A Parameter Robust Method for Singularly Perturbed Delay Differential Equations


Creative Commons License

Erdogan F.

JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası:
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1155/2010/325654
  • Dergi Adı: JOURNAL OF INEQUALITIES AND APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem