A NUMERICAL COMPARATIVE STUDY FOR THE SINGULARLY PERTURBED NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS ON LAYER-ADAPTED MESHES


Creative Commons License

Gunes B., Çakır M.

Miskolc Mathematical Notes, cilt.25, sa.1, ss.225-240, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.18514/mmn.2024.4264
  • Dergi Adı: Miskolc Mathematical Notes
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, zbMATH
  • Sayfa Sayıları: ss.225-240
  • Anahtar Kelimeler: Bakhvalov mesh, error bounds, finite difference scheme, Shishkin mesh, singular perturbation, Volterra-Fredholm integro-differential equation
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

This article deals with the singularly perturbed nonlinear Volterra-Fredholm integro-differential equations. Firstly, some priori bounds are presented. Then, the finite difference scheme is constructed on non-uniform mesh by using interpolating quadrature rules [5] and composite numerical integration formulas. The error estimates are derived in the discrete maximum norm. Finally, theoretical results are performed on two examples and they are compared for both Bakhvalov (B-type) and Shishkin (S-type) meshes.