Polyethersulfone membranes modified with 2D MXene-CuO nanocomposites for protein rejection and investigation of antimicrobial properties


Şener L., Alterkaoui A., Özdemir N. C., Dizge N., Özdemir S., Serkan Yalçın M., ...Daha Fazla

Inorganic Chemistry Communications, cilt.179, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 179
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.inoche.2025.114881
  • Dergi Adı: Inorganic Chemistry Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, Chimica, DIALNET
  • Anahtar Kelimeler: Antimicrobial, Antioxidant, Biofilm inhibition, BSA rejection, DNA cleavage, PES membrane
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

This study examines the effects of incorporating three MXene-CuO nanocomposites – Ti3C2Tx/CuO, V2CTx/CuO and Nb2CTx/CuO- into polyethersulfone (PES) membranes. The study aims to enhance the antifouling and permeation properties of PES membranes for bovine serum albumin (BSA) filtration. The experimental design involved adding each MXene-based composites to PES membranes at a fixed concentration of 1 %. These composite membranes were then evaluated using a dead-end filtration system. Their performance was compared to that of a control membrane composed of pure PES without any MXene-based nanocomposites. The results revealed significant improvements in BSA rejection efficiency. The pristine PES membrane achieved a rejection rate of 61.42 %, while the three composite membranes containing MXene-based nanocomposites showed complete BSA rejection, achieving 100 % removal efficiency. The synthesized MXene-based nanocomposites were also assessed for in vitro antioxidant, antidiabetic, DNA nuclease, antibiofilm and antimicrobial activities. V2CTx/CuO exhibited 90.27 % antioxidant activity. Antidiabetic activity of V2CTx/CuO and Ti3C2Tx/CuO was achieved as 86.42 % and 96.46 %. All compounds caused single-strand DNA cleavage at 50 and 100 mg/L doses and double-strand cleavage caused at 200 mg/L dose. The low MIC values obtained revealed that the compounds presented effective antibacterial properties. V2CTx/CuO, Nb2CTx/CuO and Ti3C2Tx/CuO was also displayed influential microbial growth inhibition as 82.79 %, 98.62 % and 100 %, respectively. The highest antibiofilm activity against S. aureus and P. aeruginosa for V2CTx/CuO, Nb2CTx/CuO and Ti3C2Tx/CuO was 71.25 % and 56.85 %; 87.91 % and 69.16 %; and 92.55 % and 84.22 %, respectively. It was also found that the antimicrobial surface of PES membrane doped with 1 % V2CTx/CuO, Nb2CTx/CuO and Ti3C2Tx/CuO displayed 72.58 %, 84.62 %, and 95.49 % antibacterial ability, respectively.