The Hardy-Littlewood-Sobolev inequality for (beta, gamma)-distance Riesz potentials


Cinar I., DURU H.

APPLIED MATHEMATICS AND COMPUTATION, cilt.153, sa.3, ss.757-762, 2004 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 153 Sayı: 3
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1016/s0096-3003(03)00671-4
  • Dergi Adı: APPLIED MATHEMATICS AND COMPUTATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.757-762
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

The generalized with respect to (beta, gamma)-distance Riesz potential defined on Sobolev space W-p(l)(R-n) is constructed and for this potential the theorem of Hardy-Littlewood-Sobolev type has been established. (C) 2003 Elsevier Inc. All rights reserved.

The generalized with respect to (β,γ)-distance Riesz potential defined on Sobolev space Full-size image (<1 K) is constructed and for this potential the theorem of Hardy–Littlewood–Sobolev type has been established.