Sparse representation of system of Fredholm integro-differential equations by using alpert multiwavelets


Saray B. N., Lakestanı M., Razzaghi M.

Computational Mathematics and Mathematical Physics, cilt.55, sa.9, ss.1468-1483, 2015 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 9
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1134/s0965542515090031
  • Dergi Adı: Computational Mathematics and Mathematical Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1468-1483
  • Anahtar Kelimeler: Alpert multiwavelets, Fredholm integro-differential equations, GMRES method, sparse matrix, thresholding
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

A numerical technique is presented for the solution of system of Fredholm integro-differential equations. The method consists of expanding the required approximate solution as the elements of Alpert multiwavelet functions (see Alpert B. et al. J. Comput. Phys. 2002, vol. 182, pp. 149–190). Using the operational matrix of integration and wavelet transform matrix, we reduce the problem to a set of algebraic equations. This system is large. We use thresholding to obtain a new sparse system; consequently, GMRES method is used to solve this new system. Numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces accurate results.