Atıf İçin Kopyala
Çakır M., Gunes B.
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.51, sa.3, ss.787-799, 2022 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
51
Sayı:
3
-
Basım Tarihi:
2022
-
Doi Numarası:
10.15672/hujms.950075
-
Dergi Adı:
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
-
Sayfa Sayıları:
ss.787-799
-
Anahtar Kelimeler:
Keywords, difference scheme, error estimate, Fredholm integro-differential equation, singular perturbation, Shishkin mesh, Volterra integro-differential equation, COLLOCATION METHOD, DECOMPOSITION METHOD
-
Van Yüzüncü Yıl Üniversitesi Adresli:
Evet
Özet
In this research, the finite difference method is used to solve the initial value problem of linear first order Volterra-Fredholm integro-differential equations with singularity. By using implicit difference rules and composite numerical quadrature rules, the difference scheme is established on a Shishkin mesh. The stability and convergence of the proposed scheme are analyzed and two examples are solved to display the advantages of the presented technique.