Expression and mapping of anthocyanin biosynthesis genes in carrot

Yildiz M., WILLIS D. K., CAVAGNARO P. F., Iorizzo M., Abak K., SIMON P. W.

THEORETICAL AND APPLIED GENETICS, vol.126, no.7, pp.1689-1702, 2013 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 126 Issue: 7
  • Publication Date: 2013
  • Doi Number: 10.1007/s00122-013-2084-y
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1689-1702
  • Van Yüzüncü Yıl University Affiliated: Yes


Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots of carrots or other species. We quantified expression of six anthocyanin biosynthetic genes [phenylalanine ammonia-lyase (PAL3), chalcone synthase (CHS1), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR1), leucoanthocyanidin dioxygenase (LDOX2), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT)] in three carrot inbreds with contrasting root color: solid purple (phloem and xylem); purple outer phloem/orange xylem; and orange phloem and xylem. Transcripts for five of these genes (CHS1, DFR1, F3H, LDOX2, PAL3) accumulated at high levels in solid purple carrots, less in purple-orange carrot, and low or no transcript in orange carrots. Gene expression coincided with anthocyanin accumulation. In contrast, UFGT expression was comparable in purple and orange carrots and relatively unchanged during root development. In addition, five anthocyanin biosynthesis genes [FLS1 (flavonol synthase), F3H, LDOX2, PAL3, and UFGT] and three anthocyanin transcription factors (DcEFR1, DcMYB3 and DcMYB5) were mapped in a population segregating for the P (1) locus that conditions purple root color. P (1) mapped to chromosome 3 and of the eight anthocyanin biosynthesis genes, only F3H and FLS1 were linked to P (1). The gene expression and mapping data suggest a coordinated regulatory control of anthocyanin expression in carrot root and establish a framework for studying the anthocyanin pathway in carrots, and they also suggest that none of the genes evaluated is a candidate for P (1).