Atıf İçin Kopyala
Çakır M., Gunes B.
GEORGIAN MATHEMATICAL JOURNAL, cilt.29, ss.193-203, 2022 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
29
-
Basım Tarihi:
2022
-
Doi Numarası:
10.1515/gmj-2021-2130
-
Dergi Adı:
GEORGIAN MATHEMATICAL JOURNAL
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, zbMATH
-
Sayfa Sayıları:
ss.193-203
-
Anahtar Kelimeler:
Difference scheme, error estimate, Fredholm integro-differential equation, singular perturbation, uniform mesh, Volterra integro-differential equation, DECOMPOSITION METHOD, NUMERICAL-SOLUTION, APPROXIMATE, SYSTEM
-
Van Yüzüncü Yıl Üniversitesi Adresli:
Evet
Özet
In this study, singularly perturbed mixed integro-differential equations (SPMIDEs) are taken into account. First, the asymptotic behavior of the solution is investigated. Then, by using interpolating quadrature rules and an exponential basis function, the finite difference scheme is constructed on a uniform mesh. The stability and convergence of the proposed scheme are analyzed in the discrete maximum norm. Some numerical examples are solved, and numerical outcomes are obtained.