Molecular temperature descriptors as a novel approach for QSPR analysis of Borophene nanosheets


Creative Commons License

Khan A. R., Ullah Z., Imran M., Malik S. A., Alamoudi L. M., Cancan M.

PLoS ONE, cilt.19, sa.6 June, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 19 Sayı: 6 June
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1371/journal.pone.0302157
  • Dergi Adı: PLoS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Borophene nanosheets appear in various sizes and shapes, ranging from simple planar structures to complicated polyhedral formations. Due to their unique chemical, optical, and electrical properties, Borophene nanosheets are theoretically and practically attractive and because of their high thermal conductivity, boron nanosheets are suitable for efficient heat transmission applications. In this paper, temperature indices of borophene nanosheets are computed and these indices are employed in QSPR analysis of attributes like Young's modulus, Shear modulus, and Poisson's ratio of borophene nanosheets and borophene β12 sheets. The regression model for the F-Temperature index is discovered to be the best fit for shear modulus, the reciprocal product connectivity temperature index is discovered to be fit for Poisson's ratio and the second hyper temperature index is discovered to be fit for Young's modulus based on the correlation coefficient.