Vertex Szeged indices of P-2n


Cancan M., Naeem M., Baig A. Q., Gao W., Aslam A.

JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, cilt.41, sa.4, ss.991-1006, 2020 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 41 Sayı: 4
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/02522667.2020.1745381
  • Dergi Adı: JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI)
  • Sayfa Sayıları: ss.991-1006
  • Anahtar Kelimeler: Vertex Szeged (Sz) index, Padmarkar-Ivan PIv index, Graph operations, Subdivision of graph, Total graph, TOPOLOGICAL INDEXES, PI INDEX, GRAPHS
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Let G=(V,E) be a simple connected graph, where V(G) and E(G) represent the vertex set and edge set of G respectively. For a graph the vertex Szeged index is equal to the product over all edges uv of G of the number of vertices which are not equidistant to vertices u and v. The vertex Padmarker-Ivan (PIv) index of a graph is the sum over all edges uv of G of the number of vertices which are not equidistant to vertices u and v. The aim of this paper is to compute and compare the vertex Szeged index and vertex Padmarker-Ivan (PIv) index of P2n+F Pn+1, where P2n+F Pn+1 represents four operation on P(2n)xP(n+1).