Laplace equations on the fractal cubes and Casimir effect


Khalili Golmankhaneh A., Nia S. M.

European Physical Journal: Special Topics, cilt.230, sa.21-22, ss.3895-3900, 2021 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 230 Sayı: 21-22
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1140/epjs/s11734-021-00317-4
  • Dergi Adı: European Physical Journal: Special Topics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC
  • Sayfa Sayıları: ss.3895-3900
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

In this paper, we have generalized fractal calculus on fractal Cantor cubes. The mass function on fractal Cantor cubes is defined. Then, we use the mass function to define integral staircase function on fractal Cantor cubes. Using the integral staircase function, the fractal derivatives and integrals for a function with fractal Cantor cubes are defined. Fractal Laplace equations are suggested and their solutions are plotted to show more details. As application, Casimir effect is modeled by fractal Laplace equation.