Hyers-Ulam stability on local fractal calculus and radioactive decay


Golmankhaneh A., Tunç C., Şevli H.

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, cilt.230, sa.21-22, ss.3889-3894, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 230 Sayı: 21-22
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1140/epjs/s11734-021-00316-5
  • Dergi Adı: EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC
  • Sayfa Sayıları: ss.3889-3894
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this paper, we summarize the local fractal calculus, called F-alpha-calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers-Ulam stability provides a method to find approximate solutions for equations where the exact solution cannot be found. Here, we generalize Hyers-Ulam stability to be applied to oi-order linear fractal differential equations. The nuclear decay law involving fractal time is suggested, and it is proved to be fractally Hyers-Ulam stable.