Atıf İçin Kopyala
Çakır M., Arslan D.
COMPUTATIONAL & APPLIED MATHEMATICS, cilt.40, sa.6, 2021 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
40
Sayı:
6
-
Basım Tarihi:
2021
-
Doi Numarası:
10.1007/s40314-021-01577-5
-
Dergi Adı:
COMPUTATIONAL & APPLIED MATHEMATICS
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Computer & Applied Sciences, zbMATH
-
Anahtar Kelimeler:
Singular perturbation equation, Finite difference scheme, Piecewise uniform mesh, Uniform convergence, Integral conditions, DIFFERENTIAL-EQUATIONS, DIFFUSION TYPE, EXISTENCE, UNIQUENESS, THEOREMS, SCHEME
-
Van Yüzüncü Yıl Üniversitesi Adresli:
Evet
Özet
In this study, finite difference method on a Shishkin mesh is applied to solve the singularly perturbed problem with integral boundary conditions. Some properties of the exact solution are obtained. Finite difference scheme on this mesh is constructed. The stability and convergence analysis of the method are shown as first-order convergent at the discrete maximum norm, regardless of the perturbation parameter e. Numerical results are shown by solving an example on the table and figure.