Formulation with sage tea-loaded fish oil-based microcapsules to delay oxidation


DURMUŞ M., UÇAR Y., KÖŞKER A. R., ÖZOĞUL Y., ÖZYURT G., Ceylan Z.

Journal of Food Science and Technology, cilt.60, sa.2, ss.474-483, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 60 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s13197-022-05629-4
  • Dergi Adı: Journal of Food Science and Technology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Agricultural & Environmental Science Database, Analytical Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Sayfa Sayıları: ss.474-483
  • Anahtar Kelimeler: Fish oil, Sage essential oil, Microencapsulation, Lipid oxidation
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

© 2022, Association of Food Scientists & Technologists (India).Fish (Engraulis encrasicolus) oil was successfully microencapsulated using sage essential oils prepared in three different concentrations as 1% (S1), 2% (S2) and 3% (S3). The microencapsulated fish oil powders fabricated with spray drying were stored at room temperature (24 ± 1 °C) in order to determine the oxidative deterioration for 12 weeks. The highest microencapsulation efficiency was observed in the S3 (60.17%) as compared with other groups. Although the changes in free fatty acid (FFA) values were defined between 6.04 and 9.29% at the end of the storage period, the lowest FFA value was found in S2 samples (p < 0.05). Among the microencapsulated samples, the highest peroxide value (PV) was measured as 20.24 meq O2/kg for S1 at the 11th week of the experimental period. Moreover, statistical differences between the control (25.93 meq O2/kg) and S1 samples were observed (p < 0.05). The rapid increase in the thiobarbituric acid (TBA) value of fish powders was delayed by microencapsulation technique fabricated with spray drying. The use of sage essential oils within this combination effectively retarded the oxidation in fish oil powders at ambient storage, indicating cost-effective for the food industry. Therefore, encapsulation of fish oils with sage oil using the spray drying technique has improved oxidation stability of fish oil and can be used for food applications.