Potential Benefits of Intercropping Corn with Runner Bean for Small-sized Farming System

Creative Commons License

Bildirici N. , ALDEMİR R. , KARSLI M. A. , DOGAN Y.

ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, cilt.22, ss.836-842, 2009 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 22 Konu: 6
  • Basım Tarihi: 2009
  • Doi Numarası: 10.5713/ajas.2009.80676
  • Sayfa Sayıları: ss.836-842


The objectives of this study were to evaluate potential benefits of intercropping of corn with runner bean for a small-sized farming system.. based on land equivalent ratio (LER) and silage yield and quality of corn intercropped with runner bean (Phaseolus vulgaris L.), in and conditions of Turkey under an irrigation system. This experiment was established as a split-plot design in a randomized complete block, with three replications and carried out over two (consecutive) years in 2006 and 2007. Seven different mixtures (runner bean, B and silage corn sole crop, C., 10% B+90% C, 20% B+80% C, 30% B+70% C, 40% B+60%C, and 50% B+50%C) of silage corn-runner bean were intercropped. All of the mixtures were grown under irrigation. The corn-runner bean fields were planted in the second week of May and harvested in the first week of September in both years. Green beans were harvested three times each year and green bean yields were recorded each time. After the 3rd harvest of green bean, residues of bean and corn together were randomly harvested from a 1 m(2) area by hand using a clipper when the bean started to dry and corn was at the dough stage. Green mass yields of each plot were recorded. Silages were prepared from each plot (triplicate) in 1 L mini-silos. After 60 d ensiling, sub-samples were taken from this material for determination of dry matter (DM), pH. organic acids, chemical composition, and in vitro DM digestibility of silages. The LER index was also calculated to evaluate intercrop efficiencies with respect to sole crops. Average pH, acetic, propionic and butyric acid concentrations were similar but lactic acid and ammonia-N levels were significantly different (p<0.05) among different mixtures of bean intercropped with corn. Ammonia-N levels linearly increased from 0.90% to 2.218 as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio. While average CP content increased linearly from 6.47 to 12.45%, and average NDF and ADF contents decreased linearly from 56.17 to 44.88 and from 34.92 to 33.51%. respectively, (p<0.05) as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, but DM and OM contents did not differ among different mixtures of bean intercropped with corn (p>0.05). In vitro OM digestibility values differed significantly among bean-corn mixture silages (p<0.05). Fresh bean. herbage DM, IVOMD, ME yields, and LER index were significantly influenced by percentage of bean in the mixtures (p<0.01). As the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, yields of fresh bean (from 0 to 24,380 kg/ha) and CP (from 1,258.0 to 1,563.0 kg/ha) and LER values (from 1.0 to 1.775) linearly increased, but yields of herbage DM (from 19,670 to 12,550 kg/ha), IVOMD (from 12.790 to 8.020 kg/ha) and ME (46,230 to 29,000 Mcal/ha) yields decreased (p<0.05). In conclusion, all of the bean-corn mixtures provided a good silage and better CP concentrations. Even though forage yields decreased, the LER index linearly increased as the percentage of bean increased in the mixture up to a 50:50 seeding ratio, which indicates a greater utilization of land. Therefore. a 50:50 seeding ratio seemed to be best for optimal utilization of land in this study and to provide greater financial stability for labor-intensive, small farmers.

An experiment was carried out to evaluate influence of different crop combination ratios of corn and soybean in terms of forage yield in corn-soybean intercropping. The experiment compared both corn and soybean as monocultures and in different intercropping ratios from 25:75, 50:50 and 75:25 of corn to soybean. The crop combination ratio had significant effects on physiological traits and dry matter yield of forage. The ratio of 75:25 and 50:50 recorded DM yields similar to those of monocropped corn (14.77 t/ha). Relative yield total (RYT) values of intercropping were higher than that of monocrop corn and soybean. Mixtures with 50:50 combination ratio had higher mean total relative yield values (1.15) in comparison with the other ratios. Land equivalent ratio (LER) increased with corn-soybean intercropping and the highest
total LER value was recorded with 50:50 ratio (1.13). The crop ratio of 50:50 gave the best combination based on DM yield, relative yield, LER of the combined forage.
Key words: Corn-legume forage, Forage yield, Intercropping