Synthesis, Characterization, Theoretical Studies and in Vitro Embriyotoxic, Genotoxic and Anticancer Effects of Novel Phenyl(1,4,6-Triphenyl-2-Thioxo-1,2,3,4-Tetrahydropyrimidin-5-yl)Methanone


Akbaş E., Othman K. A., Çelikezen F. Ç., Aydogan Ejder N., TÜRKEZ H., YAPÇA Ö. E., ...More

Polycyclic Aromatic Compounds, vol.44, no.9, pp.6284-6301, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 44 Issue: 9
  • Publication Date: 2024
  • Doi Number: 10.1080/10406638.2023.2276243
  • Journal Name: Polycyclic Aromatic Compounds
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.6284-6301
  • Keywords: cytotoxicity, DFT, embryotoxicity, genotoxicity, Pyrimidin, theoretical chemistry
  • Van Yüzüncü Yıl University Affiliated: Yes

Abstract

In this study, phenyl (1,4,6-triphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone was obtained by using the Biginelli reaction method. The structure of this compound was analyzed using elemental analysis, IR, 1H, and 13C NMR. The quantum chemical calculations (QCC) of this compound were performed density functional theory (DFT) method, 6–31 G (d, p) base set, and B3LYP functions with the Gaussian09W software package. Literature shows that pyrimidine-derived compounds have very active biological properties. For this reason, the biologically active properties of the synthesized compound were also examined. To determine embryotoxic, genotoxic, and cytotoxic effects of compound, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, micronucleus (MN) and 8-OH-dG assays were carried out. On the other hand, pharmacokinetic and toxicity properties (ADMET) were predicted in silico via SwissADME and Protox-II web tools. In silico estimates of this compound used in the study showed that the compound has the covetable physicochemical properties for bioavailability. In conclusion, the obtained results of our study clearly showed that this compound exerted strong toxicity potential.