Automated Analysis of Vertebral Body Surface Roughness for Adult Age Estimation: Ellipse Fitting and Machine-Learning Approach


Kartal E., Etli Y.

Diagnostics, cilt.15, sa.14, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 14
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/diagnostics15141794
  • Dergi Adı: Diagnostics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, INSPEC, Directory of Open Access Journals
  • Anahtar Kelimeler: age estimation, computed tomography, ellipse fitting, forensic radiology, machine learning, vertebral surface roughness
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Background/Objectives: Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the “average distance to the fitted ellipse” score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT images. Methods: CT scans of 176 adults (94 males, 82 females; 21–94 years) were retrospectively analyzed. For each vertebra, the mean orthogonal deviation of the anterior superior endplate from an ideal ellipse was extracted. Sex-specific multiple linear regression served as a baseline; support vector regression (SVR), random forest (RF), k-nearest neighbors (k-NN), and Gaussian naïve-Bayes pseudo-regressor (GNB-R) were tuned with 10-fold cross-validation and evaluated on a 20% hold-out set. Performance was quantified with the standard error of the estimate (SEE). Results: DS values correlated moderately to strongly with age (peak r = 0.60 at L3–L5). Linear regression explained 40% (males) and 47% (females) of age variance (SEE ≈ 11–12 years). Non-parametric learners improved precision: RF achieved an SEE of 8.49 years in males (R2 = 0.47), whereas k-NN attained 10.8 years (R2 = 0.45) in women. Conclusions: Automated analysis of vertebral cortical roughness provides a transparent, observer-independent means of estimating adult age with accuracy approaching that of more complex deep learning pipelines. Streamlining image preparation and validating the approach across diverse populations are the next steps toward forensic adoption.