The Effect of Some Wild Grown Plant Extracts and Essential Oils on Pectobacterium betavasculorum: The Causative Agent of Bacterial Soft Rot and Vascular Wilt of Sugar Beet


Rastgou M., Rezaee Danesh Y., ERCİŞLİ S., Sayyed R., Enshasy H. A. E., Dailin D. J., ...More

Plants, vol.11, no.9, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 11 Issue: 9
  • Publication Date: 2022
  • Doi Number: 10.3390/plants11091155
  • Journal Name: Plants
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, BIOSIS, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Keywords: antibacterial, essential oil, plant extract, sugar beet, Pectobacterium betavasculorum
  • Van Yüzüncü Yıl University Affiliated: No

Abstract

The bacterial soft rot and vascular wilt of sugar beet are the major diseases of sugar crops globally induced by Pectobacterium betavasculorum and P. carotovorum subsp. carotovorum (Pcc). The control of this bacterial disease is a severe problem, and only a few copper-based chemical bactericides are available for this disease. Because of the limitations of chemicals to control plant bacterial pathogens, the essential oils and extracts have been considered one of the best alternative strategies for their control. In this study, twenty-seven essential oils and twenty-nine plant extracts were extracted and evaluated for their antibacterial activities against Pectobacterium betavasculorum isolate C3, using the agar diffusion method at 0.01%, 0.1%, and 100% (v/v). Pure Pimpinella anisum L. oil exhibited the most anti-bacterial activity among three different concentrations of essential oils and extracts, followed by Thymus vulgaris L. oil and Rosa multiflora Thunb. extract. The efficacy of effective essential oils and extracts on Ic1 cultivar of sugar beet seeds germination and seedling growth in vivo also were tested. The seed germination of the Ic1 cultivar was inhibited at all the concentrations of essential oils used. Only extracts of Rosa multiflora Thunb., Brassica oleracea L., Lactuca serriola L., Salvia rosmarinus Spenn., Syzygium aromaticum (L.) Merr. and L.M.Perry, Eucalyptus globulus Labill., and essential oils of Ocmium basilicum L., Pimpinella anisum L., and Mentha× piperita L.L. in 0.1% concentration had no inhibition on seed germination and could improve seedling growth. This is the first report of the antibacterial activity of essential oils and extracts on Pectobacterium betavasculorum.