Mean Ergodic Theorems for Multipliers on Banach Algebras


Mustafayev H.

JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, cilt.25, sa.2, ss.393-426, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 2
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1007/s00041-017-9587-x
  • Dergi Adı: JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.393-426
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Let A be a complex commutative semisimple Banach algebra. In this paper, we study some ergodic properties of Cesaro bounded multipliers on A. The results are linked to the sets of synthesis and the main applications are concerned with Fourier and Fourier-Stieltjes algebras on locally compact groups. We study also the structure of ideals associated with multipliers of A and A-invariant projections of the dual space of A. Some related problems are also discussed.