Domination edge connectivity of graphs


Aldemir M. Ş., Ediz S., Çiftçi İ., Yamaç K., Taş Z.

Graphs and Linear Algebra, cilt.2024, sa.2, ss.1-10, 2024 (Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2024 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.5281/zenodo.8372637
  • Dergi Adı: Graphs and Linear Algebra
  • Derginin Tarandığı İndeksler: Scopus
  • Sayfa Sayıları: ss.1-10
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Domination and connectivity are two independent subjects of graph theory which have many applications in computer and information sciences. To bring these two terms together, we first define a novel conditional connectivity measure:-domination edge connectivity. Let = (,) be a connected graph and is the edge set of. If − is disconnected and every disconnected component has domination number equals , then minimum cardinality of the set is called-domination edge connectivity number of and denoted as () (). In this study we compute 2-domination edge connectivity of paths, cycles and complete graphs.