Structure of magnetic field lines


Golmankhaneh A. K., Khalili Golmankhaneh A., Jazayeri S. M., Baleanu D.

Communications in Nonlinear Science and Numerical Simulation, cilt.17, sa.2, ss.713-720, 2012 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 2
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.cnsns.2011.03.042
  • Dergi Adı: Communications in Nonlinear Science and Numerical Simulation
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.713-720
  • Anahtar Kelimeler: Exterior derivative, Forms, Integrable systems, Lie derivative, Magnetic surfaces, Nambu mechanics, Non-integrable systems
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this paper the Hamiltonian structure of magnetic lines is studied in many ways. First it is used vector analysis for defining the Poisson bracket and Casimir variable for this system. Second it is derived Pfaffian equations for magnetic field lines. Third, Lie derivative and derivative of Poisson bracket is used to show structure of this system. Finally, it is shown Nambu structure of the magnetic field lines. © 2011 Elsevier B.V.