TURKISH JOURNAL OF MATHEMATICS, cilt.45, ss.2427-2440, 2021 (SCI-Expanded)
This work represents a systematic computational study of the distribution of the Fourier coefficients of cuspidal Hecke eigenforms of level Gamma 0(4) and half-integral weights. Based on substantial calculations, the question is raised whether the distribution of normalised Fourier coefficients with bounded indices can be approximated by a generalised Gaussian distribution. Moreover, it is argued that the apparent symmetry around zero of the data lends strong evidence to the Bruinier-Kohnen conjecture on the equidistribution of signs and even suggests the strengthening that signs and absolute values are distributed independently.