Characterization, in vitro bioaccessibility and antidiabetic activities of maltodextrin and lecithin nanomaterials loaded with ellagic acid


Okumuş E., Bakkalbaşı E., Gümüş A.

Journal of Food Measurement and Characterization, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11694-024-02673-w
  • Dergi Adı: Journal of Food Measurement and Characterization
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, CAB Abstracts, Compendex, Food Science & Technology Abstracts, Veterinary Science Database
  • Anahtar Kelimeler: Ellagic acid, In vitro antidiabetic activity, In vitro bioaccessibility, Nano biomaterial, Pomegranate peel
  • Van Yüzüncü Yıl Üniversitesi Adresli: Evet

Özet

Pomegranate peel is one of the wastes generated in large quantities in the food industry and ellagic acid is a natural bioactive phenolic compound in pomegranate peel. In this study, high-purity and low-cost ellagic acid was produced by acid hydrolyze process from pomegranate peel and characterization, in vitro bioaccessibility, antioxidant, and antidiabetic activity of the ellagic acid nanoencapsulated with maltodextrin and soy lecithin were studied. The extract yield and purity of ellagic acid was 6.47 and 88.74%, respectively. Results showed that lecithin coated samples were more stable with − 43.16 mV zeta potential and had higher encapsulation efficiency (99.29%) compared to maltodextrin. However, coated samples with maltodextrin had higher production efficiency (91.40%) and loading capacity (54.70%). The thermal resistance of ellagic acid after the nanoencapsulation process was significantly raised. The ellagic acid nanoencapsulated with maltodextrin had higher bioaccessibility (80.22%) and solubility in biological buffers (64.00-98.20%). The α-amylase and α-glucosidase inhibitiory activities of the ellagic acid decreased after the encapsulation process. However, the α-amylase inhibitory activities of the nanoencapsulated materials were higher than acarbose as a positive control. As a result, thermal resistance, solubility in a biological medium, and bioaccessibility of ellagic acid after nanoencapsulation with maltodextrin can be increased. Thus, the use of ellagic acid nanoencapsulated with maltodextrin in the food, cosmetic, and pharmacological industries can be diversified.