Novel Determination of the Influence of Idarubicin upon DNA Chain Structure Using an Electrochemical DNA Biosensor by Voltammetry


Subak H.

Analytical Letters, cilt.57, sa.18, ss.2994-3008, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 57 Sayı: 18
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/00032719.2024.2308051
  • Dergi Adı: Analytical Letters
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Food Science & Technology Abstracts, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.2994-3008
  • Anahtar Kelimeler: Cyclic voltammetry (CV), DNA binding, idarubicin, pencil graphite electrode (PGE), square wave voltammetry (SWV)
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Two sequences of DNA (single-strand DNA (ssDNA) and double-strand DNA (dsDNA)) modified disposable electrodes were designed to investigate the effect of antitumor agent drug idarubicine (IDA) on the DNA chain structure. The effect of IDA on DNA structure was analyzed by square wave voltammetry (SWV) depending on not only the guanine signal but also IDA oxidation response. The present study included the electrochemical investigation of IDA and the investigation of the biomolecular interaction between IDA and DNA. IDA was detected in buffer and urine using disposable pencil graphite electrodes (PGE) with SWV and cyclic voltammetry (CV)). The detection limit (LOD) of IDA in urine samples was 0.089 µg mL−1 with SWV under optimum conditions. For the biomolecular interaction of IDA and DNA, all electrochemical conditions, such as the concentration of DNA, concentration of IDA, interaction phase (at electrode surface/in solution phase), the interaction pH, and the interaction time were optimized. IDA interacted biomolecularly with DNA at the electrode surface and in solution phase using two methods. There is no previous electrochemical study performed on the interaction of IDA with ssDNA. Hence, the effect of IDA on both ssDNA and dsDNA was presented for the first time.