Involvement of TRPM2 Channel on Doxorubicin-Induced Experimental Cardiotoxicity Model: Protective Role of Selenium.


Yıldızhan K., Huyut Z., Altındağ F.

Biological trace element research, 2022 (Peer-Reviewed Journal) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume:
  • Publication Date: 2022
  • Doi Number: 10.1007/s12011-022-03377-2
  • Journal Name: Biological trace element research
  • Journal Indexes: Science Citation Index Expanded, Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Keywords: Doxorubicin, Cardiotoxicity, Selenium, TRPM2 channel, Oxidative stress, OXIDATIVE STRESS, SUPPRESSION, APOPTOSIS, CELLS, RATS

Abstract

Doxorubicin (DOXR) is an important chemotherapeutic drug used in cancer treatment for many years. Several studies reported that the use of DOXR increased toxicity by causing an increase in oxidative stress (OS), especially in the heart. In this study, we investigated the protective effect of selenium (Se) and the role of transient receptor potential melastatin-2 (TRPM2) channel activation by using N-(p-amylcinnamoyl) anthranilic acid (ACA) in a model of DOXR-induced cardiotoxicity. Sixty female rats were equally divided into the control, dimethyl sulfoxide (DMSO), DOXR, DOXR + Se, DOXR + ACA, and DOXR + Se + ACA groups. Glutathione (GSH), glutathione peroxidase (GSH-Px), caspases (Cas) 3 and 9, interleukin 1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), reactive oxygen species (ROS), poly [ADP-ribose] polymerase 1 (PARP-1), and TRPM2 channel levels were measured by ELISA. In addition, histopathological examination was performed in cardiac tissues and TNF-alpha, caspase 3, and TRPM2 channel expression levels were determined immunohistochemically. The levels of GSH, GSH-Px, caspases 3 and 9, IL-1 beta, TNF-alpha, ROS, PARP-1, and TRPM2 channel in serum, and cardiac tissue in the DOXR group were higher than in the control and DMSO groups (p < 0.05). However, these parameters in Se and/or ACA treatment groups were lower than in the DOXR group (p < 0.05). Also, we determined that Se and/or ACA treatment together with DOXR application decreased the TNF-alpha, Cas-3, and TRPM2 channel expression levels in the cardiac tissue. The data showed that administration of Se and/or ACA treatment together with DOXR may be used as a therapeutic agent in preventing DOXR-induced cardiotoxicity.