Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line


Khalili Golmankhaneh A., Golmankhaneh A. K., Baleanu D.

International Journal of Theoretical Physics, cilt.52, sa.11, ss.4210-4217, 2013 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 52 Sayı: 11
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1007/s10773-013-1733-x
  • Dergi Adı: International Journal of Theoretical Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4210-4217
  • Anahtar Kelimeler: Fractal calculus, Hamiltonian mechanics, Lagrangian mechanics, Poisson bracket, Variational calculus
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested. © 2013 Springer Science+Business Media New York.