)
17	2110	C-N3 bağı	(Petibois ve ark., 2006)
18	2745-2710	C-H gerilme (aldehit)	(Uzun, 2014)
19	2925,2046,1980	Alken ve alkil gurupları C-H titreşim bandı	(Doğan ve ark., 2020)
20	2078	CO ₂ - CO bandı	(Balakrishnan ve Schwank, 1992)
21	1995-1992	Muhtemel kil mineralleri ve oksitlerdeki yapısal OH titreşimlerinden dolayı	(Pedersen, 2011)
22	1990	C-O titrșimi	(Cremer ve Kraka, 1984)
23	1900	N=O bağı	(Hadjiivanov ve
			Knözinger, 2000)
24	1901	N_0 bağı	(Wutthe ve ark 2012)
24	2000 1665	C H zawifhačlar va da aramatik C H	(Wuttke ve ark. 2012) (Panday va Pitman, 2002)
25	1734	$C - 11 Zayiii O agiai ya da aloinatik C - 11_{ar}$	(Pandey ve Pitman, 2003)
20	1734	Kashonil guruhundaki (C=O) salülaz hamisalülaz lignin	(Obkoshi 2002)
27	1732	Kaloonin guluoundaki (C=O) seuloz –nemiseuloz –nginin Eeleememis katon, aldebit ve karbonil grunlarındaki C=O	(Ahmet ve Sivrikava
28	1/18-1/40	Eşteşmenniş keton, aldenit ve karbonni gruplarındaki C–O	(Anniet ve Sivirkaya, 2017)
29	1648	H-O-H absorblanan su molekülünün titreşimi ve lignindeki	(Yilgor ve ark.2013)
		C=O bağlarının titreşimi	
30	1630-1660	Para-OH katılmış aril keton, kinonda ki C=O Karbonhidratlar	(Ahmet ve Sivrikaya,
		tarafından absorbe edilen H2O Alkinlerde ki C=O	2017)
31	1605-1610	Lignindeki aromatik halkalardaki C=O COO	(Ahmet ve Sivrikaya, 2017)
32	1593	Güçlü ⁺ C=O aromatik iskelet titreşimi	(Yilgor ve Ark.2013)
33	1606-1518	Aromatik gruptaki (C=C)	(Kobayashı ve Ark. 1984)
34	1504	Ligninde aromatik iskelet titreşimi	(Yilgor ve Ark.2013)
35	1506-1510	Lignindeki aromatik halkalardaki C=O COO	(Ahmet ve Sivrikaya, 2017)
36	1539,	(C=C aromatik, (C=O) in COO-, or v (C-N) in -C-NO2	(Yuan ve Ark, 2018)
	1557,1558,1559,		х · · ,
	1560		
37	1450-1465	С-Н	(Ahmet ve Sivrikaya, 2017)
38	1456	CH2 ksilen ve ligninde bozunma titrşimi	(Yilgor ve Ark.2013)
39	1466	C-H makaslama titreşimi	(Beşergil, 2015)
40	1422	Lignin ve karbondihitrat ⁺ C-H parçalanması aromatik c-h tit reşimleri	(Yilgor ve Ark.2013)

Çizelge 4.2. Saf ham madde ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri (devamı)

41	1420-1430	Aromatik halkalardaki C=C Karbonhidratlardaki CH2	(Ahmet ve Sivrikaya, 2017)
42	1413	Simetrik antisimetrik C-H tireşimleri	(Al-Oweini ve El-Rassy, H.,
12	1270		2009) (Vilanese Asla 2012)
43	1372	Administration of the second s	(Yilgor ve Ark.2013)
44 45	1365-1376	Karboksilat (C-O) titreşimi	(Anmet ve Sivrikaya, 2017)
46	1343- 1396	CH-s titresimleri	(Peboutuwa ve Ark 2020)
47	1324	Selülozda C-H titresimi syringyl türevlerinin ⁺ C-O titresimleri	(Yilgor ve Ark 2013)
48	1315-1321	Selülozdaki CH ₂	(Ahmet ve Sivrikava, 2017)
49	2925	C-H alifatik karbon	(Stone, 1997)
50	1235	Ksilendeki Asetil vekarboksil ve lignindeki C=O titresimleri	(Yilgor ve Ark 2013)
51	1234	Ksilendeki Asetil vekarboksil ve lignindeki C=O titresimleri	(Yilgor ve Ark 2013)
52	1230-1270	Lignin ve hemiselülozdaki CO	(Ahmet ve Sivrikava, 2017)
53	1157	Hemi selüloz ve selülozdaki C-O-C titresimleri	(Yilgor ve Ark 2013)
54	1145-1162	Selülozdaki C-O-C	(Ahmet ve Sivrikava 2017)
55	1106	Selüloz ve hemiselülozdaki OH bağı handı	(Yilgor ve Ark 2013)
56	1091	PO ₂ Fosfolipid titresimler	Dreissig ve Ark., 2009)
57	(1151, 1103, 1080, 1034	Gulukoz pikleri	(Dzurendova, 2020)
	ve 990		()
58	1053	C-O primer alkol	(Peng ve Ark.,2017)
59	1032-1053	Karboksilik asit –alkol-eter	(Besergil, 2015.)
60	1030-1060	Lignin Selüloz ve hemiselülozda C=O gerilmesi	(Ahmet ve Sivrikaya, 2017)
61	1017	Kuvvetli bant eter, fenol, alkol gruplarında C-O ve HC-OH	(Yilgor ve Ark.,2013)
		karşılıklı girişimleri	
62	1008	PO₄ titreșimleri	(Gong, W. 2001)
53	995-985	Güçlü C=C alken monosibstitüe	(Wahyuningsih ve Ark., 2017)
64	986	Hemiselüloz ve selülozdaki C=O titreşimi	(Yilgor ve Ark.,2013)
65	900-690	Aromatik halka kuvvetli C-H	(Wahyuningsih ve Ark.,
			2017)
66	980-960	Güçlü C=C alken disibstitüe	(Wahyuningsih ve Ark.,
			2017)
67	896	Selülozda C-H deformasyonu	(Yilgor ve Ark.2013)
68	895-855	Alken vinyldyne	(Yilgor ve Ark.2013)
69	900-800	Hemiselüloz ve selülozun glikozidik bağları	(Bağ, Ö. ve Tekin, K. 2019)
70	870	İzole edilmiş aromatik hidrojen atomuna ait tireşimler	(Chen ve Ark., 2012)
71	850-550	C-Cl bağı	(Lee-Ruff ve Just, 1968).
72	840-790	Orta güçlükte C=C alkan trisibsitüe	(Beşergil, 2015)
73	730-665	Güçlü C=C alkan disibstitüe (cis)	(Beşergil, 2015)
74	675-695	C-H gerilme >C=C< (alken) kuvvetli bağ	(Beşergil, 2015)
75	800-500	C-Cl	(Beşergil, 2015)

Çizelge 4.2. Saf ham madde ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri (devamı)

61	1017	Kuvvetli bant eter, fenol, alkol gruplarında C-O ve	(Yilgor ve Ark.,2013)
		HC-OH karşılıklı girişimleri	
62	1008	PO ₄ titreșimleri	(Gong, W. 2001)
63	995-985	Güçlü C=C alken monosibstitüe	(Wahyuningsih ve Ark., 2017)
64	986	Hemiselüloz ve selülozdaki C=O titreşimi	(Yilgor ve Ark.,2013)
65	900-690	Aromatik halka kuvvetli C-H	(Wahyuningsih ve Ark., 2017)
66	980-960	Güçlü C=C alken disibstitüe	(Wahyuningsih ve Ark., 2017)
67	896	Selülozda C-H deformasyonu	(Yilgor ve Ark.2013)
68	895-855	Alken vinyldyne	(Yilgor ve Ark.2013)
69	900-800	Hemiselüloz ve selülozun glikozidik bağları	(Bağ, Ö. ve Tekin, K. 2019)
70	870	İzole edilmiş aromatik hidrojen atomuna ait tiresimler	(Chen ve Ark., 2012)
71	850-550	C-Cl bağı	(Lee-Ruff ve Just, 1968).
72	840-790	Orta güçlükte C=C alkan trisibsitüe	(Beşergil, 2015)
73	730-665	Güçlü C=C alkan disibstitüe (cis)	(Beşergil, 2015)
74	675-695	C-H gerilme >C=C< (alken) kuvvetli bağ	(Beşergil, 2015)
75	800-500	C-Cl	(Beşergil, 2015)
76	560	O-H gerilme	(Xing ve Ark., 2019)
77	660-550	Zn ferrit (ZnFe ₂ O ₄	(Pradeep ve Chandrasekaran, 2006).
78	640nd 590	Fe ₃ O ₄	(Pradeep ve Chandrasekaran, 2006).
79	577	Fe-C-O titreșimleri	(Tsubaki ve Ark., 1982)
80	500-600	Ferritler yüksek dalgada dört yüzlü kompleks	(Kumar ve Ark., 2014)

Çizelge 4.2 Saf ham madde ve aktif karbon analizlerinde görülen dalga boyları ve özellikleri(devamı)

Çizelge 4.3. Ham haldeki yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının FT-IR sonuçları

A1-S (cm ⁻¹)	A2-S (cm ⁻¹)	A3-S (cm ⁻¹)	A4-S (cm ⁻¹)
3800			
3707	3710	3707	3706
3680	3680	3680	3680
3627			
3326	3337	3351	3337
2980			
2966			
2937			
2921	2922	2922	2922
2865	2867	2864	
2844	2844		
2359	2360	2359	2360
2341	2341	2342	2341

A1-S (cm ⁻¹)	A2-S (cm ⁻¹)	A3-S (cm ⁻¹)	A4-S (cm ⁻¹)
2187			
2073	2078	2051	2050
			1979
1733	1734	1735	1733
	1635		1593
1616		1616	
1506	1505	1507	1505
1455	1455	1455	1455
	1421	1420	1421
1320	1321	1320	1319
	1371		1371
1234	1234	1234	1233
1053	1053	1053	1053
1033	1032	1032	1032
668	668	668	668
590	591	590	593
568		567	
553			

Çizelge 4.3. Ham haldeki yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının FT-IR sonuçları (devamı)

Saf ağaç talaşlarından A1-S ağaç talaşında görülen 3800 cm⁻¹ OH gerilmesi alkoller, asitler ve H bağının, 3707 cm⁻¹, 3680 cm⁻¹, 3627 cm⁻¹ ve 3326 cm⁻¹ deki pikler hemi selüloz-lignin-selüloz H bağlarının, 2980 cm⁻¹ pik C-H gerilme titreşiminin, 2966 cm⁻¹, 2937 cm⁻¹, 2865 cm⁻¹ ve 2844 cm⁻¹ bandlar C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2341 cm⁻¹ görülen pikler C-O bağının, 2187 cm⁻¹'deki yapı C≡C gerilmesinin yada -C ≡N⁺ gerilmesinin, 2073 cm⁻¹ 'deki CO₂- CO bandının, 1733 cm⁻¹'deki eşleşmemiş keton, aldehit ve karbonil gruplarındaki C=O bağlarının, 1616 cm⁻¹'deki yapı lignindeki aromatik halkalardaki C=O ve COO bağlarının, 1506 cm⁻¹'deki pik ligninde aromatik iskelet titreşiminin, 1455 cm⁻¹'deki pik, C-H bağı veya CH₂ ksilen ve ligninde bozunma titreşiminin, 1320 cm⁻¹'deki bant, selülozda C-H titreşimi syringyl türevlerinin ⁺C-O titreşimlerinin, 1234 cm⁻¹ ksilendeki asetil ve karboksil ve lignindeki C=O titreşimlerinin veya C-N, C-O gerilmelerinin, lignin ve hemiselülozdaki CO yapısının, 1053 cm⁻¹ 'deki pik C-O yapısının (primer alkol), 1033 cm⁻¹ karboksilik asit -alkol-eter yada 1030 cm⁻¹ -1060 cm⁻¹ lignin selüloz ve hemiselülozda C=O gerilmesinin, 668 cm⁻¹ 'deki pik güçlü C=C alkan disübstitüe (cis) yapısını ve 590-568-553 cm⁻¹ 'deki bant C-Cl bağının göstergesi olarak değerlendirilmiştir.

A2-S ağaç talaşında 3710-3680 cm⁻¹ dalga boylarındaki OH gerilmeleri; alkoller, asitler ve H bağının, 3337 cm⁻¹'deki pik hemi selüloz-lignin-selüloz H bağlarının, 2922 cm⁻¹ 'deki yapı C-H gerilmesinin, 2867 cm⁻¹ - 2844 cm⁻¹ pikler C-H gerilmesinin (alkan), 2360 cm⁻¹- 2341 cm⁻¹ 'deki pikler CO₂- CO bandının, 2078 cm⁻¹'deki pik CO₂- CO bandının, 1734 cm⁻¹ 'deki pik eşleşmemiş keton, aldehit ve karbonil gruplarındaki C=O bağının, 1635 cm⁻¹'deki pik para-OH katılmış aril keton, kinonda ki C=O karbonhidratlar tarafından absorbe edilen H₂O yada alkinlerde ki C=O yapısının, 1505 cm⁻¹'deki pik ligninde aromatik iskelet titreşimini ve lignindeki aromatik halkalardaki C=O ya da COO yapısının, 1455 cm⁻¹'deki pik C-H bağı veya CH₂ ksilen ve ligninde bozunma titresiminin, 1421 cm⁻¹ 'deki pik lignin ve karbondihitrat ⁺C-H parçalanması, aromatik C-H tireşimleri yada aromatik halkalardaki C=C veya karbonhidratlardaki CH₂ yapısının, 1371 cm⁻¹ 'deki pik hemiselüloz ve selülozun C-H deformasyonu yada odunun tüm bileşenlerindeki C-H titreşiminin, 1321 cm⁻¹'deki pik selülozda C-H titreşimi syringyl türevlerinin ⁺C-O titreşimlerinin, 1234 cm⁻¹ dalga boyundaki pik ksilendeki asetil ve karboksil ve lignindeki C=O titreşimlerinin veya C-N, C-O gerilmelerinin ve lignin ve hemiselülozdaki CO yapısının, 1053 cm⁻¹ 'deki pik C-O bağının (primer alkol), 1033 cm⁻¹ 'deki pik karboksilik asit-alkol-eter yapısının, 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozdadaki C=O gerilmesinin, 668 cm⁻¹'deki pik güçlü C=C alkan disibstitüe (cis) bağının ve 591 cm⁻¹'deki pik de C-Cl bağının göstergesi olarak değerlendirilmiştir.

A-3 S ağaç talaşında 3707 cm⁻¹ dalga boyundaki OH gerilmesi; alkoller, asitler ve H bağının, 3680 cm⁻¹ ve 3351 cm⁻¹'deki pikler hemi selüloz-lignin-selüloz H bağlarının, 2922 cm⁻¹'deki pik C-H gerilmesinin, 2864 cm⁻¹'deki pik C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2342 cm⁻¹ 'deki yapılar CO₂- CO bandının, 2051 cm⁻¹ 'deki CO₂- CO bandının, 1735 cm⁻¹'deki pik eşleşmemiş keton, aldehit ve karbonil gruplarındaki C=O bağlarının, 1616 cm⁻¹ ve 1507 cm⁻¹ pikler ligninde aromatik iskelet titreşiminin ve lignindeki aromatik halkalardaki C=O ve COO yapılarının, 1455 cm⁻¹'deki pik C-H bağı veya CH₂ ksilen ve ligninde bozunma titreşiminin, 1420 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasını, aromatik C-H tireşimlerinin yada aromatik halkalardaki C=C veya karbonhidratlardaki CH₂ yapılarının, 1234 cm⁻¹'deki pik selülozda C-H titreşimi syringyl türevlerinin ⁺C-O titreşimlerinin, 1234 cm⁻¹'deki pik ksilendeki asetil ve karboksil ve lignindeki C=O titreşimlerinin veya C-N, C-O gerilmelerinin, lignin ve hemiselülozdaki CO bağının, 1053 cm⁻¹'deki yapı C-O bağının (primer alkol), 1032 cm⁻¹'deki bant karboksilik asit-alkol-eter yapılarının yada 1030cm⁻¹-1060 cm⁻¹ 'deki bantlar lignin selüloz ve hemiselülozda C=O gerilmesinin, 668 cm⁻¹'deki pik güçlü C=C alkan disibstitüe (cis) bağının ve 590 cm⁻¹ ve 567 cm⁻¹'deki pikler C-Cl bağının göstergesi olarak değerlendirilmiştir.

A-4 S ağaç talaşında 3706 cm⁻¹ 'deki OH gerilmesi alkoller, asitler ve H bağının, 3680 cm⁻¹ ve 3337 cm⁻¹ deki pikler hemiselüloz-lignin-selüloz H bağlarının, 2922 cm⁻ ¹'deki C-H gerilmesinin, 2864 cm⁻¹'deki C-H gerilmesinin (alkan), 2360 cm⁻¹ ve 2341 cm⁻¹'dekiler CO₂- CO bandının, 2050 cm⁻¹'deki CO₂- CO bandının, 1979 cm⁻¹'deki alken ve alkil gurupları C-H titreşim bandının, 1733 cm⁻¹ 'deki bantlar eşleşmemiş keton, aldehit ve karbonil gruplarındaki C=O bağlarının, 1505 cm⁻¹'deki pik ligninde aromatik iskelet titreşimi ve lignindeki aromatik halkalardaki C=O ve COO yapılarının, 1456 cm-¹'deki C-H bağını veya CH₂ ksilen ve ligninde bozunma titreşiminin, 1420 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasını ve aromatik C-H tireşimleri yada aromatik halkalardaki C=C veya karbonhidratlardaki CH₂ yapılarının, 1371 cm⁻¹ hemiselüloz ve selülozun C-H deformasyonu yada odunun tüm bileşenlerindeki C-H yapılarının, 1319 cm⁻¹'deki selülozdaki C-H titreşimini ve syringyl türevlerinin ⁺C-O titreşimlerinin, 1234 cm⁻¹ 'deki bant ksilendeki asetil, karboksil ve lignindeki C=O titreşimlerinin veya C-N, C-O gerilmelerini, lignin ve hemiselülozdaki CO bağının, 1053 cm⁻¹'deki pik C-O bağını (primer alkol), 1032 cm⁻¹ 'deki karboksilik asit -alkol-eter yapısını yada 1030 cm⁻¹-1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozdaki C=O gerilmesinin, 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarının ve 593 cm⁻¹'deki pik C-Cl bağının göstergesi olarak değerlendirilmiştir.

A1-0(cm ⁻¹)	A2-0 (cm ⁻¹)	A3-0 (cm ⁻¹)	A4-0 (cm ⁻¹)
3706	3707	3707	3704
2980	2980	2980	2981
2843	2843	2843	
2359	2359	2359	2359
2342	2342	2342	2341
2116	2107	2115	2112
2073			
			1912
		1990	
	1877	1865	
1412		1455	
			1400
1054	1054	1053	1055
1033	1032	1032	1033
1013	1013	1015	
873			872
668	668	668	668
	567	571	
		556	

Çizelge 4.4. Saf halleri ile karbonize edilmiş yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) FT-IR sonuçları

Ağaç talaşlarına herhangi bir kimyasal eklenmeden azot ortamında aktif karbon haline getirilmesiyle oluşan adsorbanlardan;

A1-0 karbonunda görülen 3706 cm⁻¹'deki -OH gerilmesi; alkoller, asitler ve H bağının, 2980 cm⁻¹ ve 2843 cm⁻¹ 'deki pikler C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2342 cm⁻¹'dekiler CO₂- CO bandının, 2116 cm⁻¹'deki C=C gerilmesinin yada C-N₃ gerilmesinin, 2073 cm⁻¹'deki CO₂- CO bandının, 1412 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasının (aromatik C-H titreşimleri), 1054 cm⁻¹'deki C-O bağının (primer alkol), 1033 cm⁻¹'deki pik karboksilik asit-alkol-eter yada 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozdaki C=O gerilmesinin, 1013 cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarındaki C-O ve HC-OH yapılarının, 873 cm⁻¹'deki bağlarına ait C=C titreşimlerinin, 668 cm⁻¹'deki pik güçlü C=C alkan disibstitüe (cis) yapılarının göstergesi olarak değerlendirilmiştir.

A2-0 karbonunda görülen 3707 cm⁻¹'deki OH gerilmesi; alkoller, asitler ve H bağının, 2980 cm⁻¹ ve 2843 cm⁻¹'deki pikler C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2342

cm⁻¹'deki CO₂- CO bandının, 2107 cm⁻¹'deki C=C gerilme yada C-N₃ gerilmesinin, 1877 cm⁻¹'deki C-H zayıf bağlarının ya da aromatik C-H_{ar} yapısının, 1054 cm⁻¹'deki pik C-O bağının (primer alkol) , 1032 cm⁻¹'deki karboksilik asit -alkol-eter yapısının, 1030 cm⁻¹ ve 1060 cm⁻¹'dekiler lignin selüloz ve hemiselülozda C=O gerilmesinin, 1013cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarındaki C-O ve HC-OH karşılıklı girişimlerinin, 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) yapısının ve 567cm⁻¹'deki pik C-Cl bağının göstergesi olarak değerlendirilmiştir.

A3-0 karbonunda görülen 3707 cm⁻¹'deki -OH gerilmesi; alkoller, asitler ve H bağının, 2980 cm⁻¹ ve 2843 cm⁻¹'deki pikler C-H gerilmesinin (alkan) 2359 cm⁻¹ ve 2342 cm⁻¹'dekiler CO₂-CO bandının, 2115 cm⁻¹'deki C=C gerilme yada C-N₃ gerilmesinin, 1990 cm⁻¹ ve 1865 cm⁻¹'deki pikler, C-H zayıf bağlarının yada aromatik C-H_{ar} yapısının, 1455 cm⁻¹'deki CH₂ ksilen ve ligninde bozunma titreşiminin, 1053 cm⁻¹'deki C-O bağının (primer alkol), 1032 cm⁻¹'deki karboksilik asit -alkol-eter yapılarının, 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozdaki C=O gerilmesinin, 1015 cm⁻¹ 'deki kuvvetli bant eter, fenol, alkol guruplarındaki C-O ve HC-OH karşılıklı girişimlerinin, 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarının ve 571-556 cm⁻¹'deki pikler C-Cl bağının göstergesi olarak değerlendirilmiştir.

A4-0 karbonunda görülen 3704 cm⁻¹'deki OH gerilmesi; alkoller, asitler ve H bağının, 2981 cm⁻¹'deki C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2341 cm⁻¹'dekiler CO₂-CO bandının, 2112 cm⁻¹'deki C=C gerilmesinin ya da C-N₃ gerilmesinin, 1912 cm⁻¹ 'deki C-H zayıf bağlarının yada N=O bağlarının, 1400 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasının ya da aromatik C-H titreşimlerinin, 1055 cm⁻¹'deki C-O bağının (primer alkol), 1033 cm⁻¹'deki pik, karboksilik asit-alkol-eter yapılarının 1030 cm⁻¹ ve 1060 cm⁻ ¹'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin, 872 cm⁻¹'deki orta güçlükte C=C alkan trisibsitüe yada C-Cl bağının ve 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağının göstergesi olarak değerlendirilmiştir.

Saf karbonlar oluşurken 3600-3300 O-H gerilim bandının çoğunun (hidroksil, asit, fenol bantlar) kırıldığı, 2950-2800 C-H gerilim bandı alifatik, olefinik ve aromatik yapılarının A3-0 ve A4-0 kaldığı, A1-0 ve A2-0'da ise kırıldığı, 2843 cm⁻¹ C-H gerilme (alkan), 2359 cm⁻¹, 2342 cm⁻¹ CO₂- CO bandlarının kaldığı, 2107-2116 cm⁻¹ C≡C gerilme yada C-N₃ gerilmesinin oluştuğu, A1, A2, A3, A4 ağaçlarında1506 cm⁻¹ ligninde

aromatik iskelet titreşimi ve lignindeki aromatik halkalardaki C=O COO yapılarının değişmediği, 1455 cm⁻¹'deki C-H bağı veya CH₂ ksilen ve ligninde bozunma titreşimi, 1320 cm⁻¹ selülozda C-H titreşimi syringyl türevlerinin +C-O titreşimleri, 1234 cm⁻¹ ksilendeki asetil, karboksil ve lignindeki C=O titreşimleri veya C-N, C-O gerilmelerilignin ve hemiselülozdaki CO titreşimlerinin kırıldığı, A1'de 873 cm⁻¹'deki orta güçlükte C=C alkan trisibsitüe yada C-Cl bağı, A2'de 2359 cm⁻¹ CO₂- CO bandı, 1877 cm⁻¹ ve 1013 cm⁻¹ oluşmuş, 2116 cm⁻¹ C-N₃ gerilmesi, 1990 cm⁻¹ 1913 cm⁻¹ C-H zayıf bağlar yada N=O bağı, 1466 cm⁻¹ C-H bağı veya CH₂ ksilen ve ligninde bozunma titreşimi oluştuğu görülmektedir.

Çizelge 4.5. Yabani kuşburnu ağacı(A1), akasya ağacı(A2), dişbudak ağacı(A3) ve kavak ağacı(A4) talaşlarının çinko klorürü ile imregnasyonu sonucu oluşan karbonların FT-IR sonuçları

A1-1 (cm ⁻¹)	A2-1 (cm ⁻¹)	A3-1 (cm ⁻¹)	A4-1 (cm ⁻¹)	
3851	3851	3721		
3730	3730			
3707	3707	3707	3707	
3626	3627	3627		
2980	2981	2981	2981	
	2865			
2843	2843	2843		
2359	2359	2360	2359	
2342	2342	2342	2341	
2115			2111	
	2075			
1915			1990	
1557			1870	
1054	1054	1054	1053	
1032	1032	1033	1032	
1013	1013			
668	668	668	668	
			567	
			559	

Ağaç talaşının ZnCl₂ ile muamele edilmesiyle elde edilen aktif karbonlardan A1-1'de görülen 3851 cm⁻¹, 3730 cm⁻¹, 3707 cm⁻¹ ve 3626 cm⁻¹ OH gerilmesini gösteren pikler; alkoller, asitler ve H bağının, 2980 cm⁻¹'deki C-H gerilmesinin, 2843 cm⁻¹'deki C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2342 cm⁻¹'deki CO₂-CO bandının, 2115 cm⁻ 1'deki C \equiv C gerilmesinin veya C⁻ \equiv ⁺N gerilmesinin, 1915 cm⁻¹'deki C-H zayıf bağlarının yada N=O bağının, 1557 cm⁻¹'deki, aromatik gruptaki (C=C) bağının, 1054 cm⁻¹'deki C-O bağının (primer alkol), 1032 cm⁻¹'deki karboksilik asit-alkol-eter yapılarının, 1030 cm⁻ ¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozdaki C=O gerilmesinin, 1013cm⁻ girişimlerinin ve 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarının göstergesi olarak değerlendirilmiştir.

A2-1 aktif karbonunda 3851-3730-3710-3627 cm⁻¹ OH gerilmesi; alkoller, asitler ve H bağının, 2981 cm⁻¹ 'deki C-H gerilmesinin, 2865 cm⁻¹ ve 2843 cm⁻¹ 'deki titreşimler C-H gerilmesinin (alkan), 2359 cm⁻¹, 2342 cm⁻¹ ve 2075 cm⁻¹'deki pikler CO₂- CO bandının, 1054 cm⁻¹'deki pik C-O bağının (primer alkol), 1032 cm⁻¹'deki karboksilik asit -alkol-eter gerilmesinin, 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin, 1013 cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarındaki C-O ve HC-OH yapılarının karşılıklı girişimlerin ve 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarının göstergesi olarak değerlendirilmiştir.

A3-1 aktif karbonunda 3721-3707-3627 cm⁻¹ OH gerilmesi; alkoller, asitler, H bağının, 2981 cm⁻¹ 'deki bant C-H gerilmesinin, 2843 cm⁻¹'deki C-H gerilmesinin (alkan), 2360 cm⁻¹ ve 2342 cm⁻¹'deki CO₂-CO bandının, 1054 cm⁻¹'deki pik C-O bağının (primer alkol) , 1032 cm⁻¹'deki karboksilik asit -alkol-eter gerilmesinin, 1030 cm⁻¹ ve 1060 cm⁻¹ 'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin ve 668 cm⁻¹' deki güçlü C=C alkan disibstitüe (cis) bağlarının göstergesi olarak değerlendirilmiştir.

A4-1 aktif karbonunda 3721-3707-3627 cm⁻¹ OH gerilmesi; alkoller, asitler, H bağının, 2981 cm⁻¹ 'deki bant C-H gerilmesinin, 2843 cm⁻¹ 'deki C-H gerilmesinin (alkan), 2360 cm⁻¹ ve 2342 cm⁻¹ 'deki CO₂- CO bandının, 2111 cm⁻¹ 'deki C=C gerilmesinin yada C-N₃ gerilmesinin, 1990 cm⁻¹ 'deki pik C-H zayıf bağlarının yada aromatik C-H_{ar} bağlarının, 1053 cm⁻¹ 'deki pik C-O bağının (primer alkol), 1032 cm⁻¹ 'deki karboksilik asit -alkol-eter gerilmesinin, 1030 cm⁻¹ ve 1060 cm⁻¹ 'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin ve 668 cm⁻¹' deki güçlü C=C alkan disibstitüe (cis) bağlarının göstergesi olarak değerlendirilmiştir.

Genel olak çinko klorür ile yapılan aktif karbonların saf ağaç talaşı ile karşılaştırıldığında yüksek dalga boyundaki H bağlarının korunduğu ve arttığı, 1234 cm⁻¹-1616 cm⁻¹ arasındaki bağların ise kırıldığı görülmektedir. Saf aktif karbonlarda yüksek dalga boyundaki H bağları ve karbon ve oksijen bağları az oluşurken çinko klorür doyurması ile yapılan aktif karbonda daha fazla oluşmuştur.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1-2 (cm ⁻¹)	A2-2 (cm ⁻¹)	A3-2 (cm ⁻¹)	A4-2 (cm ⁻¹)
3707 3707 3707 3680 3680 3429 351 2981 351 2981 2981 2972 5 2865 2865 2843 2843 2360 2359 2341 2342 2342 2342 2343 243 2340 2342 2341 2342 2343 214 1993 1870 159 159 159 1918 103 1870 159 1918 1054 1054 1054 1054 1054 1054 1054 1054 1056 870 668 682 662 623 671 550 563 564 564 558	3853			
281 360 360 3429 351 291 291 297 297 277 276 2865 2865 2843 2843 2360 2359 2341 2342 2360 2359 2341 2342 2342 2342 237 193 1918 1903 159 159 101 101 1054 1054 1032 1033 1016 1008 870 688 626 626 620 581 577 569 568 564 586	3707	3707	3707	
3680 3680 3429 331 2981 2981 2937 291 2972 2972 2865 2863 2843 2843 2360 2359 2359 2341 2342 2342 2073 214 2086 2073 214 2086 2073 1918 1003 1870 1559 1559 1870 1870 1559 1091 193 1936 1054 1054 1054 1033 1054 1054 1033 1031 1016 108 870 870 668 68 68 68 620 580 577 569 568 564 558			2981	
3429 3351 2981 2981 2937 2972 2865 2865 2843 2843 2360 2359 2359 2341 2342 2342 2073 2114 2086 2073 2114 2086 2073 1918 1093 1559 159 1870 1559 159 1870 1054 1054 1054 1054 1054 1033 1016 1054 1033 1016 68 68 68 68 68 68 68 68 692 595 580	3680	3680		
2981 2981 2972 2972 2865 2865 2843 2843 2360 2359 2359 2341 2342 2342 2073 2114 2086 2073 2114 2086 1918 1903 1870 1559 159 1870 1054 1054 1054 1054 1054 1033 1054 1054 1033 1016 1008 870 668 668 668 620 521 577 569 568 564 558	3429	3351		
29372972286528652843284323602359237123422073211420861913190315591559101143105410541032103310161008668668620595569568564554	2981	2981		
2972 2865 2865 2843 2843 2360 2359 2359 2341 2342 2342 2073 214 2086 1073 1914 2086 159 1913 1870 1559 159 1870 1054 1054 1054 1052 1032 1033 1016 1008 870 870 668 668 668 620 595 580 577 569 568 564 558 520 520 521 552	2937			
2865 2865 2843 2843 2360 2359 2359 2341 2342 2342 2073 2114 2086 1993 1870 1559 1918 1903 1559 159 1870 101 101 1396 1054 1054 1033 1054 1054 1033 1016 1008 870 870 668 668 668 620 595 580 577 569 568 564 558 520 521 521 551	2972			
2843 2843 2360 2359 2359 2341 2342 2342 2073 2114 2086 2073 2114 2086 1993 1870 1870 1559 159 1870 1559 159 1870 1054 1054 1054 1032 1032 1033 1016 1008 870 668 668 668 62 595 580 569 568 564 558	2865	2865		
2360 2359 2359 2359 2341 2342 2342 2073 2114 2086 1903 1903 1870 1559 1559 1870 1559 159 1413 1054 1054 1054 1032 1032 1033 1016 1008 870 668 668 668 620 595 580 569 568 564 558	2843	2843		
2341 2342 2073 2114 2086 1993 1993 1559 1918 1903 1559 1559 1413 1054 1054 1054 1032 1032 1033 1016 1008 870 668 668 668 622 595 580 569 568 564 558	2360	2359	2359	2359
2073 2114 2086 1993 1993 1559 1918 1903 1559 1559 1870 1054 1054 1054 1032 1032 1033 1016 1008 870 668 668 668 622 595 569 569 568 564	2341	2342	2342	
1918 1903 1559 1559 1559 1413 1091 1396 1054 1054 1032 1032 1016 1008 668 668 622 595 569 568 568 564 564 558 521 552	2073	2114	2086	
1918 1903 1870 1559 1559 1413 1091 1396 1054 1054 1034 1032 1032 1033 1016 1008 870 668 668 668 622 595 580 569 568 564 558			1993	
1559 1559 1413 1396 1091 1396 1054 1054 1032 1032 1033 1016 1008 870 870 668 668 668 622 595 580 577 569 568 564 558		1918	1903	1870
1413 1396 1091 1054 1032 1034 1033 1016 1008 870 870 668 668 668 668 622 595 580 577 569 568 564 558	1559	1559		
1091 1054 1054 1032 1032 1033 1016 1008 870 668 668 668 622 595 580 569 568 564 552			1413	
1091 1054 1054 1032 1032 1016 1008 668 668 622 595 569 568 568 564 552				1396
1054 1054 1032 1032 1033 1016 1008 870 870 668 668 668 668 622 595 580 577 569 568 564 558		1091		
1032 1033 1033 1016 1008 870 870 668 668 668 668 622 595 580 577 569 568 564 552	1054	1054	1054	
1016 1008 870 870 668 668 668 622 595 569 568 564 552 552	1032	1032	1033	1033
668 668 622 595 569 568 564 558 552 552 552	1016	1008	870	870
622 595 569 568 564 558 552	668	668	668	
595 580 577 569 568 564 558 552 552 558 552		622		
569 568 564 558 552 552 552 552			595	
569 568 564 558 552 552 558			580	577
552	569	568	564	558
			552	

Çizelge 4.6. Yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının sodyum hidroksit ile impregnasyonu sonucu oluşan karbonların FT-IR sonuçları.

A1 ağaç talaşı ve NaOH ile elde edilen aktif karbonlardan; A1-2 aktif karbonunda görülen 3853-3707 cm⁻¹ OH gerilmesi, alkoller, asitler ve H bağının, 3680 cm⁻¹ 3429 cm⁻¹'deki hemi selüloz-lignin-selüloz H bağlarının, 2981 cm⁻¹, 2972 cm⁻¹ ve 2937 cm⁻¹'dekiler C-H gerilmesinin, 2865 cm⁻¹ ve 2843 cm⁻¹'deki C-H gerilmesinin, 2360 cm⁻¹ ve 2073 cm⁻¹'deki veriler CO₂- CO bandının, 1559 cm⁻¹'deki aromatik gruptaki (C=C) çift bağının, 1053 cm⁻¹'deki pik C-O bağının (primer alkol), 1032 cm⁻¹'deki karboksilik asit-alkol-eter gerilmesinin, 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin, 1016 cm⁻¹'deki kuvvetli bant eter, fenol, alkol

gruplarında C-O ve HC-OH karşılıklı girişimlerinin, 668 cm⁻¹'deki pik güçlü C=C alkan disibstitüe (cis) bağının ve 569 cm⁻¹'deki OH gerilmesinin yada C-Cl bağlarının göstergesi olarak değerlendirilmiştir.

A2-2 aktif karbonunda 3707 cm⁻¹ OH gerilmesi, alkoller, asitler ve H bağının, 3680 cm⁻¹ ve 3351 cm⁻¹'deki pikler hemi selüloz-lignin-selüloz H bağlarının, 2981 cm⁻¹, 2865 cm⁻¹.ve 2843 cm⁻¹'deki sinyaller C-H gerilmesinin (alkan), 2359 cm⁻¹ ve 2342 cm⁻¹ 'deki pikler CO₂-CO bandının, 2114 cm⁻¹'deki pik C≡C gerilmesinin yada C-N₃ gerilmesinin, 1918 cm⁻¹ 'deki sinyal C-H zayıf bağların yada N=O bağının,1559 cm⁻¹ 'deki aromatik gruptaki (C=C) bağının, 1091 cm⁻¹'dekiler PO₂ fosfolipid titreşimlerinin, 1054 cm⁻¹'deki pik C-O bağının (primer alkol), 1032 cm⁻¹ karboksilik asit -alkol-eter gerilmesinin, 1030 cm⁻¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin, 1008 cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarında C-O ve HC-OH karşılıklı girişimlerinin ya da PO₄ titreşimlerinin, 668 cm⁻¹'deki pik güçlü C=C alkan disibstitüe (cis) bağının ve 622 cm⁻¹ ve 568 cm⁻¹'deki OH gerilmesinin yada C-Cl

A3-2 aktif karbonunda 3707 cm⁻¹ OH gerilmesi, alkoller, asitler ve H bağının, 2981 cm⁻¹'deki bant C-H gerilmesinin, 2359 cm⁻¹, 2342 cm⁻¹ ve 2086 cm⁻¹'deki pikler CO₂-CO bandının, 1993-1903 cm⁻¹'dekiler C-H zayıf bağlarının yada N=O bağının, 1413 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasının aromatik C-H tireşimleri yada aromatik halkalardaki C=C veya karbonhidratlardaki CH₂ yapılarının, 1054 cm⁻¹'deki pik C-O bağının (primer alkol), 1033 cm⁻¹ karboksilik asit-alkol-eter gerilmesinin, 1030 cm⁻ ¹ ve 1060 cm⁻¹'deki pikler lignin selüloz ve hemiselülozda C=O gerilmesinin, 870 cm⁻ ¹'deki izole edilmiş aromatik hidrojen atomuna ait titreşimler yada orta güçlükte C=C alkan trisibsitüe titreşimlerinin, 668 cm⁻¹ 'deki güçlü C=C alkan disibstitüe (cis) bağının, 595 cm⁻¹, 580 cm⁻¹, 564cm⁻¹ ve 552 cm⁻¹ dalga boylarındaki sinyaller OH gerilmesinin ya da C-Cl bağlarının göstergesi olarak değerlendirilmiştir.

A4-2 karbonunda 2359 cm⁻¹ ve 2050 cm⁻¹'deki pikler, CO₂-CO bandının, 1870 cm⁻¹'deki C-H zayıf bağlarının ya da aromatik C-H_{ar} bağlarının, 1396 cm⁻¹'deki lignin ve karbondihitrat ⁺C-H parçalanmasın, aromatik C-H tireşimlerinin ya da aromatik halkalardaki C=C veya karbonhidratlardaki CH₂ yapılarının, 1033 cm⁻¹ karboksilik asitalkol-eter gerilmesinin, 668 cm⁻¹ güçlü C=C alkan disibstitüe (cis) bağlarının, 870 cm⁻ ¹'deki orta güçlükte C=C alkan trisibsitüe ya da C-Cl bağının 593 cm⁻¹, 577 cm⁻¹ 558 cm⁻¹
¹ OH gerilme ya da C-Cl bağlarının göstergesi olarak değerlendirilmiştir.

Genel olarak bakıldığında sodyum hidroksit muamele edilerek elde edilen aktif karbonlarda 3627-3326 cm⁻¹ hemiselüloz-lignin-selüloz H bağılarnın, A1, A2, A3, A4 ağaçlarında, 1506 cm⁻¹'deki lignindeki aromatik iskelet titreşimini, lignindeki aromatik halkalardaki C=O COO bağlarını, 1455 cm⁻¹'de C-H bağı veya CH₂ ksilen ve ligninde bozunma titreșimini, 1320 cm⁻¹ selülozda C-H titreșimi syringyl türevlerinin ⁺C-O titreşimlerini, 1234 cm⁻¹'de ksilendeki asetil ve karboksil ve lignindeki C=O titreşimlerini veya C-N, C-O gerilmelerini, lignin ve hemiselülozdaki CO titresimlerinin kırıldığı, A2-2'de 2114 cm⁻¹ C-N₃ gerilmesinin, A3-2'de 1413 cm⁻¹ simetrik antisimetrik C-H tireşimlerinin, A3'de 595-580-564-552 cm⁻¹ OH gerilme yada C-Cl bağnın, 1015cm⁻¹ kuvvetli bant eter, fenol, alkol gruplarında C-O ve HC-OH karşılıklı girişimlerinin, 870 cm⁻¹ orta güçlükte C=C alkan trisibsitüe yada C-Cl bağının, 1413 cm⁻¹ lignin ve karbondihitrat ⁺C-H parçalanması aromatik C-H titreşimleri oluşmuştur. A1-2'deki 569 cm⁻¹, A2-2'deki 568 cm⁻¹, A3-2'deki 552 cm⁻¹, 564 cm⁻¹, 580 cm⁻¹ ve 590 cm⁻¹, A4-2'deki 558 cm⁻¹ ve 577 cm⁻¹ karbon klor arası etkileşimler ya da demirin tetrahedral yapıları oluştuğu şeklinde değerlendirmeler yapılabilir.

5		,	
A1-3 (cm ⁻¹)	A2-3 (cm ⁻¹)	A3-3 (cm ⁻¹)	A4-3 (cm $^{-1}$)
	3708	3708	3703
	2981	2981	2981
		2843	2843
2359	2359	2360	2359
		2342	2341
2115	2116	2118	2082
	1995		
1899	1906	1913	1906
1568	1557	1558	1557
	1054	1054	1054
1032	1032	1033	1033
			1012
		668	668
581	577		
556	555		571

Çizelge 4.7. Yabani kuşburnu ağacı(A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının fosforik asit ile impregnasyonu sonucu oluşan karbonların FT-IR sonuçları

Ağaç talaşının H₃BO₃ ile etkileştirilmesiyle elde edilen aktif karbonlardan; A1-4'de görülen 2981 cm⁻¹'deki pik C-H gerilmesini, 1981 cm⁻¹'deki C-H gerilmesini (alkan), 2359 cm⁻¹ ve 2341 cm⁻¹ CO₂-CO bandını, 2112 cm⁻¹'deki C-N₃ gerilmesini, 2073 cm⁻¹, 1992 cm⁻¹ ve 1913 cm⁻¹'dekiler C-H zayıf bağlarını yada N=O bağlarını, 1560 cm⁻ ¹'deki aromatik gruptaki (C=C) bağlarını, 1054 cm⁻¹'deki pik C-O bağlarını (primer alkol), 1033 cm⁻¹'deki karboksilik asit-alkol-eter gerilmesini, 1030 cm⁻¹ ve 1060 cm⁻ ¹'deki lignin selüloz ve hemiselülozda C=O gerilmesini ve 1015 cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarındaki C-O ve HC-OH yapılarının karşılıklı girişimlerini gösterdiği şeklinde değerlendirme yapılmıştır.

A2-4 aktif karbonunda görülen 3708 cm⁻¹'deki pik OH gerilmesi, alkoller, asitler ve H bağlarını, 2981 cm⁻¹'deki C-H gerilmesini, 2843 cm⁻¹, 2359 cm⁻¹ ve 2341 cm⁻ ¹'dekiler CO₂-CO bandını, 2112 cm⁻¹'deki C-N₃ gerilmesini, 1559 cm⁻¹'deki aromatik gruptaki (C=C) bağlarını, 1054 cm⁻¹'deki pik C-O bağlarını (primer alkol), 1033 cm⁻ ¹'deki karboksilik asit-alkol-eter gerilmesini, 1030 cm⁻¹ ve 1060 cm⁻¹'deki lignin selüloz ve hemiselülozda C=O gerilmesini, 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarını, 591 cm⁻¹ ve 577 cm⁻¹ 'deki pikler ise OH gerilme ya da C-Cl bağını gösterdiği şeklinde değerlendirme yapılmıştır.

A3-4 aktif karbonunda görülen 3703 cm⁻¹'deki pik OH gerilmesi, alkoller, asitler ve H bağlarını, 2981 cm⁻¹'deki C-H gerilmesini, 2843 cm⁻¹'deki pik C-H gerilmesini (alkan), 2360 cm⁻¹ ve 2342 cm⁻¹'dekiler CO₂-CO bandını, 2116 cm⁻¹'deki C-N₃ gerilmesini, 1560 cm⁻¹'deki aromatik gruptaki (C=C) bağlarını, 1054 cm⁻¹'deki pik C-O bağlarını (primer alkol), 1033 cm⁻¹'deki karboksilik asit-alkol-eter gerilmesini, 1030 cm⁻¹ ve 1060 cm⁻¹'deki lignin selüloz ve hemiselülozda C=O gerilmesini, 1015 cm⁻¹'deki kuvvetli bant eter, fenol, alkol gruplarında C-O ve HC-OH karşılıklı girişimlerini gösterdiği şeklinde değerlendirme yapılmıştır.

A4-4 aktif karbonunda görülen 3707 cm⁻¹'deki pik OH gerilmesi, alkoller, asitler ve H bağlarını, 2981 cm⁻¹'deki'C-H gerilmesini, 2360 cm⁻¹ ve 2341 cm⁻¹'dekiler CO₂-CO bandını, 2116 cm⁻¹'deki C-N₃ gerilmesini, 1919cm⁻¹'deki pik C-H zayıf bağlarını yada N=O bağlarını, 1558 cm⁻¹'deki aromatik gruptaki (C=C) bağlarını, 1054 cm⁻¹'deki pik C-O bağlarını (primer alkol), 1033 cm⁻¹ karboksilik asit –alkol-eter, 1032 cm⁻¹ ve 1052 cm⁻¹'deki karboksilik asit-alkol-eter gerilmesini, 1030 cm⁻¹ ve 1060 cm⁻¹'deki lignin selüloz ve hemiselülozda C=O gerilmesini, 668 cm⁻¹'deki güçlü C=C alkan disibstitüe (cis) bağlarını, 591 cm⁻¹ ve 568 cm⁻¹'deki pikler ise OH gerilme ya da C-Cl bağını gösterdiği şeklinde değerlendirme yapılmıştır. Genel olarak C-N bağı, C-H bağları(alkan), zayıf C-H bağları ve aromatik C=C bağları oluştuğu söylenebilir.

A1-4 (cm ⁻¹)	A2-4 (cm ⁻¹)	A3-4 (cm ⁻¹)	A4-4 (cm ⁻¹)
	3728	3703	3707
2981	2981	2981	2981
	2843		2843
2359	2359	2360	2359
2341	2341	2342	2341
2112	2118	2116	2116
1992	1897	1990	
1913		1913	1919
1559	1559	1560	1558
1054	1054	1054	1054
1033	1033	1033	1032
			1015
	668		668
	577		568

Çizelge 4.8. Yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3) ve kavak ağacı (A4) talaşlarının borik asit ile impregnasyonu sonucu oluşan karbonların FT-IR sonuçları

Ağaç talaşı ve H₂BO₃ ile elde edilen aktif karbonlardan; A1-4'de görülen 2981 cm⁻¹ (C-H gerilmesi alkan) 2359 cm⁻¹, 2341 cm⁻¹, CO₂-CO bandı, 2112 cm⁻¹ C-N₃ gerilmesi, 2073 cm⁻¹-1992 cm⁻¹, 1913 cm⁻¹ C-H zayıf bağlar yada N=O bağı, 1560 cm⁻¹ aromatik gruptaki (C=C), 1054 cm⁻¹ C-O primer alkol, 1033 cm⁻¹ karboksilik asit –alkoleter, (1032 cm⁻¹-1053 cm⁻¹ karboksilik asit–alkol-eter ya da 1030 cm⁻¹-1060 cm⁻¹ lignin selüloz ve hemiselülozda C=O gerilmesi), 1015cm⁻¹ kuvvetli bant eter-fenol-alkol guruplarında C-O ve HC-OH karşılıklı girişimlerini gösterdiği düşünülmektedir.

A2-4'de görülen 3728 cm⁻¹ OH gerilmesi (alkoller, asitler, H bağı), 2981 cm⁻¹ C-H gerilmesi, 2843 cm⁻¹ 2359 cm⁻¹ 2341 cm⁻¹ CO₂-CO bandı CO₂- CO bandı, 2112 cm⁻¹ C-N₃ gerilmesi, 1559 cm⁻¹ aromatik gruptaki (C=C), 1054 cm⁻¹ C-O primer alkol, 1033 cm⁻¹ karboksilik asit–alkol-eter, (1032 cm⁻¹-1053 cm⁻¹ karboksilik asit –alkol-eter yada 1030 cm⁻¹-1060 cm⁻¹ lignin selüloz ve hemiselülozda C=O gerilmesi), 668 cm⁻¹ güçlü C=C alkan disibstitüe (cis), 591 cm⁻¹ C-Cl bağı, 577 cm⁻¹ OH gerilme yada C-Cl bağı olduğu düşünülmektedir. A3-4 karbonunda görülen 3703 cm⁻¹ OH gerilmesi (alkoller, asitler, H bağı, 2981 cm⁻¹(C-H gerilmesi alkan), 2843 cm⁻¹ C-H gerilme (alkan), 2360 cm⁻¹, 2342 cm⁻¹ CO₂-CO bandı, 2116 cm⁻¹ C-N₃ gerilmesi 1913 cm⁻¹ C-H zayıf bağlar ya da N=O bağı, 1560 cm⁻¹ aromatik gruptaki (C=C), 1054 cm⁻¹ C-O primer alkol, 1033 cm⁻¹ karboksilik asit – alkol-eter, (1032 cm⁻¹ -1053 cm⁻¹ karboksilik asit –alkol-eter ya da 1030 cm⁻¹ -1060 cm⁻¹ lignin selüloz ve hemiselülozda C=O gerilmesi), 1015 cm⁻¹ kuvvetli bant eter, fenol, alkol guruplarında C-O ve HC-OH karşılıklı girişimleri olduğu söylenebilir.

A4-4 karbonunda görülen 3707 cm⁻¹ OH gerilmesi (alkoller, asitler, H bağı, 2981 cm⁻¹ (C-H gerilmesi alkan), 2360 cm⁻¹, 2341 cm⁻¹ CO- CO bandı, 2116 cm⁻¹ C-N₃ gerilmesi, 1919cm⁻¹ C-H zayıf bağlar yada N=O bağı, 1558 cm⁻¹ aromatik gruptaki (C=C), 1054 cm⁻¹ C-O primer alkol, 1033 cm⁻¹ karboksilik asit–alkol-eter, (1032 cm⁻¹ - 1053 cm⁻¹ karboksilik asit–alkol-eter ya da 1030 cm⁻¹-1060 cm⁻¹ lignin selüloz ve hemiselülozda C=O gerilmesi), 668 cm⁻¹ güçlü C=C alkan disibstitüe (cis) 591 cm⁻¹ yada C-Cl bağı, 568 cm⁻¹ OH gerilme yada C-Cl bağı olduğu düşünülmektedir.

Genel olarak C-N bağı, C-H bağları(alkan), zayıf C-H bağları ve aromatik C=C bağları oluştuğu söylenebilir. Tablolar halinde verilen FTIR analizlerinin grafikleri Ek.1 de verilmiştir.

4.1.3. Bet analizleri

Brunauer-Emmett-Teller (BET) yüzey alanı analizi ve Barrett-Joyner-Halenda (BJH) gözenek boyutu ve hacim analizidir. BET analizi; tam otomatik bir analizör kullanılarak bağıl basıncın bir fonksiyonu olarak ölçülen nitrojen çok katmanlı adsorpsiyon ile malzemelerin hassas spesifik yüzey alanı değerlendirmesini sağlar. Teknik, m²/g cinsinden toplam özgül yüzey alanını belirlemek için dış alan ve gözenek alanı değerlendirmelerini kapsar ve birçok uygulamada yüzey gözenekliliği ve parçacık boyutunun etkilerinin incelenmesinde önemli bilgiler verir. BJH analizi, adsorpsiyon ve desorpsiyon teknikleri kullanılarak gözenek alanını ve spesifik gözenek hacmini belirlemek için de kullanılabilir. Bu teknik, numunenin partikül boyutundan dolayı dış alandan bağımsız olarak gözenek boyutu dağılımını karakterize eder. Bu metotlarla aşağıda verilen işlemlerle ilgili bilgiler elde edilebilir. Hızlı tek noktalı ve çok noktalı spesifik BET yüzey alanı belirlemeleri.

• Dispers, gözeneksiz veya makro gözenekli malzemelerin tam BET yüzey alanı karakterizasyonu gözenek çapı> 50 nm ve gözenek çapı 2 nm ile 50 nm arasında olan mezogözenekli malzemelerin.

• Mikro gözenekli malzemelerin BET yüzey alanı karakterizasyonu (<2 nm).

• Tam tamamlayıcı adsorbat kalınlık modelleriyle BJH analizi kullanılarak mezo gözenek ve makro gözenek aralıklarında gözenek hacmi ve gözenek alanı dağılımları.

• BJH adsorpsiyonu ve desorpsiyon ortalama gözenek çapı (4V/A) belirlemeleri.

Üretilen aktif karbonların izoterm grafiklerine bakıldığında ise Şekil 4.1'de A1-0, A2-0, A3-0, A4-0 karbonlarının grafiklerinin herhangi bir izoterm tipine uymadıkları görülmektedir. Yani uygun mikro, mezo ve makro gözenek yapılarının çok az oluştuğu ve basınçla gözenek yapılarının bozulduğu düşünülmektedir. Şekil 4.2'ye bakıldığında A1-1, A2-1, A4-1 Tip 1 izoterm tipine uyarken A3-1 Tip 5 izoterm tipine uyduğu görülmektedir. Adsorplama gücü düşük olan mezogözenkli yapılarda görülmektedir. Grafiğe bakıldığında kılcal yoğunlaşmanın yüksek olduğu görülmektedir. Şekil 4.3'e bakıldığında ise A1-2, A2-2 aktif karbonlarında Tip 1 izoterm yapısı görülmektedir. Tip 3 izoterm yapısı adsorplama gücü çok düşük katılardaki adsorpsiyonlarda görülmektedir. Şekil 4.4 ve Şekil 4.5'e bakıldığında Tip 3 izoterm yapısını olduğu ve düşük adsorpsiyonlu katılar olduğu söylenebilir.

73

Şekil 4.1. A1-0, A2-0, A3-0, A4-0 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri.

Şekil 4.2. A1-1, A2-1, A3-1, A4-1 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikler.

Şekil 4.3. A1-2, A2-2, A3-2, A4-2 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri.

Şekil 4.4. A1-3, A2-3, A3-3, A4-3 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri.

Şekil 4.5. A1-4, A2-4, A3-4, A4-4 karbonlarının azot adsorpsiyon-desorpsiyon izoterm grafikleri.

Saf karbon analizleri

Aşağıda A1, A2, A3, A4 ağaçlarının kimyasal impregnasyon öncesi azot ortamında 800 ⁰C deki karbonizasyon sonucu oluşan karbonların bet analiz tablosu verilmiştir.

Çizelge 4.9.	A1, A2,	A3, A4	ağaçlarının	saf karbon	analizleri
--------------	---------	--------	-------------	------------	------------

	A-1-0	A-2-0	A-3-0	A-4-0
P / p°' da tek noktalı yüzey alanı m²/g	86.4086	266.1453	60.4115	1.2577
BET Yüzey alanı m²/g	80.8185	257.3286	55.9666	0.6297
Langmuir Yüzey Alanı m ² /g	97.9661	339.0434	68.3674	0.6701
t-Plot Micropore Alanı m²/g	90.5580	215.9078	74.7113	-
t-Plot Dış Yüzey Alanı m²/g	-9.7395	41.4208	-18.7447	-
17.000 Å ile 3000.000 Å arasında BJH adsorpsiyon kümülatif yüzey alanı m ² /g	0.5063	3.7871	0.8121	-
17.000 Å ile 3000.000 Å arasında BJH Desorpsiyon kümülatif yüzey alanı m ² /g	0.539	10.351	1.270	-
$p/p^{\circ} = 0.984320420$ da 1254.189 Å'dan daha az genişlikteki tek nokta adsorpsiyonu toplam gözenek hacmi cm ³ /g	0.028783	0.129031	0.012812	-
t-Plot mikropor hacmi cm ³ /g	0.038459	0.100320	0.032217	-
BJH adsorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında artan yüzey hacmi	0.006981	0.017453	0.032711	-
BJH Desorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında artan yüzey hacmi cm ³ /g	0.003541	0.005356	0.007563	-
Adsorpsiyon ortalama gözenek genişliği (4V/A by BET) Å	14.2456	20.0570	9.7021	-
BJH Adsorpsiyon ortalama gözenek genisliği (4V/A) Å	517.937	67.445	1030.022	-
BJH Desorpsiyon ortalama gözenek genişliği (4V/A) Å	279.713	56.567	372.532	-

Çizelge 4.9'a bakıldığında herhangi bir işlem uygulamadan analiz edilen odun talaşlarının tek noktalı yüzey alanı, BET yüzey alanı, Langmuir yüzey alanı, t-Plot micropore alanı ve t-Plot dış yüzey alanı en yüksek olan materyalin A2-0 aktif karbonu olduğu görülmektedir. Ayrıca 125 nm daha az genişlikte olan gözeneklerin toplam hacmi, t plot mikro gözenek hacmi, BJH adsorpsiyon verilerine göre 1.7 nm-300 nm arasında bulunan toplam gözenek hacmi ve BJH desorpsiyon toplam hacmi en yüksek A2-0 ağacına ait saf karbondur. Adsorpsiyon sonucu elde edilen verilerde ortalama gözenek genişliğinin A1-0 karbonunda 1.4 nm, A2-0 karbonuda 2.0 nm, A3-0 karbonunda 0.9 nm

olarak ölçülmüş, A4-0 karbonunda değer ölçülememiştir. BJH adsorpsiyon ortalama gözenek genişliği A1-0 karbonunda 51.7 nm, A2-0 karbonuda 6.7 nm, A3-0 karbonunda 103 nm olarak ölçülmüş, A4-0 karbonunda değer ölçülememiştir. BJH desorpsiyon ortalama gözenek genişliği A1-0 karbonunda 27.9 nm, A2-0 karbonuda 5.6 nm, A3-0 karbonunda 37.2 nm olarak ölçülmüş, A4-0 karbonunda ise değer ölçülememiştir. Bu değerlerden A1-0 ve A3-0 karbonlarının makro gözenekli yapıda, A2-0 aktif karbonun mezo gözenekli yapıda olduğu görülmektedir.

Çinko klorür ile muamele edilerek üretilmiş aktif karbonların bet analizleri

Çinko klorür ile imregnasyon sonrası üretilmiş aktif karbonların BET sonuçları Çizelge 4.10'da verilmiştir.

	A-1-1	A-2-1	A-3-1	A-4-1
$P \ / \ p \ ^{\circ \prime}$ da tek noktalı yüzey alanı m²/g	1119.9437	1175.7714	1009.5787	989.3159
BET Yüzey alanı m ² /g	1133.0651	1174.5344	1040.1666	999.1368
Langmuir Yüzey Alanı m ² /g	1542.1622	1596.0528	1430.6225	1291.6260
t-Plot Micropore Alanı m ² /g	391.5849	679.4683	118.6208	333.8985
t-Plot Dış Yüzey Alanı m²/g	741.4802	495.0662	921.5458	665.2383
17.000 Å ile 3000.000 Å arasında BJH adsorpsiyon	292.1978	131.8086	657.5904	303.4611
kümülatif yüzey alanı m²/g				
17.000 Å ile 3000.000 Å arasında BJH Desorpsiyon	267.065	119.289	643.204	256.432
kümülatif yüzey alanı m²/g				
$p/p^{\circ} = 0.984320420$ da 1254.189 Å'dan daha az genişlikteki tek nokta adsorpsiyonu toplam gözenek hacmi cm ³ /g	0.630631	0.598497	1.465082	0.554561
t-Plot mikropor hacmi cm³/g	0.174146	0.310218	0.045951	0.146232
BJH adsorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında	0.232924	0.122731	1.326878	0.228980
BJH Desorpsiyon 17.000 Å ile 3000.000 Å genişliği	0.242525	0.122231	1.322892	0.244848
A deservices and a real second a real dist (AV/A has DET) &	22.2628	20 2924	56 2402	22 2016
Ausorpsiyon ortaiama gozenek genişiigi (4 v/A by BE1) A	22.2028	20.3824	30.3403	22.2010
BJH Adsorpsıyon ortalama gözenek genişliği (4V/A) Å	34.886	41.1545	82.517	35.718
BJH Desorpsiyon ortalama gözenek genişliği (4V/A) Å	33.200	37.093	80.469	32.274

Çizelge 4.10. A1, A2, A3, A4 ağaçlarının çinko klorür ile muamele edilerek üretilmiş aktif karbonların BET analizleri

Çizelge 4.10'a bakılıp P / p °' da tek noktalı yüzey alanı değerlerinin tablo Çizelge 4.9'da daki değerlerle kıyaslandığında A1-1'in yüzey alanın A1-0 kıyasla yaklaşık 13 kat, A2-1'in A2-0'a kıyasla yaklaşık 4.5 kat, A3-1'in A3-0'a göre yaklaşık 16 kat ve A4-1'in A4-0'a göre yaklaşık 469 kat arttığı, BET yüzey alanlarında ise bu artışın A1-1'de A1-0 kıyasla yaklaşık 13 kat, A2-1 'de A2-0'a kıyasla yaklaşık 4 kat, A3-1 in A3-0 ın kıyasla yaklaşık 18 kat ve A4-1'in A4-0 kıyasla yaklaşık 999 kat yüzey alanının arttığı belirlenmiştir. Langmuir yüzey alanlarının kıyaslanmasında; A1-1 in yüzey alanın A1-0 kıyasla yaklaşık 15 kat, A2-1 in A2-0'a kıyasla yaklaşık 4.7 kat A3-1 in A3-0'a kıyasla yaklaşık 21 kat arttığı ve A4-1'in A4-0'da daha önce ölçülememesine rağmen yüzey alanının1291 m²/g görülmüştür. 1.7 nm ve 300 nm arasında toplam BJH adsorpsiyon ve desorpsiyon alanlarının A1-1'in A1-0 göre A2-1'ın A2-0'a göre, A3-1'in A3-0 göre; A4-1'ın A4-0'a göre arttığı görülmektedir. 125 nm den daha az genişlikte olan toplam gözenek hacimlerinin de A1-1 in A1-0 kıyasla yaklaşık 31 kat A2-1 in A2-0'a kıyasla yaklaşık 4.9 kat, A3-1 in A3-0'a kıyasla yaklaşık 121 kat arttığı ve A4-1'in A4-0'dan daha önce ölçülememesine rağmen bir artış oluştuğu gözlenmektedir. t plot mikropor hacimlerinin A1-1 in A1-0 kıyasla yaklaşık 5 kat A2-1 in A2-0'a kıyasla yaklaşık 3 kat A3-1'in A 3-0'ın yaklaşık 1.33 kat arttığı, A4-1'in A4-0'da daha önce ölçülememesine rağmen $0.146232 \text{ cm}^{3}/\text{g}$ oluştuğu görülmüştür. BJH adsorpsiyon ve desorpsiyon esnasında artan gözenek hacimleri bütün Çizelge 4.10'daki karbonların Çizelge 4.9'daki karbonlardan daha fazla olduğu, adsorpsiyon ortalama gözenek genişliğinin A1-0, A2-0 ve A3-0 da mikro gözenekli yapıya sahipken ve A4-0'da ölçülemeyecek kadar az iken A1-1, A2-1, A3-1 ve A4-1 karbonlarında ortalama gözenek boyutlarının sırasıyla 2.2 nm, 2.0 nm, 5.6 nm ve 2.2 nm boyutlarında mezopor yapılı aktif karbonlar olduğu tespit edilmiştir. BJH adsorpsiyonu değerlerine bakıldığında A1-1, A2-1, A3-1 ve A4-1 materyellerinin sırasıyla 3.4 nm, 4.1 nm, 8.1 nm ve 3.5nm oldukları, BJH desorpsiyon değerlerine bakıldığında A1-1, A2-1, A3-1 ve A4-1 sırasıyla 3.3 nm, 3.7 nm, 8.0 nm ve 3.2 nm olduğu, ortalama olarak mezopor gözeneklere sahip oldukları görülmektedir.

Sodyum hidroksit ile muamele edilerek üretilmiş aktif karbonlar

Çizelge	4.11.	A1,	A2,	A3,	A4	ağaçlarının	sodyum	hidroksit	ile	muamele	edilerek
		üreti	lmiş	aktif	karb	onların BET	analizler	i			

	A-1-2	A-2-2	A-3-2	A-4-2
$P \ / \ p \ ^{\circ \prime}$ da tek noktalı yüzey alanı m²/g	1153.2591	1076.7854	758.1002	179.9017
BET Yüzey alanı m ² /g	1152.3049	1080.5928	762.0927	177.0727
Langmuir Yüzey Alanı m ² /g	1564.3621	1389.0122	1028.9280	235.9773
t-Plot Micropore Alanı m ² /g	525.3522	437.7088	273.7612	105.6731
t-Plot Dış Yüzey Alanı Area m²/g	626.9526	642.8841	488.3315	71.3996
17.000 Å ile 3000.000 Å arasında BJH	155.6661	177.0878	221.5915	47.6811
ausorpsiyon kunulatii yuzey alain in /g				
17.000 Å ile 3000.000 Å arasında BJH	136.714	153.890	190.623	37.033
Desorpsiyon kümülatif yüzey alanı m²/g				
$p/p^{\circ} = 0.984320420$ da 1254.189 A'dan	0.590738	0.563361	0.515236	0.158939
daha az genişlikteki tek nokta adsorpsiyonu				
toplam gözenek hacmi cm³/g				
t-Plot mikropor hacmi cm ³ /g	0.242786	0.193663	0.124096	0.048873
BJH adsorpsiyon 17.000 Å ile 3000.000 Å	0.125211	0.154864	0.266294	0.104571
genişliği arasında artan yüzey hacmi cm3/g				
BJH Desorpsiyon 17.000 Å ile 3000.000 Å	0.134668	0.165230	0.269346	0.099334
genişliği arasında artan yüzey hacmi cm³/g				
Adsorpsiyon ortalama gözenek genişliği	20.5063	20.8538	27.0432	35.9038
(4V/A by BET) Å				
BJH Adsorpsiyon ortalama gözenek	36.635	40.253	55.879	112.948
genişliği (4V/A) Å				
BJH Desorpsiyon ortalama gözenek	34.604	37.322	48.620	83.332
genişliği (4V/A) Å				

Çizelge 4.11 bakılarak P/p°'da tek noktalı yüzey alanı değerlerinin Çizelge 4.9'daki değerlerle kıyaslaması yapılırsa A1-2 in yüzey alanın A1-0 kıyasla yaklaşık 13 kat, A2-1 in A2-0'a kıyasla yaklaşık 4 kat, A3-1 in A3-0'a göre yaklaşık 12 kat arttığı A4-1'de ise 179.9017 m²/g olduğu, BET yüzey alanlarının A1-2 in yüzey alanın A1-0'a kıyasla yaklaşık 14 kat, A2-2'nin A2-0'a kıyasla yaklaşık 4 kat, A3-2'nin A3-0'ın yaklaşık 13 kat arttığı ve A4-2'de ise 177.0727m²/g olduğu, Langmuir yüzey alanlarının kıyaslamasında ise A1-2'nin yüzey alanın A1-0 kıyasla yaklaşık 15 kat, A2-2'nin A2-0'a

kıyasla yaklaşık 4 kat, A3-1 in A3-0 ın yaklaşık 15 kat arttığı ve A4-2'de ise 235.9773 m^2/g olduğu görülmüştür. 1.7nm ve 300 nm arasında toplam BJH adsorpsiyon ve desorpsiyon alanlarının kıyaslanmasında ise A1-2'nin A1-0'a göre, A2-2'nin A2-0 a göre, A3-2'in A3-0'a göre ve A4-2'nin A4-0'a göre yüzey alanlarının arttığı görülmektedir, 125 nm'den daha az genişlikte olan toplam gözenek hacimlerininde A1-2'nin A1-0'a kıyasla yaklaşık 20 kat, A2-2 nin A2-0'a kıyasla yaklaşık 4 kat, A3-2nin A3-0'ın yaklaşık 43 kat arttığı, A4-1'in A4-0'ın daha önce ölçülememesine rağmen. 0.158939 cm³/g oluştuğu görülmüştür. T-plot mikropor hacimlerinin A1-2'nin A1-0 kıyasla yaklaşık 6 kat, A2-2'nin A2-0'a kıyasla yaklaşık 1 kat, A3-2'nin A3-0'ın yaklaşık 3 kat arttığı ve A4-1'in A4-0'ın daha önce ölçülememesine rağmen 0.048873cm³/g oluştuğu görülmüştür. BJH adsorpsiyonu ve desorpsiyonu esnasında artan gözenek hacimlerinin daha fazla olduğu, adsorpsiyon ortalama gözenek genişliğinin A1-0, A2-0 ve A3-0 da mikro gözenekli yapıya sahipken ve A4-0 da ölçülemeyecek kadar az iken, A1-2, A2-2, A3-2 ve A4-2 karbonlarında ortalama gözenek boyutlarının sırasıyla 2.05 nm, 2.08 nm, 2.7 nm ve 3.5 nm olup mezoporlara sahip olduğu saptanmıştır. BJH adsorpsiyonu değerlerine bakıldığında ise A1-2, A2-2, A3-2 ve A4-2 sırasıyla 3.6 nm, 4.02 nm, 5.5 nm ve 11.2 nm boyutlarında, BJH desorpsiyon değerlerine bakıldığında A1-1, A2-1, A3-1 ve A4-1 sırasıyla 3.4 nm, 3.7 nm, 4.8 nm ve 8.3 nm boyutlarında ortalama olarak mezopor gözeneklere sahip adsorbanlar oldukları görülmektedir.

Fosforik asit(H₃PO₄) ile Muamele edilerek elde edilen aktif karbonlar

	A-1-3	A-2-3	A-3-3	A-4-3
P / p °' da tek noktalı yüzey alanı m ² /g	1009.5787	742.3624	737.9185	177.7892
BET Yüzey alanı m ² /g	1040.1666	755.7429	750.6092	180.6328
Langmuir Yüzey Alanı m ² /g	1430.6225	1031.3183	1021.3551	245.3841
t-Plot Micropore Alanı m²/g	118.6208	160.5927	183.1224	44.5422
t-Plot Dış Yüzey Alanı Area m²/g	921.5458	595.1502	567.4868	136.0906
17.000 Å ile 3000.000 Å arasında BJH adsorpsiyon kümülatif	657.5904	504.0499	431.3500	117.0863
yüzey alanı m²/g				
17.000 Å ile 3000.000 Å arasında BJH Desorpsiyon kümülatif	643.204	424.940	396.748	99.362
yüzey alanı m²/g				

Çizelge 4.12. A1, A2, A3, A4 ağaçlarının fosforik asit (H₃PO₄) ile impregnasyonu ile elde edilen aktif karbonların BET analizleri

	A-1-3	A-2-3	A-3-3	A-4-3
$p/p^{\circ} = 0.984320420$ da 1254.189 Å'dan daha az genişlikteki	1.465082	0.724802	0.896577	0.181233
tek nokta adsorpsiyonu toplam gözenek hacmi cm3/g				
t-Plot mikropor hacmi cm ³ /g	0.045951	0.069877	0.079915	0.019536
BJH adsorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında	1.326878	0.578684	0.748660	0.146805
artan yüzey hacmi cm ³ /g				
BJH Desorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında	1.322892	0.617300	0.763782	0.153936
artan yüzey hacmi cm³/g				
Adsorpsiyon ortalama gözenek genişliği (4V/A by BET) Å	56.3403	38.3623	47.7786	40.1329
BJH Adsorpsiyon ortalama gözenek genişliği (4V/A) Å	82.517	54.472	75.480	59.099
BJH Desorpsiyon ortalama gözenek genişliği (4V/A) Å	80.469	48.987	70.827	52.589

Çizelge 4.12. A1, A2, A3, A4 ağaçlarının fosforik asit (H₃PO₄) ile impregnasyonu ile elde edilen aktif karbonların BET analizleri (devamı)

Çizelge 4.12'deki P/p°'da tek noktalı yüzey alanı değerlerinin Çizelge 4.9'daki değerlerle kıyaslandığında A1-3'ün yüzey alanın A1-0'a kıyasla yaklaşık 11 kat, A2-3 ün A2-0'a kıyasla yaklaşık 2 kat, A3-3'ün alanının A3-0'a göre yaklaşık 13 kat arttığı ve A4-3'de ise 177.7892 m²/g olduğu, BET yüzey alanlarının karşılaştırılmasında ise A1-3'ün yüzey alanın A1-0'a kıyasla yaklaşık 12 kat, A2-3 ün A2-0'a kıyasla yaklaşık 2 kat, A3-3'ün alanının A3-0 'a göre yaklaşık 14 kat arttığı ve A4-3'de ise 180.6328m²/g olduğu tespit edilmiştir. Langmuir yüzey alanlarının kıyaslanmasında ise A1-3 ün yüzey alanın A1-0'a kıyasla yaklaşık 14 kat, A2-3'ün A2-0'a kıyasla yaklaşık 3 kat, A3-3'ün A3-0'ın yaklaşık 14 katı arttığı ve A4-3'de ise 245.3841m²/g olduğu görülmüştür. 1.7nm ve 300 nm arasında toplam BJH adsorpsiyon ve desorpsiyon alanlarıyla ilgili veriler incelendiğinde; A1-3'in A1-0 göre A2-3'ın A2-0'a göre, A3-3'ün A3-0 göre, A4-3'ün A4-0'a göre daha büyük yüzey alanına sahip oldukları belirlenmiştir. 125 nm den daha az genişlikte olan toplam gözenek hacimlerininde A1-3'ün A1-0 kıyasla yaklaşık 50 kat, A2-3 in A2-0'a kıyasla yaklaşık 5 kat, A3-3 in A3-0'ın yaklaşık 69 kat arttığı, A4-3'in A4-0'da daha önce ölçülememesine rağmen 0.181233cm³/g oluştuğu görülmüştür. T-plot mikropor hacimlerinin A1-3'ün A1-0'a kıyasla yaklaşık 1 kat, A2-3'ün A2-0'a kıyasla daha az, A3-2'nin A3-0'ın yaklaşık 2 katı arttığı, A4-1'in A4-0'da daha önce ölçülememesine rağmen 0.019536 cm³/g oluştuğu görülmüştür. BJH adsorpsiyonu ve desorpsiyonu esnasında artan gözenek hacimleri bütün Çizelge 4.12'daki aktif karbonlarda Çizelge 4.9'dakilerden daha fazla olduğu, adsorpsiyon ortalama gözenek genişliğinin A1-0, A2-0 ve A3-0 da mikro gözenekli yapıya sahipken ve A4-0 da

ölçülemeyecek kadar az iken, A1-3, A2-3, A3-3 ve A4-3 karbonlarında ortalama gözenek boyutlarının sırasıyla 5.6 nm, 3.8 nm, 4.7 nm ve 4.0 nm boyutunda mezopor aktif karbonlar olduğu belirlenmiştir. BJH adsorpsiyonu değerlerine bakıldığında ise A1-3, A2-3, A3-3 ve A4-3 sırasıyla 8.2 nm, 5.4 nm, 7.5 nm ve 5.9 nm, BJH desorpsiyon değerlerine bakıldığında A1-3, A2-3, A3-3 ve A4-3 sırasıyla 8.0 nm, 4.8 nm, 7.0 nm ve 5.2 nm boyutunda ortalama olarak mezopor gözeneklere sahip adsorbanlar oldukları görülmektedir.

Borik asit (H₃BO₃) ile muamele edilerek üretilen aktif karbonlar

Çizelge 4.13. A1, A2, A3, A4 ağaçlarının borik asit (H₃BO₃) ile muamele edilerek üretilen aktif karbonların BET analizleri

	A-1-4	A-2-4	A-3-4	A-4-4
P / p °' da tek noktalı yüzey alanı m²/g	511.5036	631.1887	590.5428	490.1793
BET Yüzey alanı m ² /g	502.6917	615.2271	577.7285	473.1865
Langmuir Yüzey Alanı m ² /g	671.7252	821.3719	768.2379	623.2491
t-Plot Micropore Alanı m²/g	315.4067	438.3378	395.5738	412.2108
t-Plot Dış Yüzey Alanı Area m²/g	187.2851	176.8894	182.1548	60.9757
17.000 Å ile 3000.000 Å arasında BJH adsorpsiyon kümülatif yüzey	112.9963	102.5462	87.1806	1.4103
alanı m²/g				
17.000 Å ile 3000.000 Å arasında BJH Desorpsiyon kümülatif yüzey	97.016	90.443	71.957	1.151
alanı m²/g				
$p/p^\circ=0.984320420$ da 1254.189 Å'dan daha az genişlikteki tek	0.449394	0.477527	0.398663	0.225841
nokta adsorpsiyonu toplam gözenek hacmi cm³/g				
t-Plot mikropor hacmi cm ³ /g	0.146579	0.204774	0.398205	0.191631
BJH adsorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında artan	0.296030	0.253889	0.183788	0.019275
yüzey hacmi cm ³ /g				
BJH Desorpsiyon 17.000 Å ile 3000.000 Å genişliği arasında artan	0.291407	0.246247	0.199135	0.010695
yüzey hacmi cm³/g				
Adsorpsiyon ortalama gözenek genişliği (4V/A by BET) Å	35.7590	31.0472	27.6021	19.0911
BJH Adsorpsiyon ortalama gözenek genişliği (4V/A) Å	122.054	112.287	110.698	669.598
BJH Desorpsiyon ortalama gözenek genişliği (4V/A) Å	103.156	96.053	85.115	303.331

Çizelge 4.13'e bakılarak P/p°'da tek noktalı yüzey alanı değerlerinin tablo Çizelge 4.9' daki değerlerle kıyaslandığında A1-4 ün yüzey alanın A1-0'a kıyasla yaklaşık 5 kat, A2-4 ün A2-0'a kıyasla yaklaşık 2 kat, A3-4 ün A3-0 'a yaklaşık 9 kat arttığı ve A4-4'de ise 490.1793 m²/g olduğu, BET yüzey alanlarının kıyaslanmasında ise A1-4 'ün A1-0'a

kıyasla yaklaşık 6 kat, A2-4'ün A2-0'a kıyasla yaklaşık 2 kat, A3-4'ün A3-0'a kıyasla yaklaşık 10 kat arttığı ve A4-4'ün ise 473.1865m²/g olduğu görülmektedir. Langmuir yüzey alanlarının durum incelendiğinde ise A1-4'ün yüzey alanın A1-0'a kıyasla yaklaşık 6 kat, A2-4'ün A2-0'a kıyasla yaklaşık 2 kat, A3-4'ün A3-0'ın yaklaşık 14 katı arttığı, A4-4 ün ise 623.2491 m²/g olduğu görülmektedir. 1.7 nm ve 300 nm arasında toplam BJH adsorpsiyon ve desorpsiyon alanlarının A1-4'ün A1-0'a göre, A2-4'ün A2-0'a göre, A3-4'ün A3-0'a göre; A4-4'ün A4-0'a göre arttığı görülmektedir. 125 nm den daha az genişlikte olan toplam gözenek hacimlerininde A1-4'ün A1-0'a kıyasla yaklaşık 15 kat, A2-4 ün A2-0'a kıyasla yaklaşık 3 kat, A3-4 ün A3-0'a göre yaklaşık 31 kat arttığı ve A4-4'ün A4-0'da daha önce ölçülememesine rağmen 0.225841 cm³/g oluştuğu görülmüştür. T- plot mikropor hacimlerinin A1-4'ün A1-0'a kıyasla yaklaşık 3 kat, A2-4'ün A2-0'a kıyasla 2 kat, A3-4'ün A3-0'a göre yaklaşık 12 kat arttığı ve A4-4'ün A4-0'da daha önce ölçülememesine rağmen 0.191631cm³/g oluştuğu görülmüştür. BJH adsorpsiyon ve desorpsiyon olaylarında artan gözenek hacimleri borik asitle muamele edilmiş aktif karbonlarda gözlenmiştir. Adsorpsiyon ortalama gözenek genişliğinin A1-0, A2-0 ve A3-0'da mikro gözenekli yapıya sahipken ve A4-0 da ölçülememesine rağmen, A1-4, A2-4, A3-4 ve A3-4 karbonlarında ortalama gözenek boyutlarının sırasıyla 3.5 nm, 3.1 nm, 2.7 nm ve 1.9 nm boyutlarında mezo gözeneklere sahip aktif karbonlar olduğu verilerden görülmektedir. BJH adsorpsiyonu değerlerine bakıldığında ise A1-4, A2-4, A3-4 ve A4-4 sırasıyla 12.2 nm, 11.2nm, 11.0 nm ve 66.9 nm olduğu ve A1-4, A2-4, A3-4 adsorbanlarının mezopor gözeneklere sahip materyeller olduğu gözlenmektedir. BJH desorpsiyon değerlerine bakıldığında A1-4, A2-4, A3-4 ve A4-4 sırasıyla 10.3 nm, 9.6 nm, 8.5 nm ve 30.3 nm boyutlarında mezopor gözeneklere sahip adsorbanlar elde edildiği görülmektedir. A1, A2, A3, A4 ağaç talaşlarının saf ve farklı kimyasallarla impregnasyonu grafikleri Şekil 4.6, Şekil 4.7, Şekil 4.8 ve Şekil 4.9'da verilmiştir.

Şekil 4.6. A1-0, A1-1, A1-2, A1-3, A1-4 gözenek dağılım grafiği.

Şekil 4.7. A2-0, A2-1, A2-2, A2-3, A2-4 gözenek dağılım grafiği.

Şekil 4.8. A3-0, A3-1, A3-2, A3-3, A3-4 gözenek dağılım grafiği.

Şekil 4.9. A4-0, A4-1, A4-2, A4-3, A4-4 gözenek dağılım grafiği.

4.1.4. SEM analizleri

Adsorpsiyon işleminde kullanılan A1-1, A2-1, A3-1, A4-1, A1-2, A2-2, A3-2, A4-2 aktif karbonlarının SEM analizleri şekil 4.11-4.25 arasında verilmiştir. Çinko klorür ve sodyum hidroksit ile yapılan aktivasyonlar sonucu bet sonuçlarını destekler nitelikte yüzey gözeneklerinin oluştuğu görülmektedir.

Ham haldeki A1, A2, A3, A4 ağaç talaşlarının SEM analizleri.

Şekil 4.10. Ham haldeki A1 ağaç talaşlarının SEM analizi.

Şekil 4.11. Ham haldeki A2 ağaç talaşlarının SEM görüntüsü 2.00 kx çekim.

Şekil 4.11. Ham haldeki A2 ağaç talaşlarının SEM görüntüsü10.00 kx çekim.

Şekil 4.12. Ham haldeki A3 ağaç talaşlarının SEM görüntüsü.

Şekil 4.13. Ham haldeki A3 ağaç talaşlarının SEM görüntüsü.

Ham haldeki A1,A2, A3,A4 ağaç talaşlarının imregnasyon işlemi yapılmadan elde edilen karbonların SEM analizleri

Şekil 4.14. Ham haldeki A1 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü 2.00 kx çekim.

Şekil 4.14. Ham haldeki A1 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü 10.00 kx çekim (devamı).

Şekil 4.15. Ham haldeki A2 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü.

Şekil 4.16. Ham haldeki A3 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü.

Şekil 4.17. Ham haldeki A4 ağaç talaşının imregnasyon işlemi yapılmadan elde edilen karbonun SEM görüntüsü.

A1, A2, A3, A4 Ağaç talaşlarının ZnCl₂(Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonların SEM görüntüleri

Şekil 4.18. A1 Ağaç talaşlarının ZnCl₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A1-1 Aktif karbonu).

Şekil 4.19. A2 Ağaç talaşlarının ZnCl₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A2-1 aktif karbonu).

Şekil 4.20. A3 Ağaç talaşlarının ZnCl₂ (Çinko klorü) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 2.00 kx çekim (A2-1 aktif karbonu).

Şekil 4.20. A3 ağaç talaşlarının ZnCl₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 10.00 kx çekim (A3-1 aktif karbonu) (devamı).

Şekil 4.21. A4 ağaç talaşlarının ZnCl₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 2.00 kx çekim (A4-1 aktif karbonu).

Şekil 4.21. A4 ağaç talaşlarının ZnCl₂ (Çinko klorür) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü 10.00 kx çekim (A4-1 aktif karbonu) (devamı).

A1, A2, A3, A4 Ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonların SEM görüntüleri

Şekil 4.22. A1 ağaç talaşlarının NaOH (Sodyum Hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A1-2 aktif karbonu).

Şekil 4.23. A2 ağaç talaşlarının NaOH (Sodyum hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A2-2 aktif karbonu).

Şekil 4.24. A3 ağaç talaşlarının NaOH (Sodyum hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A3-2 aktif karbonu).

Şekil 4.25. A4 ağaç talaşlarının NaOH (Sodyum hidroksit) ile aktivasyonu sonucu oluşan aktif karbonun SEM görüntüsü (A4-2 aktif karbonu).

4.2. Adsorpsiyon Deneyleri

Metilen mavisi adsorpsiyonunda çinko klorür ve sodyum hidorksit doyurması sonucu oluşan aktif karbonlar kullanılmış, aktif karbonların 25 °C, 30 °C ve 45 °C sıcaklıklardaki adsorpsiyonları hesaplanmış, adsorpsiyon işlemleri yapılırken başlangıç adsorbe edilecek boyar madde konsatrasyonları 50 ppm, 100 ppm, 200 ppm, 400 ppm ve 600 ppm olarak hazırlanmıştır. Deneylerde kullanılan çözeltilerin hacimleri 250 mL ve karıştırma hızı olarak 200 rpm'de işlemler yapılmış, pH denemeleri 25 °C sıcaklıkta, 200 ppm konsatrasyonda başlangıç pH değerleri 3, 4, 5, 6, 7, 8, 9, 10 ve 11 olacak şekilde HCl ve NaOH çözeltileri kullanılarak ayarlanan çözeltilerle yapılmıştır. Bütün işlemlerde adsorbant (aktif karbon) miktarı 0.1g olarak alınmış, hesaplamarda sıcaklık değerleri kelvin cinsinden ve R değeri de 8.31435 J/mol K olarak kullanılmıştır.

Kinolin sarısı adsorpsiyonunda ise aktif karbonların 25 °C, 30 °C ve 45 °C sıcaklıklardaki adsorpsiyonları hesaplanmıştır. Adsorpsiyon işlemleri yapılırken adsorbe edilecek boyar madde konsantrasyonları 50 ppm, 100 ppm, 200 ppm, 400 ppm ve 600 ppm olarak hazırlanmıştır. Deneylerde kullanılan çözeltilerin hacimleri 250 mL ve karıştırma hızı olarak 200 rpm'de işlemler yapılmıştır. Çalışmada pH değiştirme işlemleri; kinolin sarısının asidik ortamda gıda boyası olduğundan dolayı parçalanması

ve bazik ortamdaki etkileşimleri renk açılmasına sebep olduğundan spektrofotmetrede sağlıklı bir veri elde edilemediğinden yapılmamıştır.

4.2.1. A1-1 aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları

A1-1 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi

Şekil 4.26. A1-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon zaman grafiği.

A1-1 aktif karbonunda metilen mavisinin sıcaklık artışının adsorbe edilen madde miktarını arttırdığı görülmektedir. Grafikte sıcaklığın metilen mavisi difüzyonunu arttırdığında daha fazla miktarda metilen mavisi sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artmasıyla adsorbent yüzeyindeki adsorpsiyonu arttırmaktadır. Sıcaklığın artması ile boya taşınımının artmasından kaynaklı durumlarda da adsorpsiyon kapasitesinde artış meydana gelmektedir. Bu durum sıcaklığın adsorbent partikülünün iç gözeneklerine ve dış sınır tabakasına doğru difüzyonunu arttırmasından kaynaklanmaktadır. Aynı zamanda sıcaklığın artması ile viskozitenin düşmesi de adsorpsiyon kapasitesini arttırmaktadır (Hameed, B.H Ark. 2007).

Κ	A1-1M	М				Lang.	Freund	lich	Temkin	D-R		Term.
	Со	Ce	Cads	%Ads.	q _e	Ce/qe	logCe	logqe	lnCe	£^2	Inqe	1/T
	(ppm)	(ppm)	(ppm)		(mg/g)	-		•••			-	
298	50	2,5458	47,4542	94,91	118,6355	0,0215	0,4058	2,0742	0,9344	1,19E+07	4,7761	0,003356
	100	5,6223	94,3777	94,38	235,9443	0,0238	0,7499	2,3728	1,7267	8,52E+06	5,4636	
	200	62,5351	137,4649	68,73	343,6623	0,182	1,7961	2,5361	4,1357	6,34E+06	5,8397	
	400	253,4536	146,5464	36,64	366,366	0,6918	2,4039	2,5639	5,5352	6,19E+06	5,9036	
	600	445,3842	154,6158	25,77	386,5395	1,1522	2,6487	2,5872	6,0989	6,17E+06	5,9572	
303	50	2,2064	47,7936	95,59	119,484	0,0185	0,3437	2,0773	0,7914	12964507,86	4,7832	0,0033
	100	5,0082	94,9918	94,99	237,4795	0,0211	0,6997	2,3756	1,6111	8835163,025	5,4701	
	200	55,7478	144,2522	72,13	360,6305	0,1546	1,7462	2,5571	4,0208	6361092,715	5,8879	
	400	243,7642	156,2358	39,06	390,5895	0,6241	2,387	2,5917	5,4962	6189350,521	5,9677	
	600	438,4678	161,5322	26,92	403,8305	1,0858	2,6419	2,6062	6,0833	6166913,287	6,001	
318	50	1,8242	48,1758	96,35	120,4395	0,0151	0,2611	2,0808	0,6011	14714148,27	4,7911	0,003145
	100	4,8294	95,1706	95,17	237,9265	0,0203	0,6839	2,3764	1,5747	8944385,132	5,472	
	200	45,6564	154,3436	77,17	385,859	0,1183	1,6595	2,5864	3,8211	6410741,36	5,9555	
	400	230,2644	169,7356	42,43	424,339	0,5426	2,3622	2,6277	5,4392	6192315,897	6,0505	
	600	428,9482	171,0518	28,51	427,6295	1,0031	2,6324	2,6311	6,0613	6167536,154	6,0583	

Çizelge 4.14. A1-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

A1-1 aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

A1-1 MM	T(K)	298	303	318	
Langmuir	В	0,1427	0,1682	0,2151	
	Qm	388,4434	406,9916	432,3444	
	\mathbb{R}^2	0,9993	0,9998	1,0000	
Freundlich	Ν	5,1293	4,9887	4,7410	
	1/n	0,1950	0,2005	0,2109	
	Kf	130,2396	134,3192	138,0124	
	\mathbb{R}^2	0,8138	0,8254	0,8435	
Temkin	B (J mol ⁻¹)	46,7887	49,8758	54,8353	
	$A_{T}\left(L\ g^{\textbf{-1}}\right)$	12,3886	11,7348	10,1987	
	b _T	52,9546	49,6769	45,1840	
	\mathbb{R}^2	0,9073	0,9165	0,9236	
D-R	X'm (mg g ⁻¹)	1255,5664	1138,7332	1005,1814	
	K' (mol ⁻² J ²)	0,000000198	0,000000175	0,000000147	
	\mathbb{R}^2	0,9961	0,9963	0,9808	
	E (kJmol ⁻¹)	0,000628940	0,00059111	0,00054222	

Çizelge 4.15. A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri.

Çizelge 4.14'e bakıldığında aynı sıcaklıkta adsorbat konsantrasyonunun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.15'de görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0,80'in üzerinde olduğu en yüksek regresyon katsayısına sahip Langmuir izoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 377,3213mg/g, 30 °C'de maksimum adsorpsiyon kapasitesi 386,5239 mg/g, 45 °C'de maksimum adsorpsiyon kapasitesi 439,4433 mg/g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Langmuir izoterminin regresyon sayısının 1'e çok yakın olmasına bakılarak adsorpsiyonun tek tabakalı olarak meydana geldiği söylenebilir. Freundlich izoterm sabitlerine göre 1/n değeri adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre sıcaklık artıkça adsorpsiyon enerjisinin de arttığı, D-R izoterminde E değerlerine bakıldığında adsorpsiyonun fiziksel olarak gerçekleştiği söylenebilir. Langmuir izoterminde bağlanma enerjisinin sıcaklıkla artışı olurken, D-R izoterminde E değerinin düşmesi adsorpsiyon enerjisinin düştüğünü göstermektedir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.27., Şekil 4.28., Şekil 4.29. ve Şekil 4.30'de verilmiştir. A1-1 aktif karbonu ile metilen mavisinin adsorpsiyonunda izoterm grafiklerine bakıldığı zaman en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olması adsorpsiyona etki eden faktörlerinde bir bakıma çeşitliliğini ifade etmektedir.

Şekil 4.27. A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25°C,30°C ve 45 °C'deki Langmuir izotermleri grafiği.

Şekil 4.28. A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,30°C ve 45 °C'deki Freundluich izotermleri grafiği.

Şekil 4.29. A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,30°C ve 45 °C'deki Temkin izotermleri grafiği.

Şekil 4.30. A1-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki D-R izotermleri grafiği.

A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Adsorpsiyon sürecini karakterize etmek için boyar maddenin adsorbent yüzeyine adsorpsiyonunda ne tür bir mekanizmanın rol oynadığını tespit edebilmek için çeşitli kinetik modeller kullanılarak, boyar maddenin adsorpsiyonunda yalancı birinci mertebe (pseudo first order) kinetik model, yalancı ikinci mertebe (pseudo first order), Elovich, İnterpartiküler kinetik modellerinin kullanımı daha yaygındır (Aksu ve İşoğlu 2005).

Çizelge 4.16. A1-1 Aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo second order) kinetik, Elovich, İnterpartiküler difüzyon model sabitleri

T(K)		298	303	318	
Yalancı birinci derece (Pseudo first	k _{1p}	0.011	0.003	0.011	
order)	qe, calc	709.006	278.876	936.155	
	qe, exp	343.662	360.631	418.971	
	\mathbf{R}^2	0.728	0.934	0.748	
Yalancı birinci derece (Pseudo second	k _{2p}	0.00003	0.00003	0.00002	
order)	qe, calc	360.578	378.445	449.109	
	qe, exp	343.662	360.631	418.971	
	\mathbf{R}^2	0.995	0.993	0.991	
Elovich	β	58.979	61.283	72.199	
	a	0.004	0.004	0.003	
	qe,exp	343.662	360.631	418.971	
	\mathbf{R}^2	0.983	0.961	0.949	
Intraparticle diffusion	k _p	10.556	11.238	13.415	
_	R ²	0.906	0.930	0.944	

Şekil 4.31. A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farkli sicakliklarda yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, İnterpartiküler difüzyon kinetik grafikleri.

Şekil 4.32. A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farkli sicakliklarda yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo first order), Elovich, İnterpartiküler difüzyon kinetik grafikleri (devamı).

Çizelge 4.16., Şekil 4.31.ve Şekil 4.32'deki değerlere bakıldığında, yalancı birinci derece kinetik, yalancı ikinci mertebe kinetik, Elovich ve İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (\mathbb{R}^2) oldukça yüksektir. Bu kinetik modeldenyalancı birinci derece kinetik modelde hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik modele daha uyumludur.

A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A1-1MM/ Co	Т	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
	(°K)					
50 ppm	298	18.6402	2.9253	-7247.9963	13042.5	68.3126
	303	21.6613	3.0755	-7620.1666		
	318	26.4093	3.2737	-8111.2068		
100 ppm	298	16.7863	2.8206	-6988.4	5388.95	41.8393
	303	18.9673	2.9427	-7291.1		
	318	19.7065	2.9809	-7385.8		
200 ppm	298	2.1982	0.7876	-1951.5185	16373.2	61.6833
	303	2.5876	0.9507	-2355.5893		
	318	3.3805	1.2180	-3017.9026		
400 ppm	298	0.5782	-0.5478	1357.3669	9111.17	26.1689
	303	0.6409	-0.4448	1102.1570		
	318	0.7371	-0.3050	755.6573		
600 ppm	298	0.3472	-1.0580	2621.3665	5193.66	8.7195
	303	0.3684	-0.9986	2474.1626		
	318	0.3988	-0.9194	2277.9006		

Çizelge 4.17. A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.33. A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.17 ve Şekil 4.32'ye bakıldığında adsorpsiyonların hesaplanan entalpi Δ H° değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyon artacağının göstermektedir. Δ H°'ın 40 kcal ya da 167470 j den küçük olması adsorpsiyonun fiziksel bir adsorpsiyon olduğunu, Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki sıcaklıklarda Δ G°'ise negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600 ppm'deki sıcaklıklarda Δ G° pozitif olması daha önce kendiliğinden gerçekleşen adsorpsiyonun yeterli doygunluğa ulaştığını göstermektedir. Entropi (ΔS°) değerlerinin pozitif olması adsorbentte bazı yapısal değişiklikler sonucunda adsorbent ile çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu konsantrasyon yükselmesi sonucu (ΔS°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir (Bahar 2011; Wang 2012). Aktif karbon yüzey doygunluğunun arttığı söylenebilir.

A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç ph değişiminin etkisi

Metilen mavisi A1-1 aktif karbonunda pH 3, pH, 4 pH 5, pH 6, pH 7, pH 8, pH 9, pH 10, pH 11 denge konsantrasyonları ve son pH'larının tablosu Çizelge 4.18'de ve grafiği. Şekil 4.22 de verilmiştir.

	degişininini etk	.151			
Aktif korbon	Co (MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph	
A1-1	200	98.3504	3	3.48	
	200	110.6608	4	6.88	
	200	106.5408	5	7.01	
	200	101.3232	6	7.03	
	200	137.4649	7	6.99	
	200	109.6176	8	7.33	
	200	113.494	9	7.87	
	200	126.384	10	8.01	
	200	127.2048	11	8.43	

1

Çizelge 4.18. A1-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.34. A1-1 Aktif karbonunun Metilen mavisi Adsorpsiyonunda başlangıç pH değişiminin etkisi grafiği.

Çizelge 4.18 ve Şekil 4.34'e bakıldığında adsorpsiyonun metilen mavisinin ölçülen doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Adsorpsiyon ortak iyon etkisinde dolayı yüzeyin pozitif ya da negatif yük durumuna göre değişiklik göstermektedir. Yüzeyin pozif adsorplanan madenin negatif yüklü olması adsorpsiyonu arttırıken ortamada farklı negatif yüklerin olması adsorpsiyonu düşürmektedir. Ya da yüzeyin negatif yüklü adsorbe edilecek olan maddenin pozitif yüklü olması adsorpsiyonu arttırırken ortamda farklı negatif yüklerin olması adsorpsiyonu düşürmektedir (Akkaya 2012; Korkmaz 2019). Aktif karbon yüzeyi ise asidik ya da bazik yüzüyler bulundurabilir (skimm ve ark. 2000). Ayrıca farklı fonksiyonel gurupları barındırmaktadır (Mattson ve Mark 1971). Aktif karbonun gözenek genişliklerininde adsorpsiyona etkisi bulunmaktadır. Ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu sadece pH=3 de az miktarda artmış diğer asidik pH larda pH artarken adsorpsiyon azalmıştır. Katyonik bir boyar madde olan metilen mavisi asidik ortamdaki hidrojen sayısını artması mikro gözeneklerin hidrojenle dolması sebebiyle yüzeydeki adsorpsiyonu azalmıştır. Bazik ortamda ise hidroksil iyonlarının metilen mavisi ve karbon yüzeyi ile etkileşiminden dolayı boyar maddenin doğal pH=7.50'den daha az adsorpsiyon yapmasına sebep olmuştur. Ortamdaki hidroksil iyonlarının pH=8 ve pH=9'da aktif karbon tarafından adsorbe edildiği düşünülmektir. Yüksek pH=10 ve pH=11 de ortamın bazikliği artmış ve metilen mavisi katyonu ile zayıf bağlar oluşturarak

adsorpsiyonunun arttığı düşünülmektedir. Bu nedenle 24 saat boyunca sodyum hidroksit içinde bırakılan metilen mavisi izlenmiş, bu süre sonunda çözelti dibinde çökmeler olduğu gözlemlenmiştir (Şekil 4.35).

Şekil 4.35. Metilen mavisi ve NaOH 24 saat süredeki etkileşimi.

A1-1aktif karbonunun kinolin sarisi adsorpsiyonunda sicaklik ve konsantrasyon etkisi

Şekil 4.36. A1-1 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık konsantrasyon zaman grafiği.

Sıcaklık artışı ile adsorpsiyon süresi boyunca kinolin sarısı adsorpsiyonunun arttığı görülmektedir. Grafikte görülen adsorpsiyon artışı kinolin sarısı difüzyonunu arttırmakta, sıcaklığın artması ile boyar madde taşınımının artmasından kaynaklı durumlarda da adsorpsiyon kapasitesinde artış meydana gelmektedir. Bu durum sıcaklığın adsorbent partikülünün iç gözeneklerine ve dış sınır tabakasına doğru difüzyonunu arttırmasından kaynaklanmaktadır.

A1-1 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm değerleri

Çizelge 4.19. A1-1 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

K	A1-1KS					Lanmuır.	Freund	llich	Temkin	D-R		Term.
298	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	q _e (mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
	50	25.8795	24.1205	48.24	60.3013	0.4292	1.4130	1.7803	3.2535	6.62E+06	4.0994	0.003356
	100	55.9559	44.0441	44.04	110.1103	0.5082	1.7478	2.0418	4.0246	6.36E+06	4.7015	
	200	122.9980	77.0020	38.50	192.5050	0.6389	2.0899	2.2844	4.8122	6.24E+06	5.2601	
	400	315.4353	84.5647	21.14	211.4118	1.4920	2.4989	2.3251	5.7540	6.18E+06	5.3538	
	600	507.7654	92.2346	15.37	230.5865	2.2021	2.7057	2.3628	6.2300	6.16E+06	5.4406	
303	50	24.0752	25.9248	51.85	64.8120	0.3715	1.3816	1.8117	3.1812	6659446.5467	4.1715	0.0033
	100	50.9659	49.0341	49.03	122.5853	0.4158	1.7073	2.0884	3.9312	6382144.6663	4.8088	
	200	112.8294	87.1706	43.59	217.9265	0.5177	2.0524	2.3383	4.7259	6248179.0924	5.3842	
	400	309.0269	90.9731	22.74	227.4328	1.3588	2.4900	2.3569	5.7334	6178674.5221	5.4269	
	600	503.1644	96.8356	16.14	242.0890	2.0784	2.7017	2.3840	6.2209	6163305.1850	5.4893	
318	50	22.4555	27.5445	55.09	68.8613	0.3261	1.3513	1.8380	3.1115	6697813.7161	4.2321	0.003145
	100	48.6453	51.3547	51.35	128.3868	0.3789	1.6870	2.1085	3.8846	6393867.6155	4.8550	
	200	107.7865	92.2135	46.11	230.5338	0.4676	2.0326	2.3627	4.6802	6253316.3843	5.4404	
	400	302.3002	97.6998	24.42	244.2495	1.2377	2.4804	2.3878	5.7114	6179561.4843	5.4982	
	600	500.4260	99.5740	16.60	248.9350	2.0103	2.6993	2.3961	6.2155	6163438.9772	5.5172	

A1-1 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

A1-1 KS	T(K)	298	303	318
Langmuir	b	0.0137	0.0174	0.0202
	Qm	264.5438	271.6572	277.9982
	R ²	0.9939	0.9922	0.9922

Çizelge 4.20. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri

A1-1 KS	T(K)	298	303	318
	n	2.2897	2.4234	2.4968
Froundlich	1/n	0.4367	0.4126	0.4005
Freundlich	K _f	17.6069	22.0341	24.9765
	R ²	0.8841	0.8354	0.8274
	B (J mol ⁻¹)	57.7054	58.2815	59.4286
Tomkin	$A_T \left(L \ g^{\textbf{-1}} \right)$	0.1320	0.1727	0.1977
I CHIKIII	bт	42.9366	42.5122	41.6917
	R ²	0.9383	0.8870	0.8716
	X'm (mg g ⁻¹)	18101096766.6626	4841704746.4266	1357950357.3844
DD	K' (mol ⁻² J ²)	0.000002954	0.000002726	0.000002512
D-K	R ²	0.9808	0.9812	0.9772
	E (kJmol ⁻¹)	0.0024307	0.0023349	0.0022415

Çizelge 4.20. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri (devamı)

Çizelge 4.19'a bakıldığında aynı sıcaklıkta adsorbat konsantrasyonunun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.20'de görüldüğü gibi üç sıcaklıkta da regresyon katsayıları 0,87'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir izoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 264.5438 mg/g, 30 °C'de maksimum adsorpsiyon 271.6572 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 277.9982 mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Langmuir izoterminde regresyon sayısına bakılarak bu sayının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği, b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.4367-0.4126-0.4005adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 57.7054-58.2815-59.4286 joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enerjisinin arttığı, D-R izoterminde E değerine bakılarak adsorpsiyonun fiziksel bir adsorpsiyon olduğu söylenebilir.

Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.37, Tablo Şekil 4.38, Şekil 4.39, Şekil 4.40' de verilmiştir.

Şekil 4.37. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.38. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.39. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.40. A1-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki D-R izotermleri (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

A1-1 aktif karbonu ile kinolin sarısı adsorpsiyonunda izotermler bakıldığı zaman üç sıcaklıkta en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olduğu görülmektedir. Bu adsorpsiyona başka faktörlerinde etki ettiğini göstermektedir.

A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.21. A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)

		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.017	0.017	0.006
	qe,calc	4990.494	6287.335	281.855
	qe,exp	192.505	217.927	230.536
	\mathbf{R}^2	0.778	0.765	0.921
Yalancı birinci derece (Pseudo second order)	\mathbf{k}_{2p}	0.00008	0.00007	0.00006
	qe,calc	196.537	223.200	236.575
	qe,exp	192.505	217.927	230.536
	\mathbf{R}^2	0.995	0.996	0.996
Elovich	β	27.240	32.861	35.217
	a	0.033	0.018	0.015
	qe,exp	192.505	217.927	230.536
	\mathbf{R}^2	0.934	0.970	0.971
Intraparticle diffusion	k _p	3.264	3.963	4.267
	R ²	0.795	0.835	0.844

Şekil 4.41. A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm).

Şekil 4.42. A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki Elovich, intrepartiküler difüzyon kinetik (intraparticle diffusion) grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm).

Çizelge 4.21, şekil 4.41 ve şekil 4.42'ye bakıldığında yalancı birinci mertebe (pseudo first order) kinetik, yalancı ikinci mertebe (pseudo second order) kinetik, Elovich ve İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (R^2) oldukça yüksektir. Bu kinetik modelden hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik modele daha uyumludur.

A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A1-1 KS/ Co	T(°K)	Kc	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	2.1487	0.7649	-1895.0988	12367.7556	48.1788
	303	2.5523	0.9370	-2321.6161		
	318	3.0143	1.1034	-2733.7803		
100 ppm	298	0.7871	-0.2394	593.0875	12759.6244	40.9530
	303	0.8880	-0.1188	294.2871		
	318	1.0988	0.0943	-233.5401		
200 ppm	298	0.6260	-0.4683	1160.3867	10812.4110	32.8775
	303	0.7726	-0.2580	639.2648		
	318	0.8555	-0.1560	386.6312		
400 ppm	298	0.2681	-1.3164	3261.7039	6846.6602	12.1994
	303	0.2944	-1.2229	3029.8623		
	318	0.3232	-1.1295	2798.5875		
600 ppm	298	0.0892	-2.4172	5988.9890	3340.2510	2.8910
	303	0.0935	-2.3696	5871.1150		
	318	0.0953	-2.3504	5823.4675		

Çizelge 4.22. A1-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.43. A1-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.22 ve Şekil 4.43'e bakıldığında adsorpsiyonların hesaplanan entalpi (ΔH°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyon artacağını göstermektedir. Gibbs serbest enerji değişiminin 50 ppm'deki sıcaklıklarda negatif işaretli olması prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. Fakat daha yüksek konsatrasyonlarda gibbs serbest enerji değişimlerinin pozitif olması adsorpsiyonun kendiliğinden gerçekleşmeyeceği adsorpsiyonun devam edebilmesi için dışardan enerjiye ihtiyaç olduğu gözükmektedir. Entropi (ΔS°) değerlerinin negatif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (ΔS^{o}) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbonun yüzey doygunluğa ulaştığı söylenebilir.

4.2.2. A1-2 aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları

A1-2 aktif karbonunun metilen mavisi adsorpsiyonunu sıcaklık ve konsantrasyon etkisi

Şekil 4.44. A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

A1-2 aktif karbonunda metilen mavisinin sıcaklık artışının adsorbe edilen madde miktarını arttığı görülmektedir. Grafikte sıcaklığın metilen mavisi difüzyonunu arttırdığında daha fazla miktarda metilen mavisi sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artması adsorbent yüzeyindeki adsorpsiyonu arttırmaktadır

A1-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm değerleri

	Freuhanen, Fenikin, D-K izoterin degenen												
K	A1-2 MM	Langmuir Freundlich		Temkin	D-R		Term						
298	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads	q _e (mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T	
	50	3.1558	46.8442	93.69	117.1105	0.0269	0.4991	2.0686	1.1492	1.06E+07	4.7631	0.003356	
	100	11.5328	88.4672	88.47	221.168	0.0521	1.0619	2.3447	2.4452	7.25E+06	5.3989		
	200 400	65.2742 249.3835	134.7258 150.6165	67.36 37.65	336.8145 376.5413	0.1938 0.6623	1.8147 2.3969	2.5274 2.5758	4.1786 5.519	6.33E+06 6.19E+06	5.8195 5.9310		
	600	425.6562	174.3438	29.06	435.8595	0.9766	2.6291	2.6393	6.0536	6.17E+06	6.0773		

Çizelge 4.23. A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

K	A1-2 MM					Langmür	Freundlich	Temkin		D-R		Term.
	Co(ppm)	Ce(ppm)	Cads(pp	% Ads	qe(mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	Inqe	1/T
303	50 100 200 400 600	2.8892 9.9876 60.0245 226.6432 422.4436	47.1108 90.0124 139.9755 173.3568 177.5564	94.22 90.01 69.99 43.34 29.59	117.77 225.031 349.9388 433.392 443.891	0.0245 0.0444 0.1715 0.523 0.9517	0.4608 0.9995 1.7783 2.3553 2.6258	2.0711 2.3522 2.544 2.6369 2.6473	1.061 2.3013 4.0948 5.4234 6.0461	11123833. 7429721.4 6345129.5 6193171.5 6167977.9	384.7777765.4308065.9558536.1079136.1342	0.0033
318	50 100 200 400 600	2.4655 8.6654 45.6044 220.2442 415.454	47.5345 91.3346 154.3956 179.7558 184.546	95.07 91.33 77.2 44.94 30.76	118.8363 228.3365 385.989 449.3895 461.365	0.0207 0.038 0.1181 0.4901 0.9005	0.3919 0.9378 1.659 2.3429 2.6185	2.0749 2.3586 2.5866 2.6526 2.664	0.9024 2.1593 3.82 5.3947 6.0294	12128607. 7637506.0 6411054.7 6194752.5 6168468.0	064.8283545.5215096.2146236.9078487.3132	0.003145

Çizelge 4.23. A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri (devamı)

A1-2 Aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

Çizelge 4.24. A1-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri.

A1-2 MM	T(K)	298	303	318
Langmuir	b	0.0609	0.0840	0.1112
	Qm	437.8614	455.6840	470.4583
	\mathbb{R}^2	0.9934	0.9996	1.0000
Freundlich	n	4.0327	3.8835	3.9168
	1/n	0.2480	0.2575	0.2553
	Kf	103.3932	106.4083	115.1877
	\mathbb{R}^2	0.9289	0.9288	0.8991
Temkin	B (J mol ⁻¹)	61.3656	66.6289	68.2076
	A _T (L g ⁻¹)	2.6614	2.5281	3.1873
	bT	40.3756	37.1862	36.3255
	\mathbb{R}^2	0.9812	0.9862	0.9612
D-R	X'm (mg g ⁻¹)	1901.3089	1876.8991	1589.3273
	K' (mol ⁻² J ²)	0.00000267	0.00000254	0.00000219
	\mathbb{R}^2	0.9277	0.9283	0.9274
	E (kJmol ⁻¹)	0.000730557	0.00071323	0.00066215

Çizelge 4.23'e bakıldığında aynı sıcaklıkta Adsorbat konsantrasyonunun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.24'de görüldüğü gibi üç sıcaklıkta da regresyon katsayıları 0.90'in üzerinde olduğu en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 437.8614 mg/g, 30 °C'de maksimum adsorpsiyon kapasitesi 455.6840 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 470.4583 mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Langmuir

regresyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği söylenebilir. Freundlich izoterm sabitlerine göre 1/n değerlerini 0.1<1/n <0.5 arasında olması adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre sıcaklık artıkça bağlanma enerjisinin de arttığı, D-R izoterminde E değerlerine bakıldığında 2' den küçük olmasından dolayı adsorpsiyonun fiziksel olarak gerçekleştiği söylenebilir. Langmuir izoterminde bağlanma enerjisinin 0.0609'den 0.1112'ye sıcaklıkla artışı olurken, D-R izoterminde E değerinin 0.0007305572'den 0.00066215'e düşmesi adsorpsiyon enerjisin sıcaklıkla düştüğünü göstermektedir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.45, Şekil 4.46, Şekil 4.47, Şekil 4.48'de verilmiştir.

Şekil 4.45. A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.46. A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.47. A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.48. A1-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C,30°C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.25. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon (interparticle diffusion) kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)

T(K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.060	0.026	0.007
	qe,calc	3909.387	539.004	195.334
	qe,exp	336.815	349.939	385.989
	R ²	0.591	0.658	0.957
Yalancı birinci derece (Pseudo second order)	k _{2p}	0.00020	0.00018	0.00013
	qe,calc	335.205	347.512	387.423
	qe,exp	336.815	349.939	385.989
	R ²	0.995	0.994	0.993
Elovich	β	38.648	40.376	47.377
	α	0.312	0.263	0.124
	qe,exp	336.815	349.939	385.989
	R ²	0.983	0.985	0.982
Intraparticle diffusion	k _p	9.370	9.868	11.883
	R ²	0.865	0.881	0.926
Elovich Intraparticle diffusion	qe,calc qe,exp R ² β α qe,exp R ² k _p R ²	335.205 336.815 0.995 38.648 0.312 336.815 0.983 9.370 0.865	347.512 349.939 0.994 40.376 0.263 349.939 0.985 9.868 0.881	387.423 385.989 0.993 47.377 0.124 385.989 0.982 11.883 0.926

Şekil 4.49. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

Çizelge 4.25 ve Şekil 4.49'a bakıldığında yalancı birinci mertebe (pseudo first order), pseudo ikinci mertebe kinetik, Elovich ve İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (\mathbb{R}^2) oldukça yüksektir. Bu kinetik modellerden yalancı birinci mertebeden kinetik model, regrasyon (kolarelasyon) sayısı en yüksek ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik model

A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A1-2MM/ Co	T (K)	Kc	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	14.8438	2.6976	-6683.7428	10006.8090	56.1049
	303	16.3058	2.7915	-6916.4895		
	318	19.2799	2.9591	-7331.5956		
100 ppm	298	7.6709	2.0374	-5048.1087	11614.9493	56.2121
	303	9.0124	2.1986	-5447.4268		
	318	10.5401	2.3552	-5835.4024		
200 ppm	298	2.0640	0.7246	-1795.4351	19585.6140	71.7189
	303	2.3320	0.8467	-2097.8847		
	318	3.3855	1.2195	-3021.5608		
400 ppm	298	0.6040	-0.5043	1249.3807	10037.5263	30.0882
	303	0.7649	-0.2680	664.0794		
	318	0.8162	-0.2031	503.3094		
600 ppm	298	0.4096	-0.8926	2211.5807	3143.3066	3.1489
	303	0.4203	-0.8668	2147.5696		
	318	0.4442	-0.8115	2010.5678		

Çizelge 4.26. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.50 A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafikleri.

Çizelge 4.26 ve şekil 4.50'ye bakıldığında adsorpsiyonların hesaplanan entalpi (ΔH°) değişimleri pozitif işaretlidir. A1-2 aktif karbonunun metilen mavisi adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyon arttığını göstermektedir Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki

sıcaklıklarda (ΔG°) negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600 ppm deki sıcaklıklarda daha önce kendiliğinden gerçekleşen adsorpsiyonun yeterli doygunluğa ulaştığını göstermektedir. Entropi (ΔS°) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu konsantrasyon yükselmesi sonucu (ΔS°) değerlerinin 56.1049 J/mol K' den 3.14892'ye düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. A1-1 MM adsorpsiyonunda olduğu gibi aktif karbon yüzey doygunluğunun arttığı söylenebilir.

A1-2 Aktif Karbonunun Metilen Mavisi Adsorpsiyonunu Başlangıç pH Değişiminin Etkisi

Metilen mavisi A1-2 aktif karbonunda pH 3, pH, 4 pH 5, pH 6, pH 7, pH 8, pH 9, pH 10, pH 11 denge konsantrasyonları ve son pH'larının tablosu çizelge 4.27'de verilmiştir. pH ayarlamaları asit için HCl(Hidroklorik asit), baz için NaOH(sodyum hidroksit) kullanılmıştır.

Çizelge 4.27. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Aktif korbon	Co(MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A1-2	200	122.7634	3	3.66
	200	127.0678	4	6.74
	200	129.8654	5	7.03
	200	133.6984	6	7.04
	200	134.7258	7	6.99
	200	127.6544	8	7.69
	200	117.3942	9	7.89
	200	118.4632	10	8.19
	200	130.3644	11	9.87

Şekil 4.51. A1-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.27 ve şekil 4.51'e bakıldığında adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Asit ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu asidik pH larda pH artarken adsorpsiyon azalmıştır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7'deki kadar artış göstermemiştir. Bunun nedeni sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf bağlar oluşturmasıdır. Daha önce A1-1 metilen mavisi adsorpsiyonunda olduğu gibi sodyum hidroksit ve metilen mavisi arasında gerçekleşen etkileşim nedeniyle bazik ortamda pH 7'ye göre adsorpsiyonu azaltmış, hidroksil iyonlarının pH8 ve pH9 da hidroksil iyonları adsorbe edilirken, pH 10 ve pH 11 de sistemin pH sı sırasıyla 8.19 ve 9.87'ye kadar düşmüştür. Bazik ortamda hidroksil iyonlarının artışı pH10'da en yüksek değere varmış, bu olayın aktif karbon yüzeyin hidroksil iyonlarının adsorpsiyona negatif etkisini yitirip metilen mavisinin gözenekler içerisinde daha fazla adsorbe olmasını sağladığı düşünülmektedir.

A1-2 kinolin sarisi adsorpsiyonunda sicaklik ve konsantrasyon etkisi

Şekil 4.52. A1-2 aktif karbonunun kinolin sarisi ile adsorpsiyonu sicaklik konsantrasyon grafiği.

A1-2 aktif karbonunda kinolin sarısı Adsorpsiyonunda geçen süre içerisinde sıcaklık artışıyla adsorbe edilen madde miktarını arttığı görülmektedir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artması adsorbent yüzeyindeki adsorpsiyonu artırmaktadır.

K	A1-2 KS					Langmüir	Freund	llich	Temkin	D-R		Termo
	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	qe(mg/g))	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
298	50	26.003	23.996	47.9	59.991	0.4335	1.415	1.778	3.2582	6.62E+06	4.094	0.003356
	100	56.198	43.801	43.8	109.50	0.5132	1.749	2.039	4.0289	6.36E+06	4.696	
	200	124.55	75.445	37.7	188.61	0.6604	2.095	2.275	4.8247	6.24E+06	5.239	
	400	317.18	82.815	20.7	207.03	1.5320	2.501	2.316	5.7595	6.18E+06	5.332	
	600	508.3634	91.6366	15.27	229.0915	2.2190	2.7062	2.3600	6.2312	6.16E+06	5.4341	
303	50	25.1243	24.8757	49.75	62.1893	0.4040	1.4001	1.7937	3.2238	6637285.7745	4.1302	0.0033
	100	53.6284	46.3716	46.37	115.9290	0.4626	1.7294	2.0642	3.9821	6369955.7399	4.7530	
	200	122.5644	77.4356	38.72	193.5890	0.6331	2.0884	2.2869	4.8086	6239462.4529	5.2657	
	400	311.0698	88.9302	22.23	222.3255	1.3992	2.4929	2.3470	5.7400	6178412.7577	5.4041	
	600	505.1744	94.8256	15.80	237.0640	2.1310	2.7034	2.3749	6.2249	6163207.9048	5.4683	
318	50	23.0346	26.9654	53.93	67.4135	0.3417	1.3624	1.8287	3.1370	6683463.4998	4.2108	0.003145
	100	48.2436	51.7564	51.76	129.3910	0.3729	1.6834	2.1119	3.8763	6396012.5500	4.8628	
	200	118.0344	81.9656	40.98	204.9140	0.5760	2.0720	2.3116	4.7710	6243338.9624	5.3226	
	400	303.5428	96.4572	24.11	241.1430	1.2588	2.4822	2.3823	5.7155	6179394.6738	5.4854	
	600	501.7246	98.2754	16.38	245.6885	2.0421	2.7005	2.3904	6.2181	6163375.3482	5.5041	
				_								

Çizelge 4.28. A1-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

A1-2 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

A1-2 KS	T(K)	298	303	318
Langmuir 🚽	b	0.0134	0.0143	0.0180
	$\mathbf{Q}_{\mathbf{m}}$	262.2552	272.0450	277.2757
	\mathbb{R}^2	0.9942	0.9960	0.9997
Freundlich	n	2.3004	2.3134	2.4717
	1/n	0.4347	0.4323	0.4046
	$\mathbf{K}_{\mathbf{f}}$	17.5287	18.7502	23.5241
	\mathbb{R}^2	0.8902	0.8921	0.8761
Temkin	B (J mol ⁻¹)	56.9060	59.1743	59.1584
	$A_T (L g^{-1})$	0.1315	0.1371	0.1756
	b _T	43.5398	41.8708	41.8821
	\mathbb{R}^2	0.9451	0.9541	0.9455
D-R	X'm (mg g ⁻¹)	16733813287.2776	10123663602.7385	1488432736.7642
	K' (mol ⁻² J ²)	0.000002944	0.000002855	0.000002533
	\mathbb{R}^2	0.9824	0.9891	0.9965
	E (kJmol ⁻¹)	0.0024265	0.0023894	0.0022509

Çizelge 4.29. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri

Çizelge 4.28'de bakıldığında aynı sıcaklıkta adsorbat konsantrasyonunun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.29'da görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0.87'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 262.2552 mg/g, 30 °C'de maksimum adsorpsiyon 272.0450mg/g, 45 °C'de maksimum adsorpsiyon kapasitesi 277.2757mg/g

dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.4347-0.4323-0.4046 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 56,9060-59,1743-59,1584joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enrjisinin arttığı, 45°C de düşüş yolduğu gözükmektedir. D-R izoterminde E değerine bakılarak adsorpsiyon olduğu söylenebilir.

Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.53, Şekil 4.54, Şekil 4.55, Şekil 4.56'da verilmiştir.

Şekil 4.53. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm).

Şekil 4.54. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.55. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.56. A1-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

A1-2 aktif karbonu ile kinolin sarısı adsorpsiyonunda izotermlere bakıldığı zaman üç sıcaklıkta en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olduğu görülmektedir. Bu adsorpsiyona başka faktörlerin de etki ettiğini göstermektedir.

A1-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Cizelge 4.30. A1-2 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30°C ve 45
°C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe
(pseudo second order), Elovich, intrepartiküler difüzyon (ıntraparticle
diffusion) kinetik model sabitleri (Co= 200mg/L, V=0.25L, AD= 1g,
pH=6-7, KH= 200 rpm)

Τ(°K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.003	0.017	0.005
	qe,calc	93.008	793.425	121.017
	qe,exp	188.613	193.589	204.914
Yalancı birinci derece (Pseudo second order)	R²	0.956	0.504	0.931
	k _{2p}	0.00016	0.00017	0.00015
	qe,calc	190.566	195.835	208.065
	qe,exp	188.613	193.589	204.914
Elovich	R²	0.999	0.999	0.998
	β	23.634	22.900	24.463
	α	0.112	0.193	0.159
	qe,exp	188.613	193.589	204.914
Intraparticle diffusion	R²	0.995	0.995	0.997
	k _p	3.520	3.398	3.672
	R ²	0.838	0.833	0.854

Şekil 4.57. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik model grafikleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

Şekil 4.58. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C,30°C ve 45 °C'deki Elovich, intrepartiküler difüzyon kinetik model grafikleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

131

Çizelge 4.30, şekil 4.57 ve 4.58'de elde edilen verilere gre hesaplanan yalancı birinci mertebe (pseudo first order), pseudo ikinci mertebe kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (R^2) oldukça yüksektir. Bu kinetik modellerden regrasyon (kolarelasyon) sayısı en yüksek ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik modele daha uyumludur.

A1-2 aktif karbonunun kinolin sarısı mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

Çizelge 4.31. A1-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

A1-2 KS / Co	T (K)	Кс	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	2.1243	0.7535	-1866.8283	11309.6054	44.2399
	303	2.3059	0.8355	-2070.0678		
	318	2.8359	1.0424	-2582.6678		
100 ppm	298	1.1646	0.1523	-377.4740	10878.1718	37.8816
	303	1.2921	0.2563	-634.9223		
	318	1.5482	0.4371	-1082.9528		
200 ppm	298	0.6057	-0.5013	1242.1563	5310.7989	13.6771
	303	0.6318	-0.4592	1137.7241		
	318	0.6944	-0.3647	903.5502		
400 ppm	298	0.2611	-1.3429	3327.1969	7284.4530	13.4243
	303	0.2859	-1.2522	3102.4609		
	318	0.3178	-1.1464	2840.4657		
600 ppm	298	0.1803	-1.7134	4245.1658	3056.1858	3.9188
	303	0.1877	-1.6729	4144.8162		
	318	0.1959	-1.6303	4039.3002		

Şekil 4.59. A1-2 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.31 ve Şekil 4.59'a bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık arttıkça adsorpsiyon arttığını göstermektedir. Gibbs serbest enerji değişimi 50 ppm ve 100 ppm deki sıcaklıklarda (Δ G°) negatif işaretli olması prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. Fakat daha yüksek konsantrasyonlarda, gibbs serbest enerji değişimlerinin pozitif olması adsorpsiyonun kendiliğinden gerçekleşmeyeceğini adsorpsiyonun devam edebilmesi için dışardan enrjiye ihtiyaç olduğu göstermektedir. Entropi (Δ S°) değerlerinin negatif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (Δ S°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Bundan dolayı aktif karbon yüzey doygunluğa ulaştığı söylenebilir.

Şekil 4.60. A2-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

A2-1 aktif karbonunun metilen mavisi adsorpsiyonu izoterm değerleri

Çizelge 4.32. A2-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

Κ	A2-1 M	ÍM				Langmuir	Freund	llich	Temkin	D-R		Term
	Co(ppm)	Ce(ppm)	Cads(ppm)	qe(ppm)	% Ads.	Ce/qe(mg/g)	logCe	logqe	lnCe	£^2	lnqe	1/T
298	50	1.9802	48.0198	96.04	120.0495	0.0165	0.2967	2.0794	0.6832	1.39E+07	4.7879	0.003356
	100	2.3044	97.6956	97.7	244.239	0.0094	0.3626	2.3878	0.8348	1.26E+07	5.4981	
	200	68.079	131.921	65.96	329.8025	0.2064	1.833	2.5183	4.2207	6.32E+06	5.7985	
	400	253.5668	146.4332	36.61	366.083	0.6926	2.4041	2.5636	5.5356	6.19E+06	5.9029	
	600	453.1266	146.8734	24.48	367.1835	1.2341	2.6562	2.5649	6.1162	6.17E+06	5.9059	
303	50	1.6418	48.3582	96.72	120.8955	0.0136	0.2153	2.0824	0.4958	15894559.72	4.7949	
	100	2.7866	97.2134	97.21	243.0335	0.0115	0.4451	2.3857	1.0248	11335449.04	5.4932	0.0033
	200	58.8301	141.1699	70.58	352.9248	0.1667	1.7696	2.5477	4.0747	6349352.191	5.8663	
	400	245.6454	154.3546	38.59	385.8865	0.6366	2.3903	2.5865	5.5039	6188963.222	5.9555	
	600	446.4212	153.5788	25.6	383.947	1.1627	2.6497	2.5843	6.1013	6166413.287	5.9505	
318	50	1.4234	48.5766	97.15	121.4415	0.0117	0.1533	2.0844	0.353	17794484.76	4.7994	
	100	2.2382	97.7618	97.76	244.4045	0.0092	0.3499	2.3881	0.8057	12849868.62	5.4988	
	200	34.8816	165.1184	82.56	412.796	0.0845	1.5426	2.6157	3.552	6495909.101	6.023	0.003145
	400	231.1966	168.8034	42.2	422.0085	0.5478	2.364	2.6253	5.4433	6192099.974	6.045	
	600	436.2456	163.7544	27.29	409.386	1.0656	2.6397	2.6121	6.0782	6167056.25	6.0147	

A2-1 MM	T(K)	298	303	318
Langmuir	b	2.372	0.3086	1.2808
	Qm	370.5957	387.5024	413.0055
	\mathbb{R}^2	0.99997	0.9999	0.9997
Freundlich	n	6.4481	5.8798	5.6287
	1/n	0.1551	0.1701	0.1777
	$\mathbf{K}_{\mathbf{f}}$	154.3544	152.4772	163.9252
	\mathbb{R}^2	0.7155	0.7755	0.7350
Temkin	B (J mol ⁻¹)	37.1353	41.8789	46.3773
	$A_T (L g^{-1})$	67.3057	38.8558	40.3175
	b _T	66.7203	59.1629	53.4244
	\mathbb{R}^2	0.8280	0.8766	0.8131
D-R	X'm (mg g ⁻¹)	711.9186	768.0463	801.5223
	K' (mol ⁻² J ²)	0.000000109	0.000000112	0.000000102
	\mathbb{R}^2	0.8107	0.9762	0.9810
	E (kJmol ⁻¹)	0.00046783	0.00047394	0.00047394

Çizelge 4.33. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri

Çizelge 4.32. bakıldığında aynı sıcaklıkta adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.33'de görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0.70'in üzerinde olduğu en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 370.5957 mg/g, 30 °C'de maksimum adsorpsiyon kapasitesi 387.5024mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 439.4433mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regresyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği söylenebilir. Freundlich izoterm sabitlerine göre 1/n değerlerini 0.1<1/n <0.5 arasında olması yani 0.1551-0.1701-0.1777 değerlere sahip olması adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğunu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiğini, Temkin izotermi B verisine göre sıcaklık artıkça bağlanma enerjisinin de arttığı, D-R izoterminde E değerlerine bakıldığında 8 kjmol⁻¹'den küçük olmasından dolayı adsorpsiyonun fiziksel olarak gerçekleştiği söylenebilir.Langmuirizoterminde bağlanma enerjisinin 0.23722'den 1.28082 e sıcaklıkla artışı görülmektedir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.61, Şekil 4.62, Şekil 4.63, Şekil 4.64'de verilmiştir.

Şekil 4.61. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.62. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu25 °C,30°C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.63. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1g, pH=7, KH=200 rpm).

Şekil 4.64. A2-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.34. A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C, 30°C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0.25L, AD= 1 g, r. pH=6-7, KH= 200 rpm)

T(°K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.024	0.011	0.004
	qe,calc	3691.052	756.733	344.078
	qe,exp	329.803	352.925	412.796
	R ²	0.646	0.736	0.984
Yalancı birinci derece (Pseudo second order)	k _{2p}	0.00003	0.00003	0.00002
	qe,calc	351.777	376.230	444.070
	qe,exp	329.803	352.925	412.796
Elovich	R² β α	0.994 57.630 0.004	0.994 60.989 0.004	0.993 72.129 0.003
	qe,exp	329.803	352.925	412.796
Intraparticle diffusion	R² k _p	0.983 10.244	0.959 11.215	0.953 13.335
	R ²	0.894	0.933	0.937

Şekil 4.65. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0.25L, AD= 1g, pH=6-7, KH= 200 rpm).

Şekil 4.65. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0.25L, AD= 1 g, pH=6-7, KH= 200 rpm) (devamı).

Çizelge 4.34 ve Şekil 4.65'den elde edilen verilere göre hesaplanan yalancı birinci mertebe (pseudo first order), pseudo ikinci mertebe kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (R^2) oldukça yüksektir. Bu kinetik modellerden regrasyon (kolarelasyon) sayısı en yüksek ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi pseudo ikinci mertebe kinetik modele daha uyumludur.

A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

139

					-	
A2-1MM/ Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	24.2500	3.1884	-7899.8617	12244.1813	67.9959
	303	29.4544	3.3828	-8381.5889		
	318	34.1272	3.5301	-8746.4291		
100 ppm	298	42.3952	3.7470	-9283.9427	3528.7423	42.2246
	303	34.8860	3.5521	-8800.9202		
	318	43.6788	3.7769	-9357.8413		
200 ppm	298	1.9378	0.6615	-1639.0683	35425.2079	124.2986
	303	2.3996	0.8753	-2168.7361		
	318	4.7337	1.5547	-3852.0516		
400 ppm	298	0.5775	-0.5491	1360.3879	8973.4194	25.6341
	303	0.6284	-0.4646	1151.2188		
	318	0.7301	-0.3145	779.3127		
600 ppm	298	0.3241	-1.1266	2791.3515	5537.4567	9.2951
	303	0.3440	-1.0670	2643.8023		
	318	0.3754	-0.9798	2427.7205		

Çizelge 4.35. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Çizelge 4.35 ve Şekil 4.66'ya bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidirA2-1 aktif karbonunun metilen mavisi adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun arttığını göstermektedir Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki sıcaklıklarda (Δ Go) negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600ppm deki sıcaklıklarda daha önce kendiliğinden gerçekleşen adsorpsiyonun yeterli doygunluğa ulaştığını göstermektedir. Entropi (Δ So) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu konsantrasyon yükselmesi sonucu (Δ So) değerlerinin 67.9959 J/mol.K' den 9.2951'e düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. A1-1 MM adsorpsiyonunda olduğu gibi aktif karbon yüzey doygunluğunun arttığı söylenebilir.

Şekil 4.66. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi

Aktif korbon	Co(MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A2-1	200	100.8645	3	3.55
	200	102.9456	4	7.14
	200	104.4254	5	7.12
	200	108.1846	6	7.02
	200	131.921	7	7.01
	200	121.4592	8	7.5
	200	126.9864	9	7.69
	200	134.088	10	8.1
	200	128.468	11	9.78

Çizelge 4.36. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.67. A2-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.36 ve şekil 4.67'ye bakıldığında adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) En yüksek adsorpsiyonu verdiği görülmüştür. Asit ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu asidik pH larda pH artarken adsorpsiyon artmıştır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7'deki kadar artış göstermemiştir. Bunun nedeni sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf bağlar oluşturmasıdır. Daha önce A1-1 metilen mavisi adsorpsiyonunda olduğu gibi sodyum hidroksit ve metilen mavisi arasında gerçekleşen bağ nedeniyle bazik ortamda pH 7'ye göre adsorpsiyonu azaltmış, pH8 ve pH9 da hidroksil iyonları aktif karbon tarafından adsorbe edilirken, pH 10 ve pH 11'de sistemin pH sı sırasıyla 8.1 ve 9.78'e kadar düşmüştür. Bazik ortamda hidroksil iyonlarının artışı pH10'da en yüksek değere varmıştır. Bu Aktif karbon yüzeyin negatif potansiyelinin sıfıra yaklaşması sonucu hidroksil iyonlarının adsorpsiyon yüzeyine negatif etkisini yitirip metilen mavisi ile birlikte gözenekler içerisinde daha fazla adsorbe olmasını sağladığı düşünülmektedir. pH 11 de ise hidroksil miktarının artmasıyla adsorpsiyona olan düşürücü etki ettiği düşünülmektedir.

A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda sıcaklık ve konsantrasyon etkisi

Şekil 4.68. A2-1 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

A2-1 aktif karbonunda kinolin sarısı sıcaklık artışının adsorbe edilen madde miktarını arttığı görülmektedir. Sıcaklığın kinolin sarısı difüzyonunu arttırdığında daha fazla miktarda kinolin sarısı sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır.

	_					-			-	-		-
K	A2-1K	S				Langmuir	Freundlic	ch	Temkin	D-R		Term.
	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	q _e (mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
298	50	10,8795	39.1205	78.24	97.8013	0.1112	1.0366	1.9903	2.3869	7.32E+06	4.5829	0.003356
	100	32.6480	67.3520	67.35	168.3800	0.1939	1.5139	2.2263	3.4858	6.52E+06	5.1262	
	200	120.3311	79.6689	39.83	199.1723	0.6042	2.0804	2.2992	4.7902	6.24E+06	5.2942	
	400	316.4353	83.5647	20.89	208.9118	1.5147	2.5003	2.3200	5.7571	6.18E+06	5.3419	
	600	509.7654	90.2346	15.04	225.5865	2.2597	2.7074	2.3533	6.2340	6.16E+06	5.4187	
303	50	8.1785	41.8215	83.64	104.5538	0.0782	0.9127	2.0193	2.1015	7731882.4333	4.6497	0.0033
	100	26.6642	73.3358	73.34	183.3395	0.1454	1.4259	2.2633	3.2833	6607972.8256	5.2113	
	200	116.5687	83.4313	41.72	208.5783	0.5589	2.0666	2.3193	4.7585	6244658.0101	5.3403	
	400	310.8966	89.1034	22.28	222.7585	1.3957	2.4926	2.3478	5.7395	6178434.8167	5.4061	
	600	504.2348	95.7652	15.96	239.4130	2.1061	2.7026	2.3791	6.2230	6163253.2830	5.4782	
318	50	5.8804	44.1196	88.24	110.2990	0.0533	0.7694	2.0426	1.7716	8404323.6716	4.7032	0.003145
	100	19.6480	80.3520	80.35	200.8800	0.0978	1.2933	2.3029	2.9780	6779667.8506	5.3027	
	200	110.1436	89.8564	44.93	224.6410	0.4903	2.0420	2.3515	4.7018	6250856.3486	5.4145	
	400	306.6214	93.3786	23.34	233.4465	1.3135	2.4866	2.3682	5.7256	6178987.2267	5.4530	
	600	500.1844	99.8156	16.64	249.5390	2.0044	2.6991	2.3971	6.2150	6163450.8517	5.5196	

A2-1 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm değerleri

Çizelge 4.37. A2-1 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

A2-1 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

A2-1 KS	T(K)	298	303	318
Langmuir	b	0.0603	0.0712	0.1021
	$\mathbf{Q}_{\mathbf{m}}$	229.0850	241.9913	250.4043
	\mathbb{R}^2	0.9978	0.9999	0.9986
Freundlich	n	5.1550	5.6500	6.3991
	1/n	0.1940	0.1770	0.1563
	$\mathbf{K}_{\mathbf{f}}$	71.7992	84.3201	100.4839
	\mathbb{R}^2	0.8461	0.8363	0.7794
Temkin	B (J mol ⁻¹)	30.1604	29.2402	27.0368
	$A_{T} (L g^{-1}))$	4.2051	8.4642	25.9987
	b _T	82.1499	84.7351	91.6410
	\mathbb{R}^2	0.9085	0.8996	0.8418
D-R	X'm (mg g ⁻¹)	14739.6454	4823.5633	2010.6557
	K' (mol ⁻² J ²)	0.00000686	0.000000496	0.000000345
	\mathbb{R}^2	0.9934	0.9887	0.9897
	E (kJmol ⁻¹)	0.0011710	0.0009957	0.0008301

Çizelge 4.38. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyon sabitleri

Çizelge 4.37'ye bakıldığında aynı sıcaklıkta adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.38'de görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0.87'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 262.2552mg/g, 30 °C'de maksimum adsorpsiyon 272.0450mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 277.2757mg/g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.1940-0.1770-0.1563 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 30.1604-29.2402-27.0368 joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enerjisinin düştüğü görülmektedir. D-R izoterminde E değerine bakılarak adsorpsiyonun fiziksel bir adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.69., Şekil 4.70., Şekil 4.71., Şekil 4.72.' de verilmiştir.

Şekil 4.69. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm).

Şekil 4.70. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.71. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.72. A2-1 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

A2-1 aktif karbonu ile kinolin sarısı adsorpsiyonunda izotermlere bakıldığı zaman üç sıcaklıkta en uygun izotermin Langmuirizotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olduğu görülmektedir. Bu adsorpsiyona başka faktörlerinde etki ettiğini göstermektedir.

A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.39.	A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda 25 °C,30°C ve 45
	°C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe
	(pseudo second order), Elovich, intrepartiküler difüzyon kinetik model
	sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).
	(Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm)

		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.001	0.001	0.001
	qe,calc	294.201	310.059	359.352
	qe,exp	329.803	352.925	412.796
	R ²	0.971	0.968	0.969
Yalancı birinci derece (Pseudo second order)	k _{2p}	0.00001	0.00001	0.00001
	qe,calc	274.311	273.163	276.939
	qe,exp	329.803	352.925	412.796
	R ²	0.993	0.986	0.980
Elovich	β	52.181	53.372	54.297
	α	0.001	0.001	0.001
	qe,exp	329.803	352.925	412.796
	R ²	0.966	0.963	0.963
Intraparticle diffusion	$\mathbf{k}_{\mathbf{p}}$	6.280	6.428	6.548
	R ²	0.991	0.990	0.993

Şekil 4.73. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo first order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm).

Şekil 4.73. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo second order) kinetik grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=6-7, KH= 200 rpm) (devamı).

Çizelge 4.39 ve Şekil 4.73'de elde edilen verilere göre hesaplanan yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (R^2) oldukça yüksektir. Bu kinetik modellerden İnterpartiküler difüzyon ve pseudo ikinci mertebe kinetik modellerin regrasyon (kolarelasyon) sayılarını yüksek olduğu, pseudo ikinci mertebe kinet modelde hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi hem pseudo ikinci mertebe kinetik modeline hem de İnterpartiküler difüzyon modeline uyumludur.

A2-1 Aktif karbonunun Kinolin sarısı Adsorpsiyonunda Farklı Sıcaklıklarda Termodinamik Parametreleri

Çizelge 4.40. A2-1 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

A2-1 KS/Co	T (K)	Kc	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	3.5958	1.2798	-3170.8467	27128.1588	102.2797
	303	5.1136	1.6319	-4043.3244		
	318	7.5028	2.0153	-4993.2099		
100 ppm	298	2.0630	0.7241	-1794.2068	25703.6880	92.6856
	303	2.7503	1.0117	-2506.7321		
	318	4.0896	1.4084	-3489.6620		
200 ppm	298	0.6621	-0.4124	1021.7140	7957.0598	23.3609
	303	0.7157	-0.3345	828.6768		
	318	0.8158	-0.2036	504.3858		
400 ppm	298	0.2641	-1.3315	3299.0201	5099.8325	6.2119
	303	0.2866	-1.2497	3096.2601		
	318	0.3045	-1.1890	2945.8371		
600 ppm	298	0.1770	-1.7315	4290.1899	4270.8859	0.0833
	303	0.1899	-1.6611	4115.7738		
	318	0.1996	-1.6117	3993.1528		

Şekil 4.74. A2-1 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.40 ve Şekil 4.74'e bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun artacağını göstermektedir. Gibbs serbest enerji değişimi 50 ppm ve 100 ppm deki sıcaklıklarda (Δ G°)'ise negatif işaretli olması prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. Fakat daha yüksek konsatrasyonlarda. Gibbs serbest enerji değişimlerinin pozitif olması adsorpsiyonun kendiliğinden gerçekleşmeyeceği adsorpsiyonun devam edebilmesi için dışardan enrjiye ihtiyaç olduğu gözükmektedir. Entropi (Δ S°) değerlerinin negatif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (Δ S°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbon yüzey doygunluğa ulaştığı söylenebilir.

4.2.4. A2-2 Aktif karbonunun metilen mavisi ve kinolin sarısı deney sonuçları

A2-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi

Şekil 4.75. A2-2 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

A2-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm değerleri

Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır.

Çizelge 4.41. A2-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

Κ	A2-2 MM					Langmuir	Freundli	ich	Temkin	D-R		Term.
	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	q _e (mg/g)	Ce/qe	logCe lo	ogqe	lnCe	£^2	lnqe	1/T
298	50	5.9943	44.0057	88.01	110.0143	0.0545	0.7777 2.	.0414	1.7908	8.36E+06	4.7006	0.003356
	100	12.2134	87.7866	87.79	219.4665	0.0557	1.0868 2.	.3414	2.5025	7.19E+06	5.3912	
	200	67.6425	132.3575	66.18	330.8938	0.2044	1.8302 2.	.5197	4.2142	6.32E+06	5.8018	
	400	247.3468	152.6532	38.16	381.6330	0.6481	2.3933 2.	.5816	5.5108	6.19E+06	5.9445	
	600	426.2166	173.7834	28.96	434.4585	0.9810	2.6296 2.	.6379	6.0549	6.17E+06	6.0741	
303	50	4.6724	45.3276	90.66	113.3190	0.0412	0.6695 2.	.0543	1.5417	9047795.9886	4.7302	0.0033
	100	9.3763	90.6237	90.62	226.5593	0.0414	0.9720 2.	.3552	2.2382	7518153.4158	5.4230	
	200	59.4598	140.5402	70.27	351.3505	0.1692	1.7742 2.	.5457	4.0853	6347104.6297	5.8618	
	400	244.5678	155.4322	38.86	388.5805	0.6294	2.3884 2.	.5895	5.4995	6189184.3465	5.9625	
	600	421.1538	178.8462	29.81	447.1155	0.9419	2.6244 2.	.6504	6.0430	6168067.1327	6.1028	
318	50	3.3322	46.6678	93.34	116.6695	0.0286	0.5227 2.	.0670	1.2036	10376335.5910	4.7593	0.003145
	100	8.7868	91.2132	91.21	228.0330	0.0385	0.9438 2.	.3580	2.1733	7615686.8364	5.4295	
	200	46.6104	153.3896	76.69	383.4740	0.1215	1.6685 2.	.5837	3.8418	6405117.9816	5.9493	
	400	241.1916	158.8084	39.70	397.0210	0.6075	2.3824 2.	.5988	5.4856	6189889.9656	5.9840	
	600	414.9886	185.0114	30.84	462.5285	0.8972	2.6180 2.	.6651	6.0283	6168501.2699	6.1367	

A2-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

A2-2 MM	T(K)	298	303	318
Langmuir	b	0.0485	0.0604	0.0758
	Qm	443.7353	450.8984	461.1486
	\mathbb{R}^2	0.9955	0.9944	0.9930
Freundlich	n	3.5618	3.8263	3.9664
	1/n	0.2808	0.2614	0.2521
	$\mathbf{K}_{\mathbf{f}}$	86.0818	99.6453	110.7425
	\mathbb{R}^2	0.8726	0.8546	0.8533
Temkin	B (J mol ⁻¹)	69.2538	66.3751	65.5915
	$A_T (L g^{-1})$	1.2831	2.0531	2.9884
	b _T	35.7768	37.3284	37.7743
	\mathbb{R}^2	0.9620	0.9459	0.9234
D-R	X'm (mg g ⁻¹)	14487.4970	6279.1269	2799.4387
	K' (mol ⁻² J ²)	0.000000584	0.000000444	0.000000311
	\mathbb{R}^2	0.9861	0.9879	0.9715
	E (kJmol ⁻¹)	0.0011	0.0009	0.0008

Çizelge 4.42. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri

Çizelge 4.41'e bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.42.'de görüldüğü gibi üç sıcaklıkta da regresyon katsayıları 0.75'in üzerinde olduğu fakat en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 443.7353 mg/g, 30 °C'de maksimum adsorpsiyon kapasitesi 450.8984 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 461.1486 mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği söylenebilir. Freundlich izoterm sabitlerine göre 1/n değerinin 0.2808-0.2614-0.2521 değerlerinde olması ve 0.1 ve 0.5 arasında olması adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisinde 69.2538-66.375- 65.5915 göre sıcaklık artıkça adsorpsiyon enerjisinin düştüğü, D-R izoterminde E değerlerine bakıldığında adsorpsiyonun fiziksel olarak gerçekleştiği söylenebilir. Langmuirizoterminde bağlanma enerjisinin sıcaklıkla artışı olurken, D-R izoterminde E değeri 0.0011-0.0009-0.0008 olup 2'den küçük olması adsorpsiyon enerjisinin düştüğünü göstermektedir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.76, Şekil 4.77, Şekil 4.78, Şekil 4.79'da verilmiştir

Şekil 4.76. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.77. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.78. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.79. A2-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.43. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve	45
°C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci merte	ebe
(pseudo second order), Elovich, intrepartiküler difüzyon kinetik mo	del
sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm)	

T(°K)		298	303	318
Yalancı birinci derece (Pseudo first order)	kıp	0.007	0.058	0.021
	qe,calc	142.112	4824.422	487.281
	qe,exp	330.883	351.348	383.465
	R ²	0.907	0.670	0.775
Yalancı birinci derece (Pseudo second order)	\mathbf{k}_{2p}	0.00019	0.00016	0.00013
	qe,calc	335.952	356.987	391.766
	qe,exp	330.883	351.348	383.465
	R ²	0.997	0.996	0.995
Elovich	β	38.770	41.460	46.497
	α	0.279	0.221	0.149
	qe,exp	330.883	351.348	383.465
	R ²	0.984	0.986	0.986
Intraparticle diffusion	\mathbf{k}_{p}	8.654	9.414	10.721
	R ²	0.862	0.894	0.921

Şekil 4.80. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1g, pH=6-7, KH= 200 rpm).

Şekil 4.80. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) (devamı)

155

Çizelge 4.43. ve Şekil 4.80'deki değerlere bakıldığında yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (\mathbb{R}^2) oldukça yüksektir. Bu kinetik modellerden regrasyon (kolarelasyon) sayısı en yüksek olan ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik modele daha uyumludur.

A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

Çizelge 4.44. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

A2-2MM/ Co	T (K)	Kc	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	7.3413	1.9935	-4939.2729	24177.4471	98.1226
	303	9.7011	2.2722	-5629.8833		
	318	14.0051	2.6394	-6539.6325		
100 ppm	298	7.1877	1.9724	-4886.9072	12162.3875	57.9718
	303	9.6652	2.2685	-5620.6844		
	318	10.3807	2.3399	-5797.6363		
200 ppm	298	1.9567	0.6713	-1663.1900	19871.3867	72.4634
	303	2.3636	0.8602	-2131.2801		
	318	3.2909	1.1912	-2951.3025		
400 ppm	298	0.6172	-0.4826	1195.7829	2406.5951	4.1101
	303	0.6355	-0.4533	1123.0884		
	318	0.6584	-0.4179	1035.4041		
600 ppm	298	0.4077	-0.8971	2222.8175	3318.0944	3.7410
	303	0.4247	-0.8565	2122.0601		
	318	0.4458	-0.8078	2001.5502		

Şekil 4.81. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.44. ve Şekil 4.81'e bakıldığında bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. A2-2 aktif karbonunun metilen mavisi adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun arttığını göstermektedir Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki sıcaklıklarda (Δ Go) negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600ppm deki sıcaklıklarda daha önce kendiliğinden gerçekleşen adsorpsiyonun yeterli doygunluğa ulaştığını göstermektedir. Entropi (Δ So) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu konsantrasyon yükselmesi sonucu (Δ So) değerlerinin 98.1226 J/mol.K'den 3.7410'e düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Adsorpsiyonunda olduğu gibi aktif karbon yüzey doygunluğunun arttığı söylenebilir.

A2-2 Aktif Karbonunun Metilen Mavisi Adsorpsiyonunda Başlangıç pH Değişiminin Etkisi

Aktif korbon	Co (MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A2-2	200	118.7634	3	3.84
	200	125.8678	4	6.7
	200	127.8654	5	7.02
	200	129.6984	6	7.01
	200	132.3575	7	6.98
	200	121.5633	8	7.69
	200	93.0016	9	7.89
	200	130.4354	10	8.19
	200	128.4656	11	9.87

Çizelge 4.45. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.82. A2-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.45 ve Şekil 4.82'ye bakıldığında Adsorpsiyonun metilen mavisinin ölçülen doğal pH aralığında (pH=7.50) En yüksek adsorpsiyonu verdiği görülmüştür. Adsorpsiyon ortak iyon etkisinde dolayı yüzeyin pozitif ya da negatif yük durumuna göre değişiklik göstermektedir. Yüzeyin pozif adsorplanan madenin negatif yüklü olması adsorpsiyonu artırıken ortama ortamda farklı negatif yüklerin olması adsorpsiyonu düşürmektedir. Ya da yüzeyin negatif yüklü adsorbe edilecek olan maddenin pozitif yüklü olması adsorpsiyonu artırırken ortamda farklı negatif yüklerin olması adsorpsiyonu düşürmektedir. Aktif karbon yüzeyi ise asidik ya da bazik yüzyler bulundurabilir. Aktif karbonun gözenek genişliğinin adsorpsiyona etkisi bulunmaktadır. Ortamında ortak iyon etkisinden dolayı asidik ortamda ortamın asitliği artarken metilen mavisinin adsorpsiyonu adsorpsiyon azalmıştır. Katyonik bir boyaFrmadde olan metilen mavisi asidik ortamdaki hidrojen sayısının artması mikro gözeneklerin hidrojenle dolması sebebiyle yüzeydeki adsorpsiyonu azaltığı düşünülmektedir. Bazik ortamda ise hidroksil iyonlarının metilen mavisi ve karbon yüzeyi ile etkileşiminde dolayı boyar maddenin doğal pH=7.50 daha az adsorpsiyon yapmasına sebep olmuştur. Ortamdaki hidroksil iyonlarının pH=8 ve pH=9 aktif karbon tarafından adsorbe edildiği düşünülmektir. Yüksek pH=10 ve pH=11 de ortamın bazikliği artmış ve metilen mavisi katyonu ile zayıf bağlar oluşturarak adsorpsiyonunun artırdığı düşünülmektedir. Bazik ortamda aktif karbon mikro gözeneklerin hidroksil iyonları adsorbe edip, yeterli doyguluğa ulaştıktan sonra metilen mavisi boyar maddesinin adsorpsiyonuna olumlu yönde etki ettiği düşülmektedir.

A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda sicaklik ve konsantrasyon etkisi

Şekil 4.83. A2-2 aktif karbonunun kinolin sarisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

A2-2 aktif karbonunda metilen mavisinin sıcaklık artışının adsorbe edilen madde miktarını arttığı görülmektedir Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artması adsorbent yüzeyindeki adsorpsiyonu artırmaktadır. Sıcaklığın artması ile boya taşınımının artmasından kaynaklı durumlarda da adsorpsiyon kapasitesinde artış meydana gelmektedir. Bu durum sıcaklığın adsorbent partikülünün iç gözeneklerine ve dış sınır tabakasına doğru difüzyonunu artırmasından kaynaklanmaktadır. Aynı zamanda sıcaklığın artması ile viskozitenin düşmesi de adsorpsiyon kapasitesini arttırmaktadır

A2-2 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm değerleri

Çizelge 4.46. A2-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

K	A2-2 KS					Langmuir	Freund	llich	Temkin	D-R		Term.
200	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	$q_e(mg/g)$	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
298	50	14.4653	35.5347	71.07	88.8368	0.1628	1.1603	1.9486	2.6718	7.02E+06	4.4868	0.003356
	100	59.8418	40.1582	40.16	100.3956	0.5961	1.7770	2.0017	4.0917	6.35E+06	4.6091	
	200	130.5548	69.4452	34.72	173.6130	0.7520	2.1158	2.2396	4.8718	6.23E+06	5.1568	
	400	324.1893	75.8107	18.95	189.5268	1.7105	2.5108	2.2777	5.7813	6.18E+06	5.2445	
	600	519.5095	80.4905	13.42	201.2263	2.5817	2.7156	2.3037	6.2529	6.16E+06	5.3044	

										· ·		
Κ	A2-2 KS					Langmuir	Freund	llich	Temkin	D-R		Term.
	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads.	q _e (mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	Inqe	1/T
303	50	13.4356	36.5644	73.13	91.4110	0.1470	1.1283	1.9610	2.5979	7086710.3258	4.5154	0.0033
	100	57.8934	42.1066	42.11	105.2666	0.5500	1.7626	2.0223	4.0586	6352786.8900	4.6565	
	200	127.5548	72.4452	36.22	181.1130	0.7043	2.1057	2.2579	4.8485	6235511.9389	5.1991	
	400	320.1698	79.8302	19.96	199.5755	1.6043	2.5054	2.3001	5.7689	6177287.3848	5.2962	
	600	515.2348	84.7652	14.13	211.9130	2.4314	2.7120	2.3262	6.2446	6162732.4181	5.3562	
318	50	11.8769	38.1231	76.25	95.3078	0.1246	1.0747	1.9791	2.4746	7216150.4567	4.5571	0.003145
	100	53.0043	46.9957	47.00	117.4892	0.4511	1.7243	2.0700	3.9704	6372701.8865	4.7663	
	200	122.9980	77.0020	38.50	192.5050	0.6389	2.0899	2.2844	4.8122	6239106.4374	5.2601	
	400	313.6214	86.3786	21.59	215.9465	1.4523	2.4964	2.3343	5.7482	6178090.6089	5.3750	
	600	509.1844	90.8156	15.14	227.0390	2.2427	2.7069	2.3561	6.2328	6163016.1251	5.4251	

Çizelge 4.46. A2-2 aktif karbonunun kinolin sarısı ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri (devamı)

A2-2 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

A2-2 KS	T(K)	298	303	318
Langmuir	b	0.0245	0.0249	0.0284
	Qm	215.8687	227.1222	241.7701
	\mathbb{R}^2	0.9927	0.9931	0.9957
Freundlich	n	3.9465	3.9247	3.9695
	1/n	0.2534	0.2548	0.2519
	K _f	42.9838	44.9788	49.6960
	\mathbf{R}^2	0.8872	0.8963	0.9287
Temkin	B (J mol ⁻¹)	34.6739	36.3880	38.3525
	$A_T (L g^{-1})$	0.6790	0.6938	0.7993
	b _T	71.4566	68.0906	64.6027
	\mathbf{R}^2	0.8886	0.8960	0.9248
D-R	X'm (mg g ⁻¹)	37593.9372	29152.1060	19902.1642
	K' (mol ⁻² J ²)	0.000000873	0.00000824	0.000000749
	\mathbf{R}^2	0.6724	0.6785	0.7293
	E (kJmol ⁻¹)	0.0013212	0.0012837	0.0012243

Çizelge 4.47. A2-2 aktif karbonunun kinolin sarısı adsorpsiyonu izoterm sabitleri değerleri

Çizelge 4.46'ya bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.47'de görüldüğü gibi üç sıcaklıkta da regresyon katsayıları D-R izotermi hariç 0,88'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 215.8687 mg/g, 30 °C'de maksimum adsorpsiyon 227.1222 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 241.7701 mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrssyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı. Freundlich izoterm sabitlerine göre 1/n değerler 0.2534-0.2548-0.2519 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 34.6739-36.3880-38.3525joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enerjisinin arttığı görülmektedir. D-R izoterminde E değerine bakılarak adsorpsiyonun fiziksel bir adsorpsiyon olduğu söylenebilir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.84, Şekil 4.85, Şekil 4.86, Şekil 4.87'de verilmiştir.

Şekil 4.84. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25 AD= 1 g, pH=6-7, KH=200 rpm).

Şekil 4.85. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.86. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C,30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=6, KH=200 rpm).

Şekil 4.87. A2-2 aktif karbonunun kinolin sarısı giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1g, pH=6, KH=200 rpm)

A2-2 aktif karbonu ile kinolin sarısı adsorpsiyonunda izotermler bakıldığı zaman üç sıcaklıkta en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olduğu görülmektedir. Bu adsorpsiyona başka faktörlerinde etki ettiğini göstermektedir.

A2-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.48. A2-2 aktif karbonunun kinolin sarısı ad	dsorpsiyonunda 25 °C, 30 °C ve 45
°C'deki yalancı birinci mertebe (pseudo	o first order), yalancı ikinci mertebe
(pseudo second order), Elovich, intre	partiküler difüzyon kinetik model
sabitleri (Co= 200mg/L, V=0,25L, AD	= 1g, pH=6-7, KH= 200 rpm)

T(K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.004	0.008	0.018
	qe,calc	96.428	196.063	1188.034
	qe,exp	173.613	181.125	192.505
Yalancı birinci derece (Pseudo second order)	R² k _{2p}	0.945 0.00015	0.835 0.00014	0.607 0.00012
	qe,calc	175.811	184.286	196.069
	qe,exp	173.613	181.125	192.505
Elovich	R² β	0.998 26.879	0.997 41.131	0.996 28.533
	α	0.075	0.232	0.086
	qe,exp	329.803	330.883	383.464
Intraparticle diffusion	R² kp	0.976 3.345	0.984 3.452	0.981 3.617
	R ²	0.848	0.856	0.884

Şekil 4.88. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (C₀=200mg/L, V=0,25L, AD= 1g, pH=6-7, KH= 200 rpm).

Şekil 4.88. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (C₀=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm) (devamı).

Çizelge 4.48 ve Şekil 4.88'de elde edilen verilere göre hesaplanan pseudo birinci ve ikinci mertebe kinetik modellerinden yalancı ikinci mertebe (pseudo first order) kinetik değerlerinin ve yalancı birinci mertebe (pseudo first order)de elde edilen qe (Calc) (mg/g) değerlerin deneysel qe(Calc) (mg/g) değerlerinin daha uygun olduğu, bu uyumluluğu ifade eden R² değerleri tüm sıcaklık değerleri için yalancı ikinci mertebe (pseudo first order) kinetik modelinde yüksek ve 1'e yakın değerlere sahiptir.

A2-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

Çizelge 4.49. A2-2 aktif karbonunun kinolin sarısı adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

A2-2 KS / Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°,
						J/mol.K
50 ppm	298	2.4565	0.8988	-2226.8289	10162.7683	41.6984
	303	2.7215	1.0012	-2480.5682		
	318	3.2099	1.1662	-2889.5282		
100 ppm	298	0.6711	-0.3989	988.2858	10888.0201	33.2487
	303	0.7273	-0.3184	788.8853		
	318	0.8866	-0.1203	298.1084		
200 ppm	298	0.5319	-0.6313	1564.0458	6153.5991	15.4879
	303	0.5680	-0.5657	1401.6603		
	318	0.6260	-0.4683	1160.3867		
400 ppm	298	0.2338	-1.4531	3600.2821	6200.5526	8.8064
	303	0.2493	-1.3889	3441.3675		
	318	0.2754	-1.2894	3194.8312		
600 ppm	298	0.1549	-1.8647	4620.2368	5277.6737	2.2939
	303	0.1645	-1.8047	4471.5557		
	318	0.1784	-1.7240	4271.4623		

Şekil 4.89. A2-2 aktif karbonunun kinolin sarisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.49 ve Şekil 4.89'a bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun artacağını göstermektedir. Gibbs serbest enerji değişimi 50 ppm deki sıcaklıklarda (Δ G°)'ise negatif işaretli olması prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. Fakat daha yüksek konsatrasyonlarda. Gibbs serbest enerji değişimlerinin pozitif olması adsorpsiyonun kendiliğinden gerçekleşmeyeceği adsorpsiyonun devam edebilmesi için dışardan enerjiye ihtiyaç olduğu gözükmektedir. Entropi (Δ S°) değerlerinin negatif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent- çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (Δ S°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbon yüzey doygunluğa ulaştığı söylenebilir.

4.2.5. A3-1 Aktif karbonunun metilen mavisi deney sonuçları

A3-1 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi

Şekil 4.90. A3-1 aktif karbonunun metilen mavisi ile adsorpsiyonu sıcaklık konsantrasyon grafiği.

Grafikte sıcaklığın metilen mavisi difüzyonunu arttırdığında daha fazla miktarda metilen mavisi sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artması adsorbent yüzeyindeki adsorpsiyonu arttırmaktadır. Sıcaklığın artması ile boya taşınımının artmasından kaynaklı durumlarda da adsorpsiyon kapasitesinde artış meydana gelmektedir. Bu durum sıcaklığın adsorbent partikülünün iç gözeneklerine ve dış sınır tabakasına doğru difüzyonunu arttırmasından kaynaklanmaktadır. Aynı zamanda sıcaklığın artması ile viskozitenin düşmesi de adsorpsiyon kapasitesini arttırmaktadır.

A3-1 aktif karbonunun metilen mavisi adsorpsiyonu izoterm değerleri

Çizelge 4.50. A3-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

Κ	A3-1 MN	1				Langmuir	Freund	llich	Temkin	D-R		Term.
298	Co(ppm)	Ce(ppm)	Cads	%Ads.	qe(mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	Inqe	1/T
	50	5.6981	44.3019	88.6	110.7548	0.0514	0.7557	2.0444	1.740	8.48E+06	4.7073	0.003356
	100	44.7882	55.2118	55.21	138.0295	0.3245	1.6512	2.14	3.80	6.42E+06	4.9275	
	200	99.9458	100.05	50.03	250.1355	0.3996	1.9998	2.3982	4.604	6.26E+06	5.522	
	400	290.435	109.564	27.39	273.9118	1.0603	2.463	2.4376	5.671	6.18E+06	5.6128	
	600	477.95	122.047	20.34	305.119	1.5664	2.6794	2.4845	6.16	6.16E+06	5.7207	
303	50	4.8964	45.1036	90.21	112.759	0.0434	0.6899	2.0522	1.588	8902443.577	4.7253	0.0033
	100	39.7882	60.2118	60.21	150.5295	0.2643	1.5998	2.1776	3.683	6451335.517	5.0142	
	200	94.9458	105.054	52.53	262.6355	0.3615	1.9775	2.4194	4.553	6268874.185	5.5708	
	400	287.435	112.56	28.14	281.4118	1.0214	2.4585	2.4493	5.661	6181669.015	5.6398	
	600	470.952	129.047	21.51	322.619	1.4598	2.673	2.5087	6.154	6164977.591	5.7765	
318	50	2.9882	47.0118	94.02	117.5295	0.0254	0.4754	2.0701	1.094	10935122.91	4.7667	0.003145
	100	36.7882	63.2118	63.21	158.0295	0.2328	1.5657	2.1987	3.605	6477157.627	5.0628	
	200	89.9458	110.054	55.03	275.1355	0.3269	1.954	2.4395	4.499	6276140.404	5.6173	
	400	282.435	117.564	29.39	293.9118	0.961	2.4509	2.4682	5.643	6182427.857	5.6833	
	600	465.952	134.047	22.34	335.119	1.3904	2.6683	2.5252	6.144	6165257.938	5.8145	

Çizelge 4.50'ye bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

A3-1 MM	T (K)	298	303	318
Langmuir	b	0.0290	0.0324	0.0375
	Qm	320.8068	334.0227	344.4689
	R ²	0.9902	0.9903	0.9909
Freundlich	n	4.0920	4.1631	4.6273
	1/n	0.2444	0.2402	0.2161
	K _f	68.2653	74.1158	88.3962
	\mathbf{R}^2	0.8965	0.9234	0.9157
Temkin	B (J mol ⁻¹)	46.2179	47.1902	44.0309
	$A_{T}\left(L\ g^{\textbf{-1}}\right)$	1.3062	1.5852	3.1941
	b _T	53.6086	52.5040	56.2713
	\mathbf{R}^2	0.8815	0.9030	0.8879
D-R	X'm (mg g ⁻¹)	2207.0924	1775.0542	769.2189
	K' (mol ⁻² J ²)	0.000000358	0.000000314	0.000000174
	R ²	0.6318	0.6784	0.6514
	E (kJmol ⁻¹)	0.000847	0.000793	0.000590

Çizelge 4.51 A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri

Çizelge 4.51'de görüldüğü gibi üç sıcaklıkta da regresyon katsayıları D-R izotermi 0,70 altında diğer izotermler 0,88'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 320.8068 mg/g, 30 °C'de maksimum adsorpsiyon kapasitesi 334.0227 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 344.4689mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regresyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.2444-0.2402-0.2161 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 46.217-47.1902-44.0309 sıcaklık arttıkça 30 °C de adsorpsiyon enrjisinin arttığı 45 °Cde ise adsorpsiyon enerjisinin düştüğü söylenebilir. Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.91, Şekil 4.92, Şekil 4.93, Şekil 4.94' de verilmiştir.

Şekil 4.91. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.92. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.93. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm)

Şekil 4.94. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A3-1 aktif karbonu ile metilen mavisinin adsorpsiyonunda izotermler bakıldığı zaman en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte D-R izotermi hariç diğer izotermlerin de R^2 değerlerinin yüksek olması adsorpsiyona etki eden faktörlerinde çeşitliliğini göstermektedir.

A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.52. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo first order) kinetik model sabitleri (Co= 200mg/L, V=0,25L AD= 1g, pH=7, KH= 200 rpm)

T(K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.065	0.016	0.013
	qe,calc	5975.773	295.856	262.735
	qe,exp	250.136	262.636	275.136
	R ²	0.665	0.928	0.981
Yalancı birinci derece (Pseudo second order)	k _{2p}	0.00006	0.00006	0.00007
	qe,calc	286.172	299.047	307.087
	qe,exp	250.136	262.636	275.136
	R ²	0.990	0.990	0.992
Elovich	β	50.967	53.199	54.469
	α	0.006	0.006	0.007
	qe,exp	250.136	262.636	275.136
	R ²	0.949	0.950	0.958
Intraparticle diffusion	k _p	13.154	13.719	13.951
	R ²	0.947	0.946	0.941

Şekil 4.95. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda yalancı birinci mertebe (pseudo first order) ve yalancı ikinci mertebe (pseudo first order) kinetik model sabitleri ve grafikleri (Co= 200mg/L, V=0,25L AD= 1g, pH=7, KH= 200 rpm).

Şekil 4.95. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda Elovich ve İnterpartiküler kinetik model sabitleri ve grafikleri (Co= 200mg/L, V=0,25L AD= 1 g, pH=7, KH= 200 rpm) (devamı).

Çizelge 4.52 ve Şekil 4.95'de elde edilen verilere göre hesaplanan pseudo birinci ve ikinci mertebe kinetik modellerinden elde edilen qe değerleri incelendiğinde, yalancı ikinci mertebe (pseudo first order)de elde edilen qe (Calc) (mg/g) değerlerin deneysel qe (Calc) (mg/g) değerlerinin daha uygun olduğu, bu uyumluluğu ifade eden R² değerleri tüm sıcaklık değerleri için yalancı ikinci mertebe (pseudo first order) kinetik modelinde daha yüksek ve yakın değerlere sahiptir.

A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A3-1MM/ Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	7.7749	2.0509	-5081.4534	27945.2640	110.7695
	303	9.2116	2.2205	-5501.5856		
	318	15.7325	2.7557	-6827.8006		
100 ppm	298	1.2327	0.2092	-518.4091	11713.4224	41.4948
	303	1.5133	0.4143	-1026.4962		
	318	1.7183	0.5413	-1341.2005		

Çizelge 4.53. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

	Ronsu	masyon	ve steakiikit		mink paramet	
A3-1MM/ Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
200 ppm	298	1.0011	0.0011	-2.6858	7355.2891	24.8715
	303	1.1065	0.1012	-250.6670		
	318	1.2236	0.2018	-499.9101		
400 ppm	298	0.3772	-0.9749	2415.4014	3742.2861	4.4967
	303	0.3916	-0.9375	2322.7463		
	318	0.4163	-0.8765	2171.5858		
600 ppm	298	0.2554	-1.3651	3382.2760	4240.7868	3.0301
	303	0.2740	-1.2946	3207.5395		
	318	0.2877	-1.2459	3086.9085		

Çizelge 4.53. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri (devamı)

Çizelge 4.53 ve Şekil 4.96'ya bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun artacağının göstermektedir. Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki sıcaklıklarda (Δ G°)'ise negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600 ppm deki sıcaklıklarda daha önce kendiliğinden gerçekleşen adsorpsiyonun yeterli doygunluğa ulaştığını söylenebilir. Entropi (Δ S°) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (Δ S°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbon yüzey doygunluğunun arttığı söylenebilir.

Şekil 4.96. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.54. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi.

Aktif korbon	Co(MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A3-1	200	82.6879	3	3.65
	200	89.6796	4	6.84
	200	96.9904	5	7.25
	200	98.4678	6	7.15
	200	100.5647	7	7
	200	96.543	8	7.89
	200	98.543	9	8.25
	200	96.6476	10	8.45
	200	94.7894	11	9.85

Şekil 4.97. A3-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç ph değişiminin etkisi grafiği.

Çizelge 4.54 ve Şekil 4.97'ye bakıldığında adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Asidik ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu pH artarken adsorpsiyon artmıştır, yani ortamın asitliği azaldıkça adsorpsiyon artmaktadır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7'deki kadar artış göstermemiştir. Bunun nedeni A1-1' de ifade edilen sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf etkileşimler oluşturmasıdır.

A3-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi

Şekil 4.98. A3-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi grafiği.

A3-2 aktif karbonunda metilen mavisinin sıcaklık artışının adsorbe edilen madde miktarını arttığı görülmektedir. Grafikte sıcaklığın metilen mavisi difüzyonunu arttırdığında daha fazla miktarda metilen mavisi sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır. Adsorbent ve adsorplanan madde molekülleri aralarındaki çarpışmanın artması adsorbent yüzeyindeki adsorpsiyonu arttırmaktadır. Sıcaklığın artması ile boya taşınımının artmasından kaynaklı durumlarda da adsorpsiyon kapasitesinde artış meydana gelmektedir. Bu durum sıcaklığın adsorbent partikülünün iç gözeneklerine ve dış sınır tabakasına doğru difüzyonunu arttırmasından kaynaklanmaktadır.

K		A4-1 MM				Langmuir	Freundlich	Temkin		D-R		Term.
	Co(ppm)	Ce(ppm)	Cads(ppm)	% Ads	qe(mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	Inqe	1/T
	50	2.5238	47.4762	94.95	118.6905	0.0213	0.4021	2.0744	0.926	1.20E+07	4.7765	
298	100	4.5915	95.4085	95.41	238.5213	0.0192	0.662	2.3775	1.524	9.10E+06	5.4745	
290	200	110.6997	89.3003	44.65	223.2508	0.4959	2.0441	2.3488	4.707	6.25E+06	5.4083	0.00336
	400	312.9348	87.0652	21.77	217.663	1.4377	2.4955	2.3378	5.746	6.18E+06	5.3829	
	600	505.8582	94.1418	15.69	235.3545	2.1493	2.704	2.3717	6.226	6.16E+06	5.4611	
	50	2.1246	47.8754	95.75	119.6885	0.0178	0.3273	2.0781	0.754	13277723 .97	4.7849	
	100	3.8876	96.1124	96.11	240.281	0.0162	0.5897	2.3807	1.358	9703251. 737	5.4818	
303	200	92.3989	107.6011	53.8	269.0028	0.3435	1.9657	2.4298	4.526	6272476. 661	5.5947	0.0033
	400	291.3222	108.6778	27.17	271.6945	1.0722	2.4644	2.4341	5.674	6181097. 132	5.6047	
	600	489.0943	110.9057	18.48	277.2643	1.764	2.6894	2.4429	6.193	6164008. 563	5.625	
	50	2.0034	47.9966	95.99	119.9915	0.0167	0.3018	2.0792	0.695	13796856 .5	4.7874	
210	100	3.4456	96.5544	96.55	241.386	0.0143	0.5373	2.3827	1.237	10219277 .29	5.4864	
318	200	89.0347	110.9653	55.48	277.4133	0.3209	1.9496	2.4431	4.489	6277552. 848	5.6255	0.00315
	400	286.7856	113.2144	28.3	283.036	1.0132	2.4576	2.4518	5.659	618176.1 21	5.6456	
	600	483.6754	116.3246	19.39	290.8115	1.6632	2.6846	2.4636	6.181	6164290. 385	5.6727	

Çizelge 4.55. A3-2 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

A3-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

Çizelge 4.56. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri

A3-2 MM	T(K)		298	303	318
		b	0.0476	0.0507	0.0552
Langmuir		Qm	352.4715	364.7647	386.5215
		\mathbb{R}^2	0.9925	0.9913	0.9917
		n	3.9249	3.9992	4.1778
E		1/n	0.2548	0.2501	0.2394
Freundlich		$\mathbf{K}_{\mathbf{f}}$	78.1223	83.5847	94.2717
		\mathbb{R}^2	0.8509	0.8569	0.8859
		R ²	0.8509	0.8569	0.8859

	· · · · · ·			
A3-2 MM	T(K)	298	303	318
	B (J mol ⁻¹)	53.2394	53.9329	54.3071
Tombin	$A_{T}\left(L\ g^{\text{-}1}\right)$	1.5496	1.8187	2.5143
Tellikin	b _T	46.5384	45.9400	45.6234
	\mathbb{R}^2	0.9270	0.9286	0.9540
	X'm (mg g ⁻¹)	21509.5998	12177.5010	4274.9236
D D	K' (mol ⁻² J ²)	0.000000682	0.000000586	0.000000411
D-K	R ²	0.9875	0.9840	0.9719
	E (kJmol ⁻¹)	0.0011682	0.0010822	0.0009063

Çizelge 4.56. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri (devamı)

Çizelge 4.55'e bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir. Çizelge 4.56'da görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0.85'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir İzoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 352.4715 mg/g, 30 °C'de maksimum adsorpsiyon 364.7647 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 386,5215mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.2548-0.2501-0.2394 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 53.2394-53.9329-54.3071 joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enrjisinin arttığı, D-R izoterminde E değerine bakılarak dasorpsiyonun fiziksel bir adsorpsiyon olduğu söylenebilir.

Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.99, Şekil 4.100, Şekil 4.101, Şekil 4.102' de verilmiştir.

Şekil 4.99 A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.100. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.101. A3-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1g, pH=7, KH=200 rpm).

Şekil 4.102. A3-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1g, pH=7, KH=200 rpm).

A3-2 aktif karbonu ile metilen mavisinin adsorpsiyonunda izotermler bakıldığı zaman en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin yüksek olması adsorpsiyona etki eden faktörlerinde çeşitliliğini göstermektedir.

A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.57. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm)

T(K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.033	0.033	0.009
	qe,calc	449.312	479.228	149.996
	qe,exp	287.859	297.859	305.774
	R ²	0.878	0.868	0.902
Yalancı birinci derece (Pseudo second order)	\mathbf{k}_{2p}	0.00024	0.00023	0.00021
	qe,calc	296.201	306.162	313.906
	qe,exp	287.859	297.859	305.774
	R ²	0.998	0.998	0.997
Elovich	β	40.763	41.577	41.994
	α	0.094	0.097	0.101
	qe,exp	287.859	298.903	305.774
	R ²	0.977	0.981	0.983
Intraparticle diffusion	k _p	9.602	9.877	10.029
	R ²	0.812	0.830	0.840

Şekil 4.103. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, r, pH=6-7, KH= 200 rpm).

Şekil 4.103. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) (devamı).

Çizelge 4.57 ve Şekil 4.103'e göre yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (\mathbb{R}^2) oldukça yüksektir. Bu kinetik modellerden regrasyon (kolarelasyon) sayısı en yüksek olan ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi pseudo ikinci mertebe kinetik modele daha uyumludur.

A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

					r	
A3-2 MM/ Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	5.3802	1.6827	-4169.2286	21079.1126	84.8513
	303	6.4149	1.8586	-4605.0584		
	318	9.2766	2.2275	-5519.0245		
100 ppm	298	4.3391	1.4677	-3636.3952	14592.4370	61.2631
	303	4.9090	1.5911	-3942.1460		
	318	6.3297	1.8452	-4571.9231		
200 ppm	298	1.3569	0.3052	-756.2304	5251.1054	20.3570
	303	1.4864	0.3963	-981.9817		
	318	1.5744	0.4539	-1124.5329		
400 ppm	298	0.4276	-0.8497	2105.1905	5339.2331	10.8790
	303	0.4464	-0.8066	1998.5052		
	318	0.4906	-0.7121	1764.3082		
600 ppm	298	0.3034	-1.1927	2955.0490	5011.9159	6.9685
	303	0.3197	-1.1405	2825.8290		
	318	0.3463	-1.0603	2627.1121		

Çizelge 4.58. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.104. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

Çizelge 4.58 ve Şekil 4.104'e bakıldığında adsorpsiyonların hesaplanan entalpi (Δ H°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık artıkça adsorpsiyonun artacağını göstermektedir. Gibbs serbest enerji değişimi 50 ppm,100 ppm ve 200 ppm deki sıcaklıklarda (Δ G°)'ise negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600 ppm deki sıcaklıklarda adsorpsiyonun yeterli doygunluğa ulaştığını söylenebilir. Entropi (Δ S°) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (Δ S°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbon yüzey doygunluğunun arttığı söylenebilir.

A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi

Metilen mavisi A3-1 aktif karbonunda pH 3, pH, 4 pH 5, pH 6, pH 7, pH 8, pH 9, pH 10, pH 11 denge konsantrasyonları ve son pH'larının tablosu cizelge 59.'da

verilmiştir. pH ayarlamaları asit içim HCl(hidro klorik asit), baz içinNaOH(sodyum hidroksit) kullanılmıştır.

Aktif korbon	Co(MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph	
A3-2	200	88.967	3	3.94	
	200	92.3442	4	6.42	
	200	95.6648	5	6.85	
	200	97.4864	6	6.97	
	200	98.1435	7	7.03	
	200	85.6428	8	7.5	
	200	88.6458	9	8.13	
	200	96.6426	10	8.56	
	200	90.6455	11	9.98	

Çizelge 4.59. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.105. A3-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.59 ve Şekil 4.105'e bakıldığında adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Asidik ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu pH artarken adsorpsiyon artmıştır, yani ortamın asitliği azaldıkça adsorpsiyon artmaktadır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7'deki kadar artış göstermemiştir. Bunun nedeni A1-1' de ifade sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf bağlar oluşturmasıdır.

4.2.7 A4-1 Aktif karbonu metilen mavisi deney sonuçları

A4-1 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi

Şekil 4.106. A4-1 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi grafiği.

4 4 1	1 . • /	C 1 1			1	•	• •	1 - 1	/ •
$\Delta / I = I$	alztit	rarhonnnnn	motilon	mangi	aden	rnennonn	17 Atorm	dogovi	OVI
ΠT^{-1}	uniii	кагоонинин	memen	mavisi	uuso	Τυδινοπα	12010111	uegeri	eri

Çizelge 4.60. A4-1 aktif karbonunun metilen mavisi ile adsorpsiyonu Langmuir, Freundlich, Temkin, D-R izoterm değerleri

K		A4-1 MN	í			Langmuir	Freundlich	Temki	1	D-R		Term.
298	Co(ppm)	Ce(ppm)	Cads(ppm)	%Ads	qe(mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
	50	2.5238	47.4762	94.95	118.6905	0.0213	0.4021	2.0744	0.926	1.20E+07	4.7765	0.0034
	100	4.5915	95.4085	95.41	238.5213	0.0192	0.662	2.3775	1.524	9.10E+06	5.4745	
	200	110.7	89.3003	44.65	223.2508	0.4959	2.0441	2.3488	4.707	6.25E+06	5.4083	
	400	312.935	87.0652	21.77	217.663	1.4377	2.4955	2.3378	5.746	6.18E+06	5.3829	
	600	505.858	94.1418	15.69	235.3545	2.1493	2.704	2.3717	6.226	6.16E+06	5.4611	
303	50	2.1246	47.8754	95.75	119.6885	0.0178	0.3273	2.0781	0.754	13277723.97	4.7849	0.0033
	100	3.8876	96.1124	96.11	240.281	0.0162	0.5897	2.3807	1.358	9703251.737	5.4818	
	200	92.3989	107.601	53.8	269.0028	0.3435	1.9657	2.4298	4.526	6272476.661	5.5947	
	400	291.322	108.678	27.17	271.6945	1.0722	2.4644	2.4341	5.674	6181097.132	5.6047	
	600	489.094	110.906	18.48	277.2643	1.764	2.6894	2.4429	6.193	6164008.563	5.625	
318	50	2.0034	47.9966	95.99	119.9915	0.0167	0.3018	2.0792	0.695	13796856.5	4.7874	0.0031
	100	3.4456	96.5544	96.55	241.386	0.0143	0.5373	2.3827	1.237	10219277.29	5.4864	
	200	89.0347	110.965	55.48	277.4133	0.3209	1.9496	2.4431	4.489	6277552.848	5.6255	
	400	286.786	113.214	28.3	283.036	1.0132	2.4576	2.4518	5.659	6181766.121	5.6456	
	600	483.675	116.325	19.39	290.8115	1.6632	2.6846	2.4636	6.181	6164290.385	5.6727	

A4-1 aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

A4-1 MM	T(K)	298	303	318
	b	0.2237	0.3882	0.3106
Langmuir	$\mathbf{Q}_{\mathbf{m}}$	232.5638	277.4745	290.9311
	\mathbb{R}^2	0.9978	0.9999	0.9998
	n	13.6141	9.0886	8.6420
E	1/n	0.0735	0.1100	0.1157
Freundlich	$\mathbf{K}_{\mathbf{f}}$	151.3575	150.0566	151.5483
	\mathbb{R}^2	0.3700	0.5881	0.6159
	B (J mol ⁻¹)	11.9670	21.3642	23.2563
T	$A_T (L g^{-1})$	691297.4967	1519.6932	876.7674
Temkin	b _T	207.0420	115.9734	106.5378
	\mathbb{R}^2	0.3437	503 516 0.3882 0.3106 8 277.4745 290.9311 0.9999 0.9998 9.0886 8.6420 0.1100 0.1157 '5 150.0566 151.5483 0.5881 0.6159 0. 21.3642 23.2563 .4967 1519.6932 876.7674 20 115.9734 0.6469 0.6880 25 547.7734 0.00000107 0.000000103 0.8841 0.8850 0.466 0.0004619	
	X'm (mg g ⁻¹)	424.0125	547.7734	555.7691
D D	K' (mol ⁻² J ²)	0.000000094	0.000000107	0.000000103
D-R	\mathbb{R}^2	0.6820	0.8841	0.8850
	E (kJmol ⁻¹)	0.0004346	0.0004619	0.0004535

Çizelge 4.61. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri

Çizelge 4.61'a bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir.

Çizelge 4.61'de görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0,85'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir izoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 232.5638 mg/g, 30 °C'de maksimum adsorpsiyon 277.4745 mg/ g, 45 °C'de maksimum adsorpsiyon kapasitesi 290.9311 mg/ g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.0735-0.1100-0.1157 adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 11.9670-21.3642-23.2563 joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enrjisinin arttığı, D-R izoterminde E değerine bakılarak adsorpsiyonun fiziksel bir adsorpsiyon olduğu söylenebilir.

Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.107, Şekil 4.108, Şekil 4.109, Şekil 4.110' de verilmiştir.

Şekil 4.107. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.108. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.109. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.110. A4-1 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30°C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A4-1 aktif karbonu ile metilen mavisinin adsorpsiyonunda izotermler bakıldığı zaman yalnız en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerin de R² değerlerinin düşük olduğu görülmektedir.

A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı adsorpsiyon kinetiği

	sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, r. pH=6-7, KH= 200 rpm)
	(pseudo second order), Elovich, intrepartiküler difüzyon kinetik model
	°C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe
Çızelge 4.6	2. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30°C ve 45

T(°K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.017	0.017	0.017
	qe,calc	490.922	526.251	549.904
	qe,exp	223.251	269.003	277.413
	R ²	0.768	0.754	0.744
Yalancı birinci derece (Pseudo second	k _{2p}	0.00006	0.00008	0.00008
Yalancı birinci derece (Pseudo second order)	qe,calc	241.598	278.677	285.510
	qe,exp	223.251	269.003	277.413
	R ²	0.996	0.996	0.994
Elovich	β	41.517	45.050	44.675
	α	0.007	0.011	0.013
	qe,exp	223.251	269.003	277.413
	R ²	0.965	0.993	0.991
Intraparticle diffusion	k _p	8.738	9.254	9.267
	R ²	0.918	0.900	0.916

Şekil 4.111. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

Şekil 4.111. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm) (devamı).

Çizelge 4.62 ve Şekil 4.111'de elde edilen verilere göre hesaplanan pseudo birinci ve ikinci mertebe kinetik modellerinden yalancı birinci mertebe (pseudo first order) kinetik değeri alınamamıştır, yalancı ikinci mertebe (pseudo first order)de elde edilen qe(Calc) (mg/g) değerlerin deneysel qe(Calc) (mg/g) değerlerinin daha uygun olduğu, bu uyumluluğu ifade eden R² değerleri tüm sıcaklık değerleri için yalancı ikinci mertebe (pseudo first order) kinetik modelinde yüksek ve 1'e yakın değerlere sahiptir. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A4-1MM/ Co	T (K)	Кс	lnKc	ΔG°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50	200	10.0114	2.0245	7070 (400	01(7.020)	52.2502
50 ppm	298	18.8114	2.9345	-7270.6490	8167.2306	52.2502
	303	22.5338	3.1150	-7718.0069		
	318	23.9576	3.1763	-7869.8047		
100 ppm	298	20.7794	3.0340	-7517.1730	10674.7551	61.4091
	303	24.7228	3.2077	-7947.7075		
	318	28.0225	3.3330	-8258.1162		
200 ppm	298	0.8067	-0.2148	532.2452	14200.4438	46.8284
	303	1.1645	0.1523	-377.3892		
	318	1.2463	0.2202	-545.5629		
400 ppm	298	0.2782	-1.2793	3169.7844	11444.9053	28.5350
	303	0.3731	-0.9860	2443.0937		
	318	0.3948	-0.9295	2302.8800		
600 ppm	298	0.1861	-1.6815	4166.0993	8589.3914	15.3387
	303	0.2268	-1.4839	3676.5620		
	318	0.2405	-1.4250	3530.7617		

Çizelge 4.63. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.112 A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklar da termodinamik grafiği.

Çizelge 4.63 ve Şekil 4.112'e bakıldığında adsorpsiyonların hesaplanan entalpi (ΔH°) değişimleri pozitif işaretlidir. Bu adsorpsiyonun endotermik olduğunu ve sıcaklık

artıkça adsorpsiyonun artacağını göstermektedir. Gibbs serbest enerji değişimi 50 ppm, 100 ppm ve 200 ppm deki sıcaklıklarda (ΔG°)'ise negatif işaretlidir. Gibbs serbest enerji değişimlerinin negatif olması, prosesin söz konusu sıcaklıklarda kendiliğinden olabileceğini ifade etmektedir. 400 ppm ve 600 ppm deki sıcaklıklarda adsorpsiyonun yeterli doygunluğa ulaştığını söylenebilir. Entropi (ΔS°) değerlerinin pozitif olması, adsorbentte bazı yapısal değişiklikler sonucunda adsorbent-çözelti ara yüzeyindeki düzensizliğin düşük konsantrasyonlarda yüksek olması adsorbentin adsorbana olan ilgisinin yüksek olduğunu, konsantrasyon yükselmesi sonucu (ΔS°) değerlerinin düşmesi adsorbentin adsorbana olan ilgisinin azaldığını göstermektedir. Aktif karbon yüzey doygunluğunun arttığı söylenebilir.

A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi

Metilen mavisi A4-1 aktif karbonunda pH 3, pH, 4 pH 5, pH 6, pH 7, pH 8, pH 9, pH 10, pH 11 denge konsantrasyonları ve son pH'larının tablosu Çizelge 4.64verilmiştir. pH ayarlamaları asit içim HCl(hidroklorik asit), baz için NaOH (sodyum hidroksit) kullanılmıştır.

Aktif korbon	Co(MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A4-1	200	78.8644	3	3.9
	200	84.8654	4	6.12
	200	86.8698	5	6.82
	200	88.641	6	7
	200	89.3003	7	7
	200	67.4054	8	7.6
	200	77	9	7.52
	200	86.9424	10	8.61
	200	87.768	11	9.15

Çizelge 4.64. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.113. A4-1 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.64 ve Şekil 4.113'e bakıldığında Adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Asidik ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu pH artarken adsorpsiyon artmıştır, yani ortamın asitliği azaldıkça adsorpsiyon artmaktadır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7' deki kadar artış göstermemiştir. Bunun nedeni A1-1' de ifade edilen sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf bağlar oluşturmasıdır.

4.2.8 A4-2 Aktif karbonu metilen mavisi deney sonuçları

Şekil 4.114. A4-2 aktif karbonunun metilen mavisi adsorpsiyonu sıcaklık ve konsantrasyon etkisi.

Grafikte sıcaklığın metilen mavisi difüzyonunu arttırdığında daha fazla miktarda metilen mavisi sıcaklık arttıkça aktif karbon içine yerleşmiştir. Adsorbent kütlesi başına adsorplanan madde miktarının sıcaklıkla artması adsorpsiyonun endotermik olduğunu göstermektedir. Sıcaklığa bağlı olarak adsorpsiyon veriminin artışının birçok nedeni bulunmaktadır. Bu nedenler arasında en önemlisi sıcaklık artışı ile beraber adsorbent partiküllerinin kinetik enerjilerinin de artmış olmasıdır.

A4-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm değerleri

Çizelge 4.65. A4-2 aktif karbonunun metilen mavisi ile adsorpsiyonu langmüir, Freundlich, Temkin, D-R izoterm değerleri

K	A4-2 N	1M				Langmuir	Freun	dlich	Temkin	D-R		Term.
298	Co(ppm)	Ce(ppm)	Cads(ppm)	% Ads.	q _e (mg/g)	Ce/qe	logCe	logqe	lnCe	£^2	lnqe	1/T
	50	27.4936	22.5064	45.01	56.266	0.4886	1.4392	1.7502	3.314	6.59E+06	4.0301	0.003356
	100	66.7578	33.2422	33.24	83.1055	0.8033	1.8245	1.9196	4.2011	6.32E+06	4.4201	
	200	160.0664	39.9336	19.97	99.834	1.6033	2.2043	1.9993	5.0756	6.22E+06	4.6035	
	400	356.3456	43.6544	10.91	109.136	3.2652	2.5519	2.038	5.8759	6.17E+06	4.6926	
	600	550.8768	49.1232	8.19	122.808	4.4857	2.7411	2.0892	6.3115	6.16E+06	4.8106	
303	50	26.0072	23.9928	47.99	59.982	0.4336	1.4151	1.778	3.2584	6620046.797	4.094	0.0033
	100	63.6754	36.3246	36.32	90.8115	0.7012	1.804	1.9581	4.1538	6333211.861	4.5088	
	200	156.9805	43.0195	21.51	107.5488	1.4596	2.1958	2.0316	5.0561	6217340.967	4.6779	
	400	352.7624	47.2376	11.81	118.094	2.9871	2.5475	2.0722	5.8658	6173733.795	4.7715	
	600	548.688	51.312	8.55	128.28	4.2773	2.7393	2.1082	6.3075	6161276.816	4.8542	
318	50	25.5876	24.4124	48.82	61.031	0.4193	1.408	1.7856	3.2421	6628088.523	4.1114	0.003145
	100	64.0464	35.9536	35.95	89.884	0.7125	1.8065	1.9537	4.1596	6332077.439	4.4985	
	200	154.8896	45.0195	22.51	112.5488	1.377	2.1903	2.0513	5.0433	6218356.752	4.7234	
	400	353.2236	46.7764	11.69	116.941	3.0205	2.548	2.068	5.8671	6173688.222	4.7617	
	600	547.7784	52.2216	8.7	130.554	4.1958	2.7386	2.1158	6.3059	6161314.041	4.8718	

A4-2 aktif karbonunun metilen mavisi adsorpsiyonu izoterm sabitleri değerleri

Çizelge 4.66. A4-2 aktif karbonunu	ı metilen mavisi gi	iderimi adsorpsiyon	sabitleri
------------------------------------	---------------------	---------------------	-----------

A4-2 MM	T (K)	298	303	318	
	b	0.0237	0.0281	0.0285	
Langmuir	$\mathbf{Q}_{\mathbf{m}}$	128.9107	134.4977	135.851	
	\mathbb{R}^2	0.9958	0.9984	0.9965	

A4-2 MM	T (K)	298	303	318	
Freundlich	n	4.1345	4.3051	4.3174	
	1/n	0.2419	0.2323	0.2316	
	$\mathbf{K}_{\mathbf{f}}$	27.4613	31.079	31.5935	
	\mathbf{R}^2	0.9408	0.9203	0.9175	
	B (J mol ⁻¹)	20.7668	21.1568	21.3569	
Tambin	$A_T (L g^{-1})$	0.6583	0.8546	0.8705	
тепкіп	b _T	119.3092	117.1104	116.0128	
	\mathbb{R}^2	0.976	0.9663	0.9546	
	X'm (mg g ⁻¹)	3404899.966	1907587.545	1616478.773	
D D	K' (mol ⁻² J ²)	0.000001673	0.000001568	0.000001539	
D-K	\mathbf{R}^2	0.9733	0.9867	0.9796	
	E (kJmol ⁻¹)	0.0018292	0.0017709	0.0017547	

Çizelge 4.66. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyon sabitleri (devamı)

Çizelge 4.65'e bakıldığında aynı sıcaklıkta Adsorbat konsatrasyonun artışıyla yüzde adsorpsiyon miktarının düştüğü, aynı konsantrasyonda sıcaklık artışı ile yüzde konsantrasyon miktarının arttığı görülmektedir

Çizelge 4.66'da görüldüğü gibi üç sıcaklıkta da regresyon katsayılarının 0,90'in üzerinde olduğu, en yüksek regresyon katsayısına sahip Langmuir izoterminden elde edilen maksimum adsorpsiyon kapasitesi, 25 °C'de 128.9107 mg/g, 30 °C'de maksimum adsorpsiyon 134.4977mg/g, 45 °C'de maksimum adsorpsiyon kapasitesi 135.8510 mg/g dır. Sıcaklık artıkça adsorbent kütlesi başına adsorplanmış madde miktarının artması endotermik bir adsorpsiyon olduğunu göstermektedir. Regrasyon sayısının 1'e çok yakın olması adsorpsiyonun tek tabakalı olarak meydana geldiği b değerine bakılarak bağlanma enerjisinin sıcaklıkla arttığı, Freundlich izoterm sabitlerine göre 1/n değerler 0.2419-0.2323-0.2316adsorpsiyon izoterm eğrisinin hafifçe yükselen ve elverişli olduğu, n değerine bakılarak da iyi bir adsorpsiyon gerçekleştiği, Temkin izotermi B verisine göre 11.9670-21.3642-23.2563 joule/mol olduğu ve sıcaklık artıkça adsorpsiyon enrjisinin arttığı, D-R izoterminde E değerine bakılarak adsorpsiyonun fiziksel bir adsorpsiyon olduğu söylenebilir.

Adsorpsiyonlar ile ilgili izoterm grafikleri Şekil 4.115, Şekil 4.116, Şekil 4.117, Şekil 4.118' de verilmiştir.

Şekil 4.115. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Langmuir izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.116. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Freundlich izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.117. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki Temkin izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

Şekil 4.118. A4-2 aktif karbonunun metilen mavisi giderimi adsorpsiyonu 25 °C, 30 °C ve 45 °C'deki D-R izotermleri grafiği (Co= 50, 100, 200, 400, 600 ppm, V=0,25L AD= 1 g, pH=7, KH=200 rpm).

A4-2 aktif karbonu ile metilen mavisinin adsorpsiyonunda izotermler bakıldığı zaman üç sıcaklıkta en uygun izotermin Langmuir izotermi olduğu görülmekle birlikte diğer izotermlerinde R² değerlerinin yüksek olduğu görülmektedir. Bu adsorpsiyona başka faktörlerinde etki ettiğini göstermektedir.

A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda adsorpsiyon kinetiği

Çizelge 4.67. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C,30°C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik model sabitleri (Co= 200mg/L, V=0,25L, AD= 1 g, r. pH=6-7, KH= 200 rpm)

T(°K)		298	303	318
Yalancı birinci derece (Pseudo first order)	k _{1p}	0.285	0.110	0.021
	qe,calc	1999.727	93.996	19.891
	qe,exp	98.595	107.549	112.776
	R ²	0.862	0.871	0.773
Yalancı birinci derece (Pseudo second order)	k _{2p}	0.00679	0.00477	0.00467
	qe,calc	99.927	108.672	113.853
	qe,exp	98.595	107.549	112.776
	R ²	1.000	0.999	0.999
Elovich	β α	6.590 6033.768	6.713 13284.193	6.594 38342.082
	qe,exp	98.595	107.549	112.776
	R ²	0.974	0.902	0.886
Intraparticle diffusion	$\mathbf{k}_{\mathbf{p}}$	2.517	2.580	2.545
	R ²	0.860	0.805	0.798

Şekil 4.119. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

Şekil 4.119. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda 25 °C, 30 °C ve 45 °C'deki yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order), Elovich, intrepartiküler difüzyon kinetik grafikleri (Co=200mg/L, V=0,25L, AD= 1 g, pH=6-7, KH= 200 rpm).

Çizelge 4.67 ve Şekil 4.119'da elde edilen verilere göre hesaplanan yalancı birinci mertebe (pseudo first order), yalancı ikinci mertebe (pseudo second order) kinetik, Elovich, İnterpartiküler difüzyon modellerinde elde edilen korelasyon katsayıları (R^2) oldukça yüksektir. Bu kinetik modellerden regrasyon (kolarelasyon) sayısı en yüksek olan ve hesaplanan q_e (calc) değerleri deneysel olarak bulunan q_e (exp) değerleri ile iyi uyum göstermektedir. Bu nedenle adsorpsiyon sistemi yalancı ikinci mertebe kinetik modele daha uyumludur.

A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı sıcaklıklarda termodinamik parametreleri

A4-2MM/ Co	T (K)	Kc	lnKc	ΔG° , J/mol	ΔH°, J/mol	ΔS°, J/mol.K
50 ppm	298	0.8186	-0.2002	495.9157	511.7135	15.7910
	303	0.9225	-0.0806	199.7494		
	318	0.9541	-0.0470	116.4921		
100 ppm	298	0.4980	-0.6973	1727.5623	3509.4188	6.3767
	303	0.5705	-0.5613	1390.7274		
	318	0.5614	-0.5774	1430.5573		

Çizelge 4.68. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

A4-2MM/ Co	T (K)	Kc	lnKc	∆G°, J/mol	ΔH°, J/mol	ΔS°, J/mol.K
200 ppm	298	0.2495	-1.3884	3439.9331	5368.0755	6.6755
	303	0.2740	-1.2945	3207.2729		
	318	0.2905	-1.2362	3062.9123		
400 ppm	298	0.1225	-2.0996	5202.1216	2272.0459	-9.5718
	303	0.1339	-2.0106	4981.6273		
	318	0.1324	-2.0217	5009.1739		
600 ppm	298	0.0892	-2.4172	5988.9890	2283.0231	-12.3219
	303	0.0935	-2.3696	5871.1150		
	318	0.0953	-2.3504	5823.4675		

Çizelge 4.68. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik parametreleri

Şekil 4.120. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda farklı konsantrasyon ve sıcaklıklarda termodinamik grafiği.

A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi

Aktif korbon	Co (MM)ppm	q _e (ppm)	Başlangıç pH	Son Ph
A4-2	200	30.1864	3	3.2
	200	32.5664	4	4.58
	200	33.4854	5	6.62
	200	34.8688	6	6.92
	200	39.9336	7	7.04
	200	35.6644	8	7.7
	200	36.4408	9	8.84
	200	38.6644	10	9.05
	200	38.0244	11	10.4

Çizelge 4.69. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangıç pH değişiminin etkisi

Şekil 4.121. A4-2 aktif karbonunun metilen mavisi adsorpsiyonunda başlangiç pH değişiminin etkisi grafiği.

Çizelge 4.69 ve Şekil 4.121'e bakıldığında Adsorpsiyonun metilen mavisinin doğal pH aralığında (pH=7.50) en yüksek adsorpsiyonu verdiği görülmüştür. Asidik ortamında ortak iyon etkisinden dolayı metilen mavisinin adsorpsiyonu pH artarken adsorpsiyon artmıştır, yani ortamın asitliği azaldıkça adsorpsiyon artmaktadır. Bazik ortamda pH artarken adsorpsiyon artsada pH=7'deki kadar artış göstermemiştir. Bunun nedeni A1-1' de ifade edilen sodyum hidroksitteki hidroksil iyonlarının normal ortamda boyar madde ile zayıf bağlar oluşturmasıdır.

5. TARTIŞMA VE SONUÇ

Yapılan çalışmada Aktif karbon olarak; Ham madde olarak Van yöresinde yetişen, yabani kuşburnu ağacı (A1), akasya ağacı (A2), dişbudak ağacı (A3), kavak ağacı (A4) ile ZnCl₂ (çinko klorür), NaOH (sodyum hidroksit), H₃PO₄ (fosforik asit), H₃BO₃ (Borik asit) empregnasyonlarından sonra N₂ gazı (ortamında) ile 800 °C'de piroliz edilmesi sonucunda 16 farklı aktif karbon üretilmiştir. Ham maddenin yapısı ve kullanılan kimyasalların, oluşan aktif karbonların yüzeylerinde, gözenek boyutlarıda olumlu yönde etki ettiği görülmüştür.

Elementel analiz sonucu ham maddedeki karbon oranlarının üretilen aktif karbonlarda yükseldiği, hidrojen oranlarının ise düştüğü belirlenmiştir. Bu da karbonkarbon arası bağların arttığını göstermektedir.

Ftır analizine bakıldığında bütün aktif karbonlarda C=C bağlarının, C-O ve C=O bağlarının arttığı, karboksilat bandının kırıldığı söylenebilir.

Çinko klorürü ile emregnasyon sonucu oluşan aktif karbonların saf maddenin yapısındaki karboksilat bandının kırıldığı H ve OH etkileşimlerinin arttığı söylenebilir.

Sodyum hidroksit emregnasyonu sonucu oluşan aktif karbonlarda ise yüksek frekanstaki hidroksillerin (OH⁻¹) düşük frekanslarda oluştuğu, karbonun azot etkileşimini 1400- 1610 arasındaki C-C bağlarının kırldığı, orta güçlükte aromatik C=C bağlarının ve C-Cl yada tetrahedral demir oksit bileşiklerinin oluştuğu söylenebilir.

Fosforik asit emregnasyonu sonucu oluşan aktif karbonlarda 1400- 1610 arsındaki C-C bağlarının kırldığı, sodyum hidroksit ile impregnasyonu sonucu oluşan aktif karbonlar gibi yüksek frekanstaki hidroksillerin (OH⁻¹) düşük frenslarda oluştuğu akasya ağacı talaşı impregnasyonu sonucu elde edilen aktif karbonda hidroksil frekanslarının arttığı zayıf C-H bağlarının büyük kısmının kırıldığı yüksek frekanta C-H ve C-O frenkanslarıda titireşimlerinin oluştuğu söylenebilir.

Borik asit impregnasyonu sonucu elde edilen aktif karbonlarda genel anlamda C-C bağlarının büyük çoğunluğunun kırıldığı, C-N arasında etkileşimleri oluştuğu, C-O bağ titreşimlerinin arttığı söylenebilir. A2-4 ve A4-4 C-Cl bağı yada tetrahedral yapıda demir oksit bileşikleri oluştuğu söylenebilir.

Bet analizlerine bakıldığında en yüksek Langmuir yüzey alanları çalı bitki türü olan yabani kuşburnu ağacı talaşı ve akasya ağacı talaşından elde edildiği görülmektedir. Ağaçların kendi yapıları benzer olmakla birlikte ihtiva etikleri bileşiklerini farklılıklarıdan dolayı aktif karbon üretiminde farklılık oluşturduğu görülmüştür. Kimyasal maddelerinde farklılığı yüzey yapısı ve gözenek yapılarını etkilemektedir. Yapılan bu çalışmada çinko klorür, sodyum hidroksit ve fosforik asit ile yapılan denemelerde genel itibariyle bet, Langmuir ve tek noktalı yüzey alanı ölçümlerinde en iyi yüzey alanları birinci sırada yabani kuşburnu ağacında ikinci sırada akasaya ağacında üçüncü sırada disbudak ağacında dördüncü sırada ise kavak ağacı bulunmaktadır. Borik asit ile üretilen aktif karbonlarda ise akasya ve dişbudak ağacından elde edilen aktif karbonların yüzey alanlarının daha fazla olduğu ve endüşük yüzey alanına kavak ağacından elde edilen aktif karbonun sahip olduğu görülmektedir. T plot mikropor ölçümlerine bakıldığında bütün aktif karbonların mikropor yüzey alanlarının arttığı en yüksek mikro por alanının akasya ağacının çinko klorürü ile impregnasyonu sonucu oluşturulan aktif karbonda görülmektedir. BJH adsorpsiyon gözenek genişliklerine bakıldığında makro gözenekli ve düşük mezo gözeneklere yapılar sahip saf ağaç talaşı karbonlarının, ağaç talaşına kimyasal impregnasyon sonucu üretilen aktif karbonların ortalama mezo hatta mikro gözeneğe yakın yapıda aktif karbonlar oluştuğu görülmüştür. Borik asitle üretilen aktif karbonların Langmuir ve bet yüzey alanına oranlandığında diğer kimyasallarla üretilen aktif karbon yüzey alanları oranına göre daha az olduğu görülmektedir. Bütün aktif karbonların BJH adsorpsiyon ve desorpsiyon ortalama gözenek genişliklerine bakıldığında aktif karbonların mezo gözenekli aktif karbonlar olduğu söylenebilir.

Seçilmiş olan aktif karbonların metilen mavisi ve kinolin sarısı ile yapmış olduğu adsorpsiyonlarda sıcaklık arttıkça adorpsiyonların genel olarak arttığı görülmüştür. En yüksek adsorpsiyon A1-1 427.6295 mg/g A1-2 461.365 mg/g A2-1 409.386 mg/g A2-2 462.5285 mg/g olduğu görülmüştür.

Adsorpsiyonların R^2 değerinin en yüksek langmür izotermine uyduğu fakat Temkin, D-R ve Freundlich izotermlerinde de R^2 değerlerinin yüksek olması adsorpsiyona birçok etkenin etkisi olduğunu, ayrıca adsorpsiyon ısısı değerlerinin adsorbent ile adsorbat arasında fiziksel etkileşimler olduğunu göstermektedir. Adsorpsiyonların kinetiğine bakıldığı zaman yalancı ikinci mertebeden kinetic modele uyduğu görülmektedir.

Adsorpsiyon termodinamik parametrelerine ve grafikleri bakıldığında adsorpsiyonların kendiliğinde gerçekleşen adsorpsiyonlar olduğu adsorbe edilecek madde arttıkça artış gösterdiği fakat % de adsorpsiyon miktarlarının düştüğü için adsorbe edilebilecek maksimumum miktara yaklaştıkça serbest entalpi değerlerinin negatiften pozitife doğru değiştiği entalpinin sürekli olarak pozitif olduğu, entropi değerinin de düştüğü görülmektedir. Bu da sıcaklıla adsorpsiyonun artmasına rağmen adsorbe eden maddenin adsorbe edebileceği maddenin sınırlı olduğunu göstermektedir.

Adsorpsiyonun pH değerlerine bakıldığında genel olarak asidik ve bazik ortam pH'ları artarken adsorpsiyonun da arttığı fakat en iyi adsorpsiyonun pH=7 de gerçekleştiği görülmüştür, Ölçümler esnasında farklı olarak santrifüj kullanılmamış ölçümün iyi yapılabilmesi için düşük miktarda aktif karbon kullanılmıştır. Aktif karbon yüzey alanın negatif yada pozitif olması adsorpsiyonu etilemektedir. Kullanılan boyar madedelerden metilen mavisi ve kinolin sarısı katyonik boyar madede olduğu için asidik ortamda hidrojen iyonları metilen mavisinin yüzeye tutumasını engellemiştir. Bazik ortamda ise hidroksil iyonlarının metilen mavisi ile etkileşimi sonucu hem adsorbe edilecek metilen mavisinin moleküler boyutunu büyütmüş hem yüzeye tutumasını engellemiştir. Adsorbe olan hidroksil iyonlarının artışı metilen mavisinin aktif karbon içerisindeki tutunma miktarını artırmıştır.

Aktif karbonların SEM görüntülerine bakıldığında yüzeydeki gözeneklerin arttığı ayrıca yüzey gözenek çeşitliliğinin farklı ağaç ve aynı kimyasal kullanılması, aynı ağaç ve farklı kimyasallar kullanıldığında mikro mezo ve makro gözenek yapısında farklılıkların olduğu görülebilmektedir.

Aktif karbon üretimine yönelik yürütülecek çalışmaların hammaddenin doğasına son derece bağlı olduğunu bir kez daha ortaya koymuştur. Farklı ağaç türlerinin yapısal ve kimyasal farklılıkları aktif karbon üretiminde farklılıklara sebep olmaklar birlikte farklı kimyasal maddelerin kullanımıda aktif karboların yapısını etkilemektedir. Aktif karbonlarda oluşan mikro, mezo ve makro gözenek yapıları gözenek hacim ve çapları farklı ağaç ve kimyasallarda farklılık gösterdiği görülmüştür. Bu nedenle, bu kapsamda yürütülecek çalışmalar öncesinde hammaddelerin fiziksel ve kimyasal özellik ve davranışlarının detaylı olarak belirlenmesi önerilmektedir.

Yapılacak çalışmalarda kullanılacak boyar maddenin spektrofotmetrede asidik ve bazik ortamdaki konsantrasyon ölçümleri ve etkileşimleri dikkate alınmalıdır. Benzer şekilde farklı ağaç türlerininde aktif karbon üretiminde farklı metodlarla üretimi çalışmaları yapılabilir.

KAYNAKLAR

- Açışlı, Ö., 2019. Doum Palm Meyve Kabuklarından Aktif Karbon Üretimi ve Karakterizasyonu, *Avrupa Bilim ve Teknoloji Dergisi*, **16**: 544-551.
- Ahmad, A. L., Loh, M. M., Aziz, J. A., 2007. Preparation and Characterization of Activated Carbon from Oil Palm Wood and İts Evaluation on Methylene Blue Adsorption, *Dyes and pigments*, **75** (2): 263-272.
- Ahmadpour, A., Do, D.D., 1997. The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation. *Carbon*, 35 (12): 1723-1732.
- Akkaya, G. 2012. Sulu Çözeltiden Bazı Boyar Madde ve Ağır Metallerin Adsorpsiyonu İçin Çeşitli Bitkisel Atıklardan Yeni Tür Biyosorplayıcılar Hazırlanması ve Karakterize Edilmesi, (doktora tezi, basılmamış). DÜ, Fen Bilimleri Enstitüsü, Diyarbakır., 2012.
- Aksu, Z., İşoğlu, İ.A., 2005. Removal of Copper (II) İons from Aqueous Solution by Biosorption onto Agricultural Waste Sugar Beet Pulp, *Process Biochemistry*, 40 (9): 3031-3044.
- Alhamed, Y. A., 2009. Adsorption Kinetics and Performance of Packed Bed Adsorber for Phenol Removal Using Activated Carbon from Dates' Stones, *Journal of hazardous materials*, **170** (2-3): 763-770.
- Alkan, S., Gür, A., Ertan, M., Savran, A., Gür, T., Genel, Y., 2009. Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods, *African Journal of Biotechnology*, 8 (11).
- Altun, T., Parlayıcı, Ş., 2018. Sepiolit-Kitosan Kompositlerinin Sentezi ve Bu Kompozit ile Sulu Cözeltilerden Cr (VI) Adsorpsiyonunun İncelenmesi, *Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi,* 6 (2): 242-254.
- Ahmet, C.A.N., Sivrikaya, H., 2017. Mantar Tahribatına Uğramış Titrek Kavak Odununun FT-IR Yöntemiyle Kimyasal Analizi. *Bartın Orman Fakültesi Dergisi*, 19 (1): 139-147.
- Al-Oweini, R., El-Rassy, H., 2009. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si (OR) 4 and R" Si (OR') 3 Precursors, *Journal of Molecular Structure*, 919 (1-3): 140-145.
- Avcı, J.C. 1981. Yeni bir kristal manganez dioksit formunun hazırlanması: λ-MnO2. Katı Hal Kimyası Dergisi, 39 (2): 142-147.
- Amin, N. K., 2009. Removel of Direct Blue-106 Dye from Aqueous Solution Using New Activated Catbons Developed from Pomegranate Peel: Adsorption Equilibrium and Kinetics, *Journal of Hazardous Materials*, 165: 52.
- Arriagada, R., Garcia, R., Molina-Sabio, M., and Rodriguez-Reinoso, F., 1997. Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalyptus globulus and peach stones. *Microporous Materials*,8(3-4): 123-130.
- Aydemir, D., Gündüz, G., 2009. Ahşabın Fiziksel, Kimyasal, Mekaniksel ve Biyolojik Özellikleri Üzerine Isıyla Muamelenin Etkisi. *Bartın Orman Fakültesi Dergisi*, 11 (15): 61-70.
- Baçaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Luu, R.P.T., Maldonado-Hodar, F.J., Moreno-Castilla, C., 2001. Optimization of Conditions for the Preparation of Activated Carbons from Olive-Waste Cakes, *Carbon*, **39** (3): 425-432.

- Bahar N., 2011 Şeker pancarı küspesi modifiye ürünleriyle sulu ortamlardan bazik boyar maddelerin giderilmesi (doktora tezi, basılmamış). FÜ, Fen Bilimleri Enstitüsü, Elazığ.
- Baçaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Luu, R. P. T., Maldonado-Hodar, F. J., Rivera-Utrilla, j., Moreno-Castilla, C.,2001. Optimization of Conditions for the Preparation of Activated carbons from Olive-Waste cakes, *Carbon*, **39** (3): 425-432.
- Bağ, Ö., Tekin, K., 2019. Production and Characterization of Hydrothermal Carbon from Waste Lignocellulosic Biomass, *Journal of the Faculty of Engineering and Architecture of Gazi University*, 35 (2): 1063-1076.
- Balakrishnan, K., Schwank, J., 1992. FTIR Study of Bimetallic Pt-Sn/Al2O3 Catalysts, *Journal of Catalysis*, 138 (2): 491-499.
- Bansal, R. C., Goyal, M., 2005, (*Activated Carbon Adsorption*), Taylor and Francis Group, 497
- Basha, S., Murthy, Z.V.P. 2007. Kinetic and equilibrium models for biosorption of Cr (VI) on chemically modified seaweed, Cystoseira indica. *Process Biochemistry*, 42 (11): 1521-1529.
- Baytar, O., Ceyhan, A. A., Şahin, Ö. 2021. Production of activated carbon from Elaeagnus angustifolia seeds using H₃PO₄ activator and methylene blue and malachite green adsorption, *International Journal of Phytoremediation*, 23 (7): 693-703.
- Başer, İ., İnanıcı, M., 1990. (*Boyar Madde Kimyası*), Marmara Üniversitesi Yayınları, 1. Baskı, İstanbul, 217s.
- Benguella, B., and Yacouta-Nour, A., 2009. Adsorption of bezanyl red and nylomine green from aqueous solutions by natural and acid-activated bentonite. *Desalination*, **235**(1-3): 276-292.
- Berkem, A. R., Baykut, S. and Berkem, M. L., 1994. *Fizikokimya*. İ.Ü. İletişim Fakültesi Basımevi ve Film Merkezi, İstanbul.
- Beşergil, B., 2015. Enstrümantal Analiz Temel İlkeler, 1. Baskı, Gazi Kitabevi, 833.
- Boehm, H. P. ve Voll, M., 1970. Basic surface oxides on carbon. 1. adsorption of acids. Carbon, 8 (2): 227.
- Boyd, G. E., ve Soldano, B. A. 1953. Self-diffusion of Cations in and through Sulfonated Polystyrene Cation-exchange Polymers, *I. Journal of the American Chemical Society*, 75(24): 6091-6099.
- Bozkurt, E. A., Dönmez, Z., Zeynep, E. R. E. N., 2020 Fuel-Oil Kaynaklı Bir Uçucu Kül Olan Hopa Termik Santrali Uçucu Külünün Adsorpsiyon Kapasitesinin İncelenmesi. *JENAS Journal of Environmental and Natural Studies*, 2(2): 69-85.
- Cheremisinoff P.N., Ellerbusch F., 1978. (*Carbon Adsorption Handbook*), Ann Arbor Science Publishers, Inc., New York.
- Chen, Y., Mastalerz, M., Schimmelmann, A., 2012. Mikro-FTIR spektroskopisi ile farklı kömürsaflarında makerallerdeki kimyasal fonksiyonel grupların karakterizasyonu. *Uluslararası Kömür Jeolojisi Dergisi*, **104**: 22-33.
- Cremer, D., Kraka, E. 1984. Chemical Bonding Without Binding Electron Densities-Is Differential Density Analysis Sufficient For Bonding Description?, *Chemischer Informationsdienst*, 15: 48

- Corazzari, I., Nisticò, R., Turci, F., Faga, M. G., Franzoso, F., Tabasso, S., Magnacca, G., 2015. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity, *Polymer Degradation and Stability*, **112**:1-9.
- Dalkıran, V., 2011. *Kazein yüzeyine bazı boyar maddelerin adsorpsiyonu* (yüksek lisans tezi, basılmamış). BÜ, Fen Bilimleri Enstitüsü, Balıkesir.
- Demirbas, E., Kobya, M., Senturk, E., Ozkan, T., 2004. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. *Water Sa*, **30** (4): 533-539.
- Doğan, M., Sabaz, P., Biçil, Z., Kizilduman, B. K., Turhan, Y., 2020. Activated carbon synthesis from tangerine peel and its use in hydrogen storage. *Journal of the Energy Institute*, 93 (6): 2176-2185.
- Dubinin, M.M., Plavnik G.M., Zaverina E.F., 1964. Integrated Study of the Porous Structure of Activated Carbons from Carbonized Sucrose, *Carbon*, 2: 261-265.
- Dubinin, M. M., 1947. The equation of the characteristic curve of activated charcoal. **InDokl. Akad. Nauk. SSSR. 55**:327-329.
- Durán-Valle, C. J., Gómez-Corzo, M., Pastor-Villegas, J., & Gómez-Serrano, V. (2005). Study of cherry stones as raw material in preparation of carbonaceous adsorbents. *Journal of Analytical and Applied Pyrolysis*, 73(1): 59-67.
- Dreissig, I., Machill, S., Salzer, R., Krafft, C., 2009. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **71**(5): 2069-2075.
- Dzurendova, S., Zimmermann, B., Kohler, A., Tafintseva, V., Slany, O., Certik, M., Shapaval, V., 2020. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi, *PloS one*, 15 (6): e0234870.
- El-Khaiary, M. I., 2008. Least-squares regression of adsorption equilibrium data: comparing the options. *Journal of Hazardous Materials*, **158**(1): 73-87.
- El Nemr, A., El Sikaily, A., Khaled, A., & Abdelwahab, O. (2007). Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina equisetifolia. *Chemistry and Ecology*, 23 (2): 119-129.
- Eşme, A. (2013). *Sudan Moleküllerinin ve Metal Komplekslerinin Deneysel ve Teorik Olarak Yapılarının İncelenmesi*, (doktora tezi, basılmamış). KÜ, Fen Bilimleri Fakültesi, Kocaeli.
- Fengel, D., Wegener, G., 2011. *Wood: Chemistry, Ultrastructure, Reactions*, Walter de Gruyter. Berlin. NewYork
- Gad, H. M., El-Sayed, A. A., 2009. Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution, *Journal of Hazardous Materials*, 168 (2-3): 1070-1081.
- Galarneau, A., Villemot, F., Rodriguez, J., Fajula, F., Coasne, B., 2014. Validity of the tplot method to assess microporosity in hierarchical micro/mesoporous materials. *Langmuir*, **30** (44): 13266-13274.
- Genel, Y., Ceylan, H., & Saltabaş, Ö. (2013). Heavy metal removal from aqueous solution by activated kaolin, *Fresenius Environmental Bulletin*, **22** (10): 2888-2895.
- Genel, Y., Ceylan, H., Saltabaş, Ö., 2012. Heavy metal removal from aqueous solution by activated bentonite, *Fresenius Environmental Bulletin*, **21** (7): 1810-1818.

- Girgis, B. S., El-Hendawy, A. N. A., 2002. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. *Microporous* and mesoporous materials, 52 (2): 105-117.
- Gong, W., 2001.Titanya yüzeylerindeki doğrusal fosfat adsorpsiyonunun gerçek zamanlı yerinde ATR-FTIR spektroskopik çalışması. *Uluslararası Maden İşleme Dergisi*,63(3): 147-165.
- Goswami, S., Ghosh, U. C., 2005. Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide, *Water SA*, **31** (4): 597-602.
- Gupta, S., Roy, R. K., Deb, B., Kundu, S., Pal, A. K. 2003. Low voltage electrodeposition of diamond-like carbon films. *Materials letters*, 57 (22-23): 3479-3485.
- Gülbayır, D. D. (2008). Şeftali çekirdeği ve polimer esaslı aktif karbon ile sulu çözeltilerden krom (VI) giderimi, (doktora tezi, basılmamış). YTÜ, Fen Bilimleri Enstitüsü, İstanbul.
- Günay, A., Arslankaya, E., Tosun, I., 2007. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, *Journal of hazardous materials*, **146** (1-2): 362-371.
- Güner, U. 2014. Toksikoloji. TÜ Fen Fak., Yay. No: 2: Edirne.186-189.
- Gürten, İ. I., 2008. *Çay atığından adsorbent üretimi ve üretilen adsorbentin adsorpsiyon özeliklerinin incelenmesi*, (doktora tezi, basılmamış) AÜ, Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı, Ankara.
- Hameed, B. H., Ahmad, A. A., Aziz, N., 2007. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash, *Chemical Engineering Journal*, 133 (1-3): 195-203.
- Hadjiivanov, K., Knözinger, H., 2000. Species formed after NO adsorption and NO+ O 2 co-adsorption on TiO 2: an FTIR spectroscopic study, *Physical Chemistry Chemical Physics*, 2 (12): 2803-2806.
- Hamutoğlu, R., Dinçsoy, A. B., Cansaran-Duman, D., Aras, S., 2012. Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları, *Türk Hijyen ve Deneysel Biyoloji Dergisi*, 69 (4): 235-53.
- Ho, Y. S., McKay, G., 1999. Pseudo-second order model for sorption processes, *Process biochemistry*, 34 (5): 451-465.
- Işık, H. A., 2012. Çeşitli yöntemlerle tarımsal atıklardan üretilen aktif karbonların karakterizasyonu ve kesikli sistemde boyar madde giderimine uygulanması, (doktora tezi, basılmamış). FÜ, Fen Bilimleri Enstitüsü, Elazığ.
- Karagöz, S., Tay, T., Ucar, S. ve Erdem, M., 2008. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. *Bioresource technology*,99(14): 6214-6222.
- Karacan, F. ve Karacan, S., 2014. KOH ve ZnCl2 Aktivasyonu ile Çanakkale-çan linyitinden aktif karbon üretimi ve karakterizasyonu. *Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi*, 20 (1): 1-8.
- Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., and Kermani, H. R. 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. *Journal of Hazardous Materials*, **150** (2): 322-327.
- Kholodkov, I., Biederman, H., Slavınská, D., Choukourov, A., Trchova, M., 2003. Plasma polymers prepared by RF sputtering of polyethylene, *Vacuum*,**70** (4): 505-509.

- Kobayashi, H., Karasawa, H., Miyase, T., Fukushima, S., 1984. Studies on the constituents of Cistanchis herba. III. Isolation and structures of new phenylpropanoid glycosides, *Cistanosides a and b. Chemical and Pharmaceutical Bulletin*, **32** (8): 3009-3014.
- Korkmaz, K., 2019. *Yeni bir gıda atığı kullanarak sulu çözeltiden biyosorpsiyon metoduyla bazı kirliliklerin giderimi*, (yüksek lisans), BÜ, Fen Bilimleri Enstitüsü, Batman.
- Kumar, H., Singh, J. P., Srivastava, R. C., Negi, P., Agrawal, H. M., Asokan, K., 2014. FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticles, *Journal of Nanoscience*, 2014: 10
- Küçükgül, E. Y., 2004. Ticari aktif karbon üretimi ve özelliklerinin belirlenmesi, *Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi*, 6 (3): 41-56.
- Lafi, W. K., 2001. Production of activated carbon from acorns and olive seeds, *Biomass and Bioenergy*, **20** (1): 57-62.
- Lee-Ruff, E., Just, G., 1968. Reaction of bicyclobutanes with electrophiles, *Canadian Journal of Chemistry*, 46 (11): 1887-1891.
- Liu, M., Zhang, H., Zhang, X., Deng, Y., Liu W. and Zhan, H., 2001. Removal and recovery of chromium (III) from aqueous Solutions by spheroidal cellulose adsorbent, *Water Environment Research*, 73 (3): 322-328.
- López-González, J. D. D., Martinez-Vilchez, F., Rodriguez-Reinoso, F., 1980. Preparation and characterization of active carbons from olive Stones, *Carbon*, 18 (6): 413-418.
- Gümüşkaya, E., 2005. Selülozun kristal yapısı, *Artvin Orman Fakültesi Dergisi*, 6(1-2): 69-78.
- Marsh, H. 1987. Adsorption Methods to Study Microporosity in Coals and Carbonsa Critique, *Carbon*,25 (1): 49-58.
- Mattson, J.S., Mark, H.B., 1971. Activated Carbon, Marcel Dekker, New York.
- McDougall, G. J., 1991. The physical nature and manufacture of activated carbon, *Journal* of the Southern African Institute of Mining and Metallurgy, 91 (4): 109-120.
- Mahamad, M. N., Zaini, M. A. A., Zakaria, Z. A., 2015. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal, *International Biodeterioration ve Biodegradation*, **102**: 274-280.
- Molina-Sabio, M. and Rodriguez-Reinoso, F. 2004. Role of chemical activation in the development of carbon porosity. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 241 (1-3): 15-25
- Oğuz, A., 2013. *Harran Ovası'nda Yaygın Olarak Üretilen Pamuk ve Mısır Sapından Aktif Karbon Üretimi*, (yüksek lisans tezi, basılmamış). HÜ, Fen Bilimleri Enstitüsü, Şanlıurfa.
- Ohkoshi, M., 2002. Ftır-Pas Study Of Light-İnduced Changes İn The Surface Of Acetylated Or Polyethylene Glycol-İmpregnated Wood, *Journal of wood science*, 48 (5): 394-401.
- Orbak, İ., 2002. *Tunçbilek Linyitinden Kimyasal Aktivasyon Yöntemi ile Aktif Karbon Üretimi* (doktora tezi, basılmamış). İTÜ, Fen Bilimleri Enstitüsü, İstanbul.
- Olivares-Marín, M., Fernández-González, C., Macías-García, A., Gómez-Serrano, V.,2006. Preparation of activated carbons from cherry stones by activation with potassium hydroxide, *Applied Surface Science*, 252 (17): 5980-5983.
- Othmer, K., 1998. Encyclopedia of Chemical Technology, 4th Edn., Volume Supplement, *John Wiley and Sons*, New York.

- Otowa, T., Nojima, Y., Miyazaki, T., 1997. Development of KOH Activated High Surface Area Carbon and İts Application to Drinking Water Purification, *Carbon*, **35** (9): 1315-1319.
- Ozmak, M., 2010. *Biyokütle atıklardan aktif karbon üretimi,* (doktora tezi, basılmamış). AÜ, Fen Bilimleri Enstitüsü, Ankara.
- Örkün, Y., 2011. Fındık Kabuğundan Fiziksel ve Kimyasal Aktivasyonla Aktif Karbon Üretimi ve Karakterizasyonu, (yüksek lisans), İTÜ, Enerji Enstitüsü, İstanbul.
- Özan, Z. E., 2017. *Isıl İşlem Görmüş Ahşap Malzemenin Çapraz Lamine Kereste Üretiminde Kullanım Olanaklarının Araştırılması*, (yüksek lisans), BÜ, Fen Bilimleri Enstitüsü, Bartın.
- Özdemir, H.İ., 1981, *Genel Anorganik ve Teknik Kimya*, Matbaa Teknisyenleri basımevi, 386, İstanbul,
- Özdemir, S.Ç., 2008. *Çeşitli Polimerik Temelli Atıklardan Yüksek Yüzey Alanlı Aktif Karbon Eldesi, Karakterizasyonu ve Uygulama Alanları*, (doktora tezi, basılmamış). İÜ, Fen Bilimleri Enstitüsü, Malatya.
- Pandey, K. K., Pitman, A. J., 2003. Fur Studies Of The Changes In Wood Chemistry Following Decay By Brown-Rot And White-Rot Fungi, *International Biodeterioration ve Biodegradation*, 52 (3): 151-160.
- Pebotuwa, S., Kochan, K., Peleg, A., Wood, B. R., & Heraud, P.,2020. Influence of the Sample Preparation Method in Discriminating Candida spp. Using ATR-FTIR Spectroscopy, *Molecules*, 25 (7): 1551.
- Pedersen, J. A., Simpson, M. A., Bockheim, J. G., & Kumar, K., 2011. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy, *Organic Geochemistry*, 42 (8): 947-954.
- Perry, R. H.and Green, D. 1984. *Flow in Pipes and Channels*. (Perry's Chemical Engineer's handbook), McGraw Hill: 5-23.
- Petibois, C., Gionnet, K., Gonçalves, M., Perromat, A., Moenner, M., Déléris, G., 2006. Analytical performances of FT-IR spectrometry and imaging for concentration measurements within biological fluids, cells, and tissues, *Analyst*, 131 (5): 640-647.
- Pir, H., 2008. *Flurbiprofen molekülü ve metal komplekslerinin deneysel ve teorik incelenmesi* (yüksek lisans tezi, basılmamış). KÜ, Fen Bilimleri Enstitüsü, Kocaeli.
- Pradeep, A., Chandrasekaran, G., 2006. FTIR study of Ni, Cu and Zn substituted nanoparticles of MgFe2O4, *Materials Letters*, **60** (3): 371-374.
- Qian, Q., Machida, M., Tatsumoto, H., 2007. Preparation of Activated Carbons From Cattle-Manure Compost by Zinc Chloride Activation, *Bioresource Technology*, 98 (2): 353-360.
- Rao, C. N. R.,1963. Chemical applications of infrared spectroscopy, *Academic Press*, New York, USA.
- Raveendran, K. and Ganesh, A., 1998. Adsorption characteristics and pore-development of biomass-pyrolysis char, *Fuel*, 77 (7): 769-781.
- Sayıner, B., 2013. Siyanür Liçinde Altının Aktif Karbona Adsorpsiyonunda Çeşitli Metallerin Etkisinin Araştırılması (doktora tezi, basılmamış). İTÜ, Fen Bilimleri Enstitüsü, İstanbul.
- Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W., Xu, j., Zhao, R., 2010. Preparation of activated carbon from cattail and its application for dyes removal, *Journal of Environmental Sciences*, 22 (1): 91-97.
Sing, K.S.W., Everett, D.H., 1987. T. Pure Appl., Chem., 57: 603

- Skim, J.W., Ryu, S.K. and Park, S.J., 2000. Metal Adsorption Properties of Pitch-based Activated Carbon Fibers Modified by HNO3 and NaOH, *1st Carbon Conference on Carbon*, Vol II, Berlin
- Skoog D.A., Holler H.J., Nieman T. A., Kılıç, E., Köseoğlu F., Yılmaz H., 1998. *Enstrümantal analiz ilkeleri*. Bilim Yayınları, Ankara, 849.
- Smisek, M., Cerny, S., 1970. *Active Carbon Manufacture, Properties and Application*, Elsevier Publishing Company, Amsterdam, London, New York, USA.
- Soto, A. M., Machuca, R. A., 1989. Adsorption of gold-thiourea complex on activated carbon, *Journal of Chemical Technology ve Biotechnology*, **44** (3): 219-223.
- Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., and Mishra, I. M., 2006. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, *Colloids and surfaces a: physicochemical and engineering aspects*, 272 (1-2): 89-104.
- Stone, A. G., 1997. Characterization of compost composition and its relationship to the suppression of Pythium root rot of cucumber, (doctorial thesis)., TOSU, Ohio, ABD
- Şenel, Ü., Sur, H.İ., Demirtaş, M.2012. Tekstil Endüstrisinde Kullanılan Bazı Sentetik Direkt Boyar Maddelerin Mutajenik Etkisinin Umu-Testi ile Araştırılması. KSÜ Doğa Bilimleri Dergisi, 15 (1): 13-19.
- Tien, C., 1994. (Adsorption calculations and modeling), Butterworth-Heinemann, Boston, USA
- Toor, M., Jin, B. 2012. Adsorption Characteristics, Isotherm, Kinetics, And Diffusion Of Modified Natural Bentonite For Removing Diazo Dye, *Chemical Engineering Journal*, 187: 79-88.
- Treybal, R. E., 1981. Diffusion in solids. In Mass-Transfer Operations. McGraw Hill Inc., Singapore, 88-93
- Tseng, R. L., Wu, F. C., 2008. Inferring The Favorable Adsorption Level And The Concurrent Multi-Stage Process With The Freundlich Constant, *Journal of hazardous materials*, 155 (1-2): 277-287.
- Tsubaki, M., Srivastava, R. B., Yu, N. T., 1982. Resonance Raman İnvestigation Of Carbon Monoxide Bonding İn (Carbon Monoxy) Hemoglobin And-Myoglobin: Detection Of İron-Carbon Monoxide Stretching And İron-Carbon-Oxygen Bending Vibrations And İnfluence Of The Quaternary Structure Change, *Biochemistry*, 21 (6): 1132-1140.
- Türkyılmaz, A., 2011. *Bazı bitkisel atıklardan aktif karbon eldesi ve yüzey özellikleri* (doktora tezi, basılmamış). BÜ, Fen Bilimleri Enstitüsü, Balıkesir.
- Ustabaş, E. 2016. İşlenmiş ve demlenmiş atık çaydan elde edilen aktif karbonu tekstil boyar maddesi metilen mavisini adsorplama özellikleri (Yüksek lisans tezi, basılmamış), T.Ü. Fen Bilimleri Enstitüsü, Edirne.
- Webb, P. A., and Orr, C., 1997. *Analytical methods in fine particle technology*. Micromeritics Instrument Corporation.
- Wahyuningsih, S., Ramelan, A. H., Wardani, D. K., Aini, F. N., Sari, P. L., Tamtama, B. P. N., Kristiawan, Y. R., 2017. Indigo dye derived from indigofera tinctoria as natural food colorant, *In IOP Conference Series: Materials Science and Engineering*, 193:1

- Wang, L., 2012. Application of Activated Carbon Derived from 'Waste' Bamboo Culms for the Adsorption of Azo Disperse Dye: Kinetic, Equilibrium and Thermodynamic Studies, *Journal of Environmental Management*, 102: 79-87.
- Wuttke, S., Bazin, P., Vimont, A., Serre, C., Seo, Y. K., Hwang, Y. K., Chang J.S., Ferey G, Daturi, M., 2012. Discovering the Active Sites for C3 Separation in MIL-100 (Fe) by Using Operando IR Spectroscopy, *Chemistry–A European Journal*, 18 (38): 11959-11967.
- Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., Chen, Z., 2019. Agricultural Soil Characterization by FTIR Spectroscopy at Micrometer Scales: Depth Profiling by Photoacoustic Spectroscopy, *Geoderma*, 335: 94-103.
- Valsamakis, S. And Simitzis, J., 2000. Characterization of Surface Functional Groups of Carbonaeous Materials Obtained from Precursors of Olive Stones with Novalac Resin, *1st Carbon Conference on Carbon*, Vol II, Berlin, Germany.
- Vargas, A. M., Cazetta, A. L., Garcia, C. A., Moraes, J. C. G., Nogami, E. M., Lenzi, E., Costa, W. F., Almeida, V. C., 2011. Preparation and Characterization of Activated Carbon from a New Raw Lignocellulosic Material: Flamboyant (Delonix Regia) Pods, *Journal of Environmental Management*, 92: 178-184.
- Vadivelan, V. ve Kumar, K. V.,2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. *Journal of colloid and interface science*, 286 (1):90-100.
- Volyutsky, S., 1978, Colloid Chemistry, Mir Publishing, 560, Moscow.
- Yargıç, A. Ş., Şahin, R. Z. Y., Özbay, N., 2021. Investigation of solvent type effect on the structural properties of bio-polyol-based carbon foam. *Journal of the Faculty of Engineering and Architecture of Gazi University*, 36 (1): 133-145.
- Yaman, S., 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks, *Energy conversion and management*, 45 (5): 651-671.
- Yilgor, N., Dogu, D., Moore, R., Terzi, E., Kartal, S. N., 2013. Evaluation of Fungal Deterioration in Liquidambar Orientalis Mill Heartwood by FT-IR and Light Microscopy, *Bio Resources*, 8 (2): 2805-2826.
- Yuan, Y., Cai, X., Tan, B., Zhou, S., Xing, B., 2018. Molecular Insights into Reversible Redox Sites in Solid-Phase Humic Substances as Examined by Electrochemical in Situ FTIR and Two-Dimensional Correlation Spectroscopy, *Chemical Geology*, 494 :136-143.

EKLER

Ek.1 Üretilmiş aktif karbonların FT-IR analiz grafikleri

EK.1. Üretilen aktif karbonlara ait FT-IR analiz grafikleri

Ek.1.1. Al talaşı FT-IR analiz grafiği.

Ek.1.2. A2 talaşı FT-IR analiz grafiği.

Ek.1.3. A3 talaşı FT-IR Analiz grafiği.

Ek.1.4. A4 talaşı FT-IR analiz grafiği.

Ek.1.5. A1 karbonu FT-IR Analiz grafiği.

Ek.1.6. A2 karbonu FT-IR analiz grafiği.

Ek.1.7. A3 karbonu FT-IR analiz grafiği.

Ek.1.8. A4 karbonu FT-IR analiz grafiği.

Ek.1.9. A1-1 aktif karbonu FT-IR analiz grafiği.

Ek.1.10. A2-1 aktif karbonu FT-IR analiz grafiği.

Ek.1.11. A3-1 aktif karbonu FT-IR analiz grafiği.

Ek.1.12. A4-1 aktif karbonu FT-IR analiz grafiği.

Ek.1.13. A1-2 aktif karbonu FT-IR analiz grafiği.

Ek.1.14. A2-2 aktif karbonu FT-IR analiz grafiği.

Ek.1.15. A3-2 Aktif karbonu FT-IR analiz grafiği.

Ek.1.16. A4-2 aktif karbonu FT-IR analiz grafiği.

Ek.1.17. A1-3 aktif karbonu FT-IR analiz grafiği

Ek.1.18. A2-3 aktif karbonu FT-IR analiz grafiği.

Ek.1.19. A3-3 aktif karbonu FT-IR analiz grafiği.

Ek.1.20. A4-3 aktif karbonu FT-IR analiz grafiği.

Ek.1.21. A1-4 aktif karbonu FT-IR analiz grafiği.

Ek.1.22. A2-4 aktif karbonu FT-IR analiz grafiği.

Ek.1.23. A3-4 aktif karbonu FT-IR analiz grafiği.

Ek.1.24. A4-4 aktif karbonu FT-IR analiz grafiği.

Metilen Mavisi

Metilen mavisi (bazik mavi) sentetik bazlı bazik (katyonik) bir boyar maddedir IUPAC adlandırması : (7-(dimetilamino) fenotiyazin-3-iliden)-dimethylazanium klorür) Molekül formülü : $C_{16}H_{18}CIN_3S$ Molekül ağırlığı: 319,851 g/mol

Ek.1.25. Metilen mavisi yapısı ve özellikleri

Kinolin sarısı anyonik bir boyar maddedir. IUPAC adlanırması Sodyum 2-(1,3-dioksoindan-2-il) kinolindisülfonat Molekül förmülü: C 18 H 13 NO 5/8/11 S 1/2/3 Na 1/2/3 Molekül ağırlığı :477.38 g/mol

Ek.1.26. Kinolin sarısı yapısı ve özellikleri

ÖZ GEÇMİŞ

İlyas Genel, Y. Dönerdere ilköğretim okulunda ilk öğrenimini tamamlamıştır. Lise öğrenimi Van Alparslan Anadolu öğretmen lisesinde devam etmiştir. Yüksek öğrenimini Karadeniz Teknik Üniversitesi Eğitim Fakültesi Fenbilgisi öğretmenliğinde tamamladıktan sonra Van yüzüncüyıl üniversitesi Orta öğretim fen ve matamatik alanları kimya öğretiminde yüksek lisans eğitimini bitirmiştir. 2016 yılında Van Yüzüncüyıl Üniversitesi Eğitim fakültesinde araştırma görevlisi olarak göreve başlamıştır. Halen aynı görevine devam etmektedir.

VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ LİSANSÜSTÜ TEZ ORIJİNALLİK RAPORU

Tarih: 22/12/2021

Tez Başlığı / Konusu:

AKTİF KARBON KULLANILARAK SULU ÇÖZELTİLERDEN BOYAR MADDE

UZAKLAŞTIRILMASI

Yukarıda başlığı/konusu belirlenen tez çalışmamın Kapak sayfası, Giriş, Ana bölümler ve Sonuç bölümlerinden oluşan toplam 205 sayfalık kısmına ilişkin, 22/12/2021 tarihinde şahsım/tez danışmanım tarafından Turnitin intihal tespit programından aşağıda belirtilen filtreleme uygulanarak alınmış olan orijinallik raporuna göre, tezimin benzerlik oranı % 16(Onaltı) dir.

Uygulanan filtreler aşağıda verilmiştir:

- Materyal ve yöntem hariç,

- Kaynaklar hariç,

- Tezden çıkan yayınlar hariç,

- 7 kelimeden daha az örtüşme içeren metin kısımları hariç (Limit inatch size to 7 words)

Van Yüzüncü Yıl Üniversitesi Lisansüstü Tez Orijinallik Raporu Alınması ve Kullanılmasına İlişkin Yönergeyi inceledim ve bu yönergede belirtilen azami benzerlik oranlarına göre tez çalışmamın herhangi bir intihal içermediğini; aksinin tespit edileceği muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve yukarıda vermiş olduğum bilgilerin doğru olduğunu beyan ederim.

Gereğini bilgilerinize arz ederim.

22/12/2021

Adı Soyadı: İlyas GENEL

Öğrenci No: 11911220083

Anabilim Dalı: KİMYA

Programı: KİMYA

Statüsü: 🗆 Yüksek Lisans

X Doktora

DANIŞMAN ONAYI UYGUNDUR ENSTİTÜ ONAY UYGUNDUR

Doç.Dr. Yaşar GENEL