Genetik algoritma ile düşük duyarliliǧa sahip optimal fopid denetleyici tasarimi

Tufenkci S., ŞENOL B., ALAGÖZ B. B.

2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019, Malatya, Turkey, 21 - 22 September 2019 identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/idap.2019.8875982
  • City: Malatya
  • Country: Turkey
  • Keywords: Fractional order PID controller, fractional order system stability, GA
  • Van Yüzüncü Yıl University Affiliated: No


© 2019 IEEE.Researchers have demonstrated that Fractionalorder Proportional Integral Derivative (FOPID) controllers can provide superior control performance compared to classical PID controllers. This study presents an optimal FOPID controller design method in v-domain to achieve lower sensitivity to disturbance. For this purpose, an optimal FOPID controller design method is proposed, where a multi-objective optimization problem, which reduces sensitivity of system to external disturbances and stabilizes the system, is defined and solved by Genetic Algorithm (GA). This design is performed in the stability region of the first Riemann Sheet in v-plane. To increase system robustness against disturbances, sensitivity function of the system is minimized. Hence, a multi-objective optimization problem, which is solved by GA algorithm, is stated for placement of minimum angle system pole to a target angle within the stability region and minimization of system sensitivity function. Thus, for fractional order systems, FOPID controller design can be performed in v-domain. An illustrative design example and comparison of the resulting design with other design methods are presented.