Simple detection of gluten in commercial gluten-containing samples with a novel nanoflower electrosensor made of molybdenum disulfide with comparison of the ELISA method


Salman F., Zengin A., Çelik Kazıcı H.

Journal of Food Science, cilt.89, sa.5, ss.2747-2760, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 89 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1111/1750-3841.17043
  • Dergi Adı: Journal of Food Science
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Analytical Abstracts, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Computer & Applied Sciences, Environment Index, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database, DIALNET
  • Sayfa Sayıları: ss.2747-2760
  • Anahtar Kelimeler: differential pulse voltammetry, electrochemical sensor, gluten, MoS2 nanoflowers
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this study, a new electrochemical sensor based on molybdenum disulfide (MoS2) nanoflowers/glassy carbon electrode (GCE was created for the sensitive detection of gluten. The prepared nanocatalysts were characterized using scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. The effects of the prepared nanocatalysts, pH value, and dropping amounts on the results were examined in detail. The electrochemical performance of the developed sensor (MoS2 nanoflowers/GCE) was then evaluated using differential pulse voltammetry, and the sensor was found to have significant electrochemical activity against gluten. A substantial linear connection was observed in the range of 0.5–100 ppm of gluten concentration under optimum experimental circumstances, and the detection limit between peak current and gluten concentration was determined as 1.16 ppm. The findings showed that the MoS2 nanoflowers/GCE gluten sensor has exceptional selectivity and stability. Finally, the generated electrochemical sensor was effectively utilized for gluten detection in commercial gluten-containing materials with a detection limit of 0.1652 ppm. Thus, the developed MoS2 nanoflowers/GCE sensor offers a potential method for the detection of other molecules and is a promising candidate for gluten detection in commercial samples.