A novel coating material: Ellagitannins-loaded maltodextrin and lecithin-based nanomaterials


Okumuş E., Bakkalbaşı E., Javidipour İ., Meral R., Ceylan Z.

FOOD BIOSCIENCE, cilt.42, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.fbio.2021.101158
  • Dergi Adı: FOOD BIOSCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Food Science & Technology Abstracts, INSPEC
  • Anahtar Kelimeler: Ellagitannins, Pomegranate peel, Nanoencapsulation, Freeze-drying, POMEGRANATE PUNICA-GRANATUM, PHENOLIC-COMPOUNDS, BIOACTIVE COMPOUNDS, ASSISTED EXTRACTION, STORAGE STABILITY, RELEASE BEHAVIOR, PEEL EXTRACTS, ENCAPSULATION, MICROENCAPSULATION, NANOPARTICLES
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

This study aimed to create nanoparticles using maltodextrin and lecithin coating materials from the extract of ellagitannins obtained from pomegranate peels. The nanoparticles were further characterized by FT-IR, SEM and TGA. The initial average molecular diameter of the ET was 47.02 +/- 31.0 mu m. After the nanoencapsulation process, the average molecular diameters of ETM and ETL samples were determined as 371.84 +/- 229.75 nm and 339.02 +/- 215.29 nm, respectively. Punicalagin A, Punicalagin B and Ellagic acid were determined as the dominant phenolics in pomegranate peels. It was observed that lecithin coated nanoparticles showed high stability with -57.60 mV zeta potential compared to maltodextrin coated ones, and had higher encapsulation efficiency in punicalagin A, punicalagin B and ellagic acid phenolics. On the other hand, maltodextrin coated samples showed higher production efficiency (86.34%) and loading capacity (57.91%) than those of lecithin. It was understood that the tested coating materials had a significant effect on the color values of the nanoparticles. In addition, a significant increase in thermal stability of nanoparticles formed with both coating materials was detected. As a result, the stability, efficiency, and thermal resistance of ellagitannins significantly increased with the applied nanoencapsulation process.