A novel computational method for solving nonlinear Volterra integro-differential equation


Çakır M., Gunes B., Duru H.

Kuwait Journal of Science, cilt.48, sa.1, ss.1-9, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.48129/kjs.v48i1.9386
  • Dergi Adı: Kuwait Journal of Science
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Arab World Research Source, zbMATH
  • Sayfa Sayıları: ss.1-9
  • Anahtar Kelimeler: Error bounds, finite difference method, Volterra integro-differential equation, NUMERICAL-SOLUTION, ORDER, SYSTEM
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

© 2021 University of Kuwait. All rights reserved.In this paper, we study quasilinear Volterra integro-differential equations (VIDEs). Asymptotic estimates are made for the solution of VIDE. Finite difference scheme, which is accomplished by the method of integral identities using interpolating quadrature rules with weight functions and remainder term in integral form, is presented for the VIDE. Error estimates are carried out according to the discrete maximum norm. It is given an effective quasilinearization technique for solving nonlinear VIDE. The theoretical results are performed on numerical examples.