Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions


Lakestanı M., Dehghan M.

Computer Physics Communications, cilt.181, sa.5, ss.957-966, 2010 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 181 Sayı: 5
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.cpc.2010.01.008
  • Dergi Adı: Computer Physics Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.957-966
  • Anahtar Kelimeler: Chebyshev cardinal function, Collocation method, Cubic B-spline function, Operational matrix of derivative, Riccati equation
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Two numerical techniques are presented for solving the solution of Riccati differential equation. These methods use the cubic B-spline scaling functions and Chebyshev cardinal functions. The methods consist of expanding the required approximate solution as the elements of cubic B-spline scaling function or Chebyshev cardinal functions. Using the operational matrix of derivative, we reduce the problem to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the new techniques. The methods are easy to implement and produce very accurate results. © 2010 Elsevier B.V. All rights reserved.