The ICMME 2016 : 18th International Conference on Mechanical and Mechatronics Engineering, Dubai, Birleşik Arap Emirlikleri, 1 - 02 Haziran 2016, cilt.18, sa.6, ss.27-36
This paper presents the trajectory tracking control of a
spatial redundant hybrid manipulator. This manipulator consists of
two parallel manipulators which are a variable geometry truss (VGT)
module. In fact, each VGT module with 3-degress of freedom (DOF)
is a planar parallel manipulator and their operational planes of these
VGT modules are arranged to be orthogonal to each other. Also, the
manipulator contains a twist motion part attached to the top of the
second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid
(parallel-parallel) redundant spatial manipulator. The forward
kinematics equations of this manipulator are obtained, then,
according to these equations, the inverse kinematics is solved based
on an optimization with the joint limit avoidance. The dynamic
equations are formed by using virtual work method. In order to test
the performance of the redundant manipulator and the controllers
presented, two different desired trajectories are followed by using the
computed force control method and a switching control method. The
switching control method is combined with the computed force
control method and genetic algorithm. In the switching control
method, the genetic algorithm is only used for fine tuning in the
compensation of the trajectory tracking errors.