Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane


Creative Commons License

Baguc I. B. , Yurderi M., Kanberoğlu G. S. , Bulut A.

TURKISH JOURNAL OF CHEMISTRY, vol.44, pp.364-379, 2020 (Peer-Reviewed Journal) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 44
  • Publication Date: 2020
  • Doi Number: 10.3906/kim-1910-44
  • Journal Name: TURKISH JOURNAL OF CHEMISTRY
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, Chemical Abstracts Core, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.364-379

Abstract

Ruthenium nanoparticles stabilized by a hydrotalcite framework (Ru/HTaL) were prepared by following a 2-step procedure comprising a wet-impregnation of ruthenium(III) chloride precatalyst on the surface of HTaL followed by an ammonia-borane (NH3BH3) reduction of precatalyst on the HTaL surface all at room temperature. The characterization of Ru/HTaL was done by using various spectroscopic and visualization methods including ICP-OES, P-XRD, FTIR, B-11 NMR, XPS, BFTEM, and HRTEM. The sum of the results gained from these analyses has revealed the formation of well-dispersed and highly crystalline ruthenium nanoparticles with a mean diameter of 1.27 +/- 0.8 nm on HTaL surface. The catalytic performance of Ru/HTaL in terms of activity, selectivity, and stability was investigated in the methanolysis of ammonia-borane (NH3BH3, AB), which has been considered as one of the most promising chemical hydrogen storage materials. It was found that Ru/HTaL can catalyse methanolysis of AB effectively with an initial turnover frequency (TOF) value of 392.77 min(-1) at conversion (>95%) even at room temperature. Moreover, the catalytic stability tests of Ru/HTaL in AB methanolysis showed that Ru/HTaL acts as a highly stable and reusable heterogeneous catalyst in this reaction by preserving more than 95% of its initial activity even at the 5th recycle.