Alpha-Lipoic Acid Preserves Testicular Integrity Under 2.45 GHz Electromagnetic Radiation by Restoring Redox and Inflammatory Balance


Çakır T., Keskin S., Yıldızhan K., Bayir M. H., Altındağ F., Karaman E.

BIOMEDICINES, cilt.13, sa.12, ss.1-23, 2025 (SCI-Expanded, Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 12
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/biomedicines13123089
  • Dergi Adı: BIOMEDICINES
  • Derginin Tarandığı İndeksler: Scopus, Science Citation Index Expanded (SCI-EXPANDED), BIOSIS, Directory of Open Access Journals
  • Sayfa Sayıları: ss.1-23
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Background/Objective: Electromagnetic radiation (EMR) from wireless technologies has raised concerns about male reproductive health. We aimed to evaluate the protective role of alpha-lipoic acid (ALA), a potent antioxidant, against testicular alterations induced by 2.45 GHz EMR. Methods: Twenty-eight adult male rats were randomly divided into four groups: control, EMR, ALA, and ALA+EMR. Animals in the EMR and ALA+EMR groups were exposed to EMR for 2 h/day for 1 month. Testicular tissues were examined histologically, stereologically, and immunohistochemically, while serum samples were analysed biochemically. Results: EMR exposure caused marked structural damage, including disruption of seminiferous tubule architecture, increased collagen deposition, and expansion of tubular and interstitial volumes. These pathological changes were primarily prevented in the ALA+EMR group. Immunohistochemical analyses revealed increased IL-6 and TNF-α expression following EMR exposure, whereas ALA supplementation significantly reduced these inflammatory markers and restored AR, ZO-1, and ZO-2 expression. Biochemically, EMR reduced antioxidant enzyme activities (SOD, GSH, GPx) and elevated MDA levels, indicating oxidative stress; these parameters were reversed by ALA treatment. Conclusions: Collectively, our findings demonstrate that 2.45 GHz EMR induces oxidative stress, inflammation, and testicular injury, while ALA provides significant protection. These results highlight the therapeutic potential of ALA as a protective agent against EMR-related reproductive toxicity and infertility risk.