A novel biosensor for gabapentin drug detection based on the Pd-decorated aluminum nitride nanotube

Yaşar S. , Hosseinian A., Ebadi A., Ahmadi S., Ebrahimiasl S., Kumar A.

Structural Chemistry, 2021 (SCI Expanded İndekslerine Giren Dergi) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası:
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s11224-021-01771-5
  • Dergi Adı: Structural Chemistry


© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Density functional theory calculations were performed to inspect the potential application of pristine AlN nanotube (AlNNT) as well as Pd-decorated AlNNT (Pd@AlNNT) in recognition of gabapentin (GB) drug. The sensing response of AlNNT to the GB drug is very small (~ 5.2 at 298 K) attributed to the small adsorption energy (AE) of −0.16 eV. Molecular orbital energy decomposition method (EDA) showed that the contributions of electrostatic attraction, Pauli repulsion, orbital relations, and dispersion forces in the AE are about −0.21, 0.19, −0.11, and −0.09 eV, respectively. A Pd atom preferentially adsorbed over an Al–N bond of the AlNNT, releasing the energy of 2.93 eV. We found that the GB strongly adsorbed on the Pd@AlNNT with AE of −1.29 eV and the sensing response increased to 524.6 by the Pd decoration. Based on the results, the main stabilization contribution to the AE of GB on the Pd@AlNNT comes from the electrostatic attraction based on the EDA analysis. The recovery time was achieved to be 1.8 s for the GB desorption from the Pd@AlNNT surface. Finally, we concluded that the Pd@AlNNT can transform the presence of GB molecules into electrical signal, and it may potentially be applied as an electronic sensor for GB drug detection.