INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, cilt.17, sa.2, ss.537-550, 2022 (ESCI)
This paper deals with a perturbed nonlinear system of fractional order differential equations (FrODEs) with Caputo derivative. The purpose of the paper is to discuss uniform stability (US), asymptotic stability (AS), Mittag-Leffer stability (MLS) of zero solution and boundedness at infinity of non-zero solutions of this perturbed nonlinear system of FrODEs with Caputo derivative. We obtain four new theorems on these mathematical concepts via a Lyapunov function (LF) and its Caputo derivative. For illustration, an example is provided which satisfies assumptions of the four new results and, in particular, shows their applications. The new results of this paper generalize and improve some recent ones in the literature and they have contributions to theory of FrODEs.