Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters


Meydan I., Seckin H., Burhan H., Gur T., Tanhaei B., ŞEN F.

ENVIRONMENTAL RESEARCH, cilt.204, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 204
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.envres.2021.112347
  • Dergi Adı: ENVIRONMENTAL RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Antimicrobial, Antioxidant, Nanoparticle, Silver, Arum italicum, DNA damage, LEAF EXTRACT, ANTIOXIDANT
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

The science world advancing day by day contributes to living systems in many areas with the development of nanotechnology. Besides being easily obtained from plants, the advantages it brings increase the importance of nanotechnology. Environmentally friendly, economical, and compatible with plants are just a few of the advantages it brings. Silver metal is one of the most preferred active ingredients in nanoparticle synthesis. Arum italicum is used in the treatment of various diseases in the health sector due to the structures it contains. In our study, nanoparticle synthesis was made by using Ag metal with Arum italicum plant. Then, the antimicrobial, DNA damage prevention and DPPH radical quenching activity of Ag NPs/Ai nanoparticles were investigated. The interaction of the plant with Ag, analysis by X-ray diffraction (XRD), UV visible spectrophotometer (UV-vis), scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier-converted infrared spectroscopy (FT-IR) methods has been done. It has been observed that Ag NPs/Ai clusters formed by Arum italicum with Ag have an antibacterial effect against Bacillus subtilis, Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogens. However, an antifungal effect hasn't been observed against Candida albicans fungus. Pseudomonas aeruginosa bacteria exerted a stronger effect than an antibiotic. It is seen that Ag NPs/Ai has a protective and anti-damage effect against DNA damage. The antioxidant effect of Ag NPs/Ai is remarkable when DPPH radical quenching activity is compared to positive control BHA and BHT.