Benzotiyofen@Pd as an efficient and stable catalyst for the electrocatalytic oxidation of hydrazine


KAYA Ş., Ozok-Arici O., KIVRAK A., Caglar A., DEMİR KIVRAK H.

FUEL, cilt.328, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 328
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.fuel.2022.125355
  • Dergi Adı: FUEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Biotechnology Research Abstracts, Chemical Abstracts Core, Communication Abstracts, INSPEC, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Anahtar Kelimeler: Energy, Palladium, Organic catalyst, Hydrazine electrooxidation, Benzothiophene, HIGH-PERFORMANCE CATALYST, NI-ZN ALLOY, FUEL-CELL, ELECTROOXIDATION, CARBON, NICKEL, FOAM, FILM, CO, METHANOL
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

An efficient methods for the synthesis of 2-(2,5-dimethylphenyl)-3-iodobenzo[b]thiophene (4) is described, and investigated its anode catalyst performance by using electrochemical methods (CV, CA and EIS). When 2-(2,5dimethylphenyl)-3-iodobenzo[b]thiophene (4) is applied, the specific activity is found as 25.811 mA/cm(2). Interestingly, when Palladium (Pd) is electrochemically deposited on the benzothiophene derivative, the catalytic activity increased the 80.930 mA/cm(2). This result is highest than the current metal based anode catalyst. Moreover, EIS and CA measurements display that Pd doped benzothiophene organic catalyst have high stability, and give the low charge transfer resistance. Energy dispersive X-ray (SEM-EDX), electron microscopy, TEM are used for the determination of its surface morphology. As a result, 2-(2,5-dimethylphenyl)-3-iodobenzo[b]thiophene (4) may be alternative electro-catalysts in fuel cell applications.