The Modeling and Hardware Implementation of Semiconductor Circuit Elements by Using ANN and FPGA

Tuntas R.

ACTA PHYSICA POLONICA A, vol.128, 2015 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 128
  • Publication Date: 2015
  • Doi Number: 10.12693/aphyspola.128.b-78
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Van Yüzüncü Yıl University Affiliated: Yes


This study, the modeling and hardware implementation of semiconductor circuit elements very frequently used in electronic circuits are carried out by using artificial neural networks and field programmable gate array chip. Initially the artificial neural network models obtained has been written in very high speed integrated circuit hardware description language (VHDL). Then, these configurations have been simulated and tested under ModelSim Xilinx software. Finally, the best configuration has been implemented under the Xilinx Spartan-3E FPGA (XC3S500E) chip of Xilinx. The modeling of electronic circuit elements is very important both in respect of engineering, and in respect of practical mathematics. The main aim is to shorten the simulation time and to examine the real physical system applications easily by using the model elements instead of using the ones used in real applications. The effectiveness of the implemented artificial neural network models on field programmable gate array was found successful.