Cross-sectional angle prediction of lipid-rich and calcified tissue on computed tomography angiography images

Creative Commons License

Zhang X., Broersen A., Sokooti H., Ramasamy A., Kitslaar P., Parasa R., ...More

International Journal of Computer Assisted Radiology and Surgery, 2024 (SCI-Expanded) identifier identifier


Purpose: The assessment of vulnerable plaque characteristics and distribution is important to stratify cardiovascular risk in a patient. Computed tomography angiography (CTA) offers a promising alternative to invasive imaging but is limited by the fact that the range of Hounsfield units (HU) in lipid-rich areas overlaps with the HU range in fibrotic tissue and that the HU range of calcified plaques overlaps with the contrast within the contrast-filled lumen. This paper is to investigate whether lipid-rich and calcified plaques can be detected more accurately on cross-sectional CTA images using deep learning methodology. Methods: Two deep learning (DL) approaches are proposed, a 2.5D Dense U-Net and 2.5D Mask-RCNN, which separately perform the cross-sectional plaque detection in the Cartesian and polar domain. The spread-out view is used to evaluate and show the prediction result of the plaque regions. The accuracy and F1-score are calculated on a lesion level for the DL and conventional plaque detection methods. Results: For the lipid-rich plaques, the median and mean values of the F1-score calculated by the two proposed DL methods on 91 lesions were approximately 6 and 3 times higher than those of the conventional method. For the calcified plaques, the F1-score of the proposed methods was comparable to those of the conventional method. The median F1-score of the Dense U-Net-based method was 3% higher than that of the conventional method. Conclusion: The two methods proposed in this paper contribute to finer cross-sectional predictions of lipid-rich and calcified plaques compared to studies focusing only on longitudinal prediction. The angular prediction performance of the proposed methods outperforms the convincing conventional method for lipid-rich plaque and is comparable for calcified plaque.