On the Lipschitz condition in the fractal calculus


Golmankhaneh A., TUNÇ C.

CHAOS SOLITONS & FRACTALS, cilt.95, ss.140-147, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 95
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.chaos.2016.12.001
  • Dergi Adı: CHAOS SOLITONS & FRACTALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.140-147
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the F-alpha-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the F-alpha-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples. (C) 2016 Elsevier Ltd. All rights reserved.