A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh


Creative Commons License

Çakır M., Gunes B.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.51, sa.3, ss.787-799, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.15672/hujms.950075
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.787-799
  • Anahtar Kelimeler: Keywords, difference scheme, error estimate, Fredholm integro-differential equation, singular perturbation, Shishkin mesh, Volterra integro-differential equation, COLLOCATION METHOD, DECOMPOSITION METHOD
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this research, the finite difference method is used to solve the initial value problem of linear first order Volterra-Fredholm integro-differential equations with singularity. By using implicit difference rules and composite numerical quadrature rules, the difference scheme is established on a Shishkin mesh. The stability and convergence of the proposed scheme are analyzed and two examples are solved to display the advantages of the presented technique.