Metallic Flexible NiTi Wire Microcrack Transducer for Label-Free Impedimetric Sensing of Escherichia coli


Creative Commons License

Özlü Türk G., SOYLU M. Ç.

Biosensors, cilt.16, sa.1, 2026 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 1
  • Basım Tarihi: 2026
  • Doi Numarası: 10.3390/bios16010054
  • Dergi Adı: Biosensors
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, EMBASE, INSPEC, MEDLINE, Directory of Open Access Journals
  • Anahtar Kelimeler: flexible nickel–titanium (NiTi) biosensor, label-free impedimetric sensing, martensitic microcracks, point-of-care biosensing, self-healing interfaces
  • Van Yüzüncü Yıl Üniversitesi Adresli: Hayır

Özet

Flexible biosensors offer rapid and low-cost diagnostics but are often limited by the mechanical and electrochemical instability of polymer-based designs in biological media. Here, we introduce a metallic flexible microcrack transducer that exploits the intrinsic deformability of superelastic nickel–titanium (NiTi) for label-free impedimetric detection. Mechanical bending of NiTi wires spontaneously generates martensitic-phase microcracks whose metal–gap–metal geometry forms the active transduction sites, where functional interfacial layers and captured analytes modulate the local dielectric environment and govern the impedance response. Our approach imparts a novel dielectric character to the alloy, enabling its unexplored application in the megahertz (MHz) frequency domain (0.01–10 MHz) where native NiTi is merely conductive. Functionalization with Escherichia coli (E. coli)-specific antibodies renders these microdomains biologically active. This effectively transforms the mechanically induced microcracks into tunable impedance elements driven by analyte binding. The γ-bent NiTi sensors achieved stable and quantitative detection of E. coli ATCC 25922 in sterile human urine, with a detection limit of 64 colony forming units (CFU) mL−1 within 45 min, without redox mediators, external labels, or amplification steps. This work pioneers the use of martensitic microcrack networks, mimicking self-healing behavior in a superelastic alloy as functional transduction elements, defining a new class of metallic flexible biosensors that integrate mechanical robustness, analytical reliability, and scalability for point-of-care biosensing.