Synthesis and characterization of Pd0 nanoparticles supported over hydroxyapatite nanospheres for potential application as a promising catalyst for nitrophenol reduction


Rüzgar A., Karataş ., Gülcan M.

Heliyon, cilt.9, sa.11, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 11
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.heliyon.2023.e21517
  • Dergi Adı: Heliyon
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Hydroxyapatite, Nanoparticles, Nitrophenols, Palladium, Reduction
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Nitrophenols, which are defined as an important toxic and carcinogenic pollutant in agricultural and industrial wastewater due to their solubility in water, form of resistance against all organisms in water resources. It is vital that these compounds, which are highly toxic as well as highly explosive, are removed from the aquatic ecosystem. In this paper, we reported the preparation and advanced characterization of Pd0 nanoparticles supported over hydroxyapatite nanospheres (Pd0@nano-HAp). The catalytic efficiency of the Pd0@nano-HAp catalyst was examined in the reduction of nitrophenols in water in the presence of NaBH4 as reducing agent and the great activity of catalyst have been specified against 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol compounds with 70.6, 82.4, 27.6 and 41.4 min−1 TOFinitial values, respectively. Another important point is that the Pd0@nano-HAp catalyst has perfect reusability performance (at 5th reuse between 68.5 and 92.8 %) for the reduction of nitrophenols. In addition, catalytic studies were carried out at different temperatures in order to determine thermodynamic parameters such as Ea, ΔH≠ and ΔS≠.