Microstrip filters Based on Open Stubs and SIR for High Frequency and Ultra-Wideband Applications


İmeci Ş. T., Tütüncü B., Bešlija F., Herceg L.

JOURNAL OF ENGINEERING RESEARCH, cilt.10, sa.3A, ss.212-223, 2022 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 3A
  • Basım Tarihi: 2022
  • Dergi Adı: JOURNAL OF ENGINEERING RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Arab World Research Source, Directory of Open Access Journals
  • Sayfa Sayıları: ss.212-223
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

This paper includes two new microstrip filter configurations for high frequency and Ultra-Wide Band applications. The first proposed filter is a composition of four parallel open-circuited stubs connected by optimized fractal-structured microstrip line. The filter response is a combination of three passing regions, namely low pass from 0.1 GHz to 3 GHz, band-pass from 4.5 GHz to 9 GHz and high pass from 10.5 GHz to 13 GHz, separated by two rejection regions from 3 GHz to 4.5 GHz and 9 GHz to 10.5 GHz. Deep and sharp rejection regions reaching up to -44.6 dB with 40 % fractional bandwidth (FBW) are observed with a good electrical performance. Furthermore, with a comparative table, the advantages of this proposed BSF in terms of FBW, compactness and insertion loss are compared with recently reported related studies. Secondly a dual-band band pass filter implementing a Stepped-Impedance resonator (SIR) and a modified H-shaped structure is presented. This filter is designed to operate in a low pass region up to 3.58 GHz and a band pass region from 15.38 to 21.65 GHz, with a wide stopband region between 4.46 and 14.07 GHz. The simulated and measured results are in good agreement. Compared to its peers, the compact size and low price allow for a wide application of these filter configurations, while passing frequencies allow operation in the unlicensed frequency spectrum, which is popular for high-speed communication