Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode


Talay Pınar P., Mete C., Şentürk Z.

Journal of Research in Pharmacy, cilt.28, sa.4, ss.1010-1021, 2024 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 4
  • Basım Tarihi: 2024
  • Doi Numarası: 10.29228/jrp.783
  • Dergi Adı: Journal of Research in Pharmacy
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.1010-1021
  • Anahtar Kelimeler: biological sample, carbon paste electrode, sodium dodecylsulfate, tyrosine kinase inhibitör, Vandetanib
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this investigation, a novel electrochemical approach employing a bare carbon paste electrode (CPE) has been devised for the sensitive and expeditious quantification of the tyrosine kinase inhibitor vandetanib (VAN). VAN, a pivotal anti-tumor agent employed in various cancer types, notably medullary thyroid cancer, manifested an irreversible oxidation peak at approximately +1.17 V (vs. Ag/AgCl, 3 M NaCl) in 0.1 M HNO3, elucidated through cyclic voltammetry. The electrode reaction was determined to proceed via controlled adsorption. The study meticulously examined the influence of anionic surfactant sodium dodecyl sulfate (SDS), instrumental parameters, pH fluctuations, and the composition of the supporting electrolyte on the oxidation peak of VAN. Remarkably, the sensitivity of stripping voltammetric measurements markedly augmented upon the inclusion of 9 × 10−4 M SDS. Employing optimized parameters for SW-AdSV (square-wave adsorptive stripping voltammetry), the bare CPE demonstrated exceptional linearity within the dynamic ranges of 1.05×10−7 – 1.6×10−5 M for VAN. The limit of detection and limit of quantification were established at 2.7×10−8 and 9.0×10−8 M for VAN, respectively. Furthermore, the developed electrochemical methodology was effectively applied for the detection of VAN in spiked model serum samples.