Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization


ÖZTÜRK T., Kaygin O., Göktaş M. , HAZER B.

JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, cilt.53, ss.362-367, 2016 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 53 Konu: 6
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1080/10601325.2016.1166002
  • Dergi Adı: JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY
  • Sayfa Sayıları: ss.362-367

Özet

In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using H-1-nuclear magnetic resonance (H-1-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using H-1-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.